8¢ .. College of Information Studies

i ~
ﬁiﬁ 'L.E"-‘-f‘ University of Marvland Hormbake Library Building College Park, MD 20742-4343

TCP (Part 2)

Session 10
INST 346
Technologies, Infrastructure and Architecture

Muddiest Points

e Reading pseudocode
« Reading finite state diagrams

o \What parts of “rdt” are in TCP?

Goals for Today

e Finishup TCP

e Exam review

T

CP segment structure

32 hits

source port #

dest port #

counting

ACK: ACK #

sequencerunnber

by bytes
of data

valid

—_acknowledgement number

(not segments!)

head
len

ﬁ6t~tj

S|IF| receive window

used

f LR

Urg data pointer

bytes
rcvr willing

RST, SYN, FIN:/

op/(s (variable length)

to accept

connection estab
(setup, teardown
commands)

Internet /

checksum
(as in UDP)

/ application

data
(variable length)

TCP seq. numbers, ACKs

outgoing segment from sender

Sequence numbers' source port # dest port #
sequence number
i b)’te stream number of acknowledgement number
first byte in segment’s || | rwnd
data checksum urg pointer
window size
acknowledgements: N
expected from other side
sender sequence number spece
e cumulative ACK
. . sent sent, not- usable not
Q: how receiver handles ACKed |yetACKed butnot usable
out-of-order segments]g“ér;\t) yet sent
e A: TCP spec doesn’ t say, incoming segment to sender
_ UP to Implementor source port# | dest port #
sequence number

Il acknowledgement number

A rwnd

checksum urg pointer

Connection Management

before exchanging data, sender/receiver “handshake”:
" agree to establish connection (each knowing the other willing

to establish connection)
" agree on connection parameters

application
O
connection state: ESTAB
connection Variables:
seq # client-to-server
server-to-client
rcvBuffer size
at server,client

application

connection state: ESTAB
connection variables:
seq # client-to-server
server-to-client
rcvBuffer size
at server,client

V{ network
Socket connectionSocket =

Socket clientSocket =
newSocket(""*hostname™, " port welcomeSocket.accept();

number'™) ;

network

TCP 3-way handshake

client state V./ H server state
LISTEN B LISTEN
choose init seq num, x
! send TCP SYN msg |~
SYNSENT SYNDbit=1, Seq=x

choose init seq num, y
d TCP SYNACK
ool SYN RCVD

/ msg, acking SYN

SYNbit=1, Seq=y
ACKbit=1; ACKnum=x+1

v received SYNACK(x) /

indicates server is live;
ESTAB cend ACK for SYNACK: |~

this segment may contain ACKbit=1, ACKnum=y+1

client-to-server data _
\ received ACK(y)
indicates client is live

v

ESTAB

TCP 3-way handshake: FSM

Socket connectionSocket =
welcomeSocket.accept();

A Socket clientSocket =
S\qQ(X) il newSocket(**hostname', ""port
number'™) ;
SYNACK(seg=y,ACKnum=x+1)
create new socket for SYN(seqg=x)

communication back to client

[‘,

| SYNACK(seg=y,ACKnum=x+1)

ACK(ACKnum=y-+1) ACK(ACKnum=y+1)

TCP seq. numbers, ACKs

Host A

J‘ y\
User =
types
‘ C ’ \

host ACKs
receipt
of echoed
‘C!

Seq=42, ACK=79, w

Seq=79, ACK=43, data= ‘C’

—
\

Seq=43, ACK:K

simple telnet scenario

host ACKs
receipt of
‘C’, echoes
back ‘C’

TCP reliable data transfer

= TCP creates rdt service
on top of IP’ s unreliable

service
 pipelined segments ,
e cumulative acks let” s initially consider
+ single retransmission simplified TCP sender:
timer * ignore duplicate acks
= retransmissions * ignore flow control,
triggered by: congestion control

* timeout events
* duplicate acks

TCP sender events:

data rcvd from app: timeout:

" create segment with " retransmit segment
seq # that caused timeout

" seq # is byte-stream " restart timer
number of first data ack revd:

byte in segment = if ack acknowledges

" start timer if not previously unacked
already running segments
* think of timer as for e update what is known
oldest unacked to be ACKed
segment

e start timer if there are

* expiration interval: still unacked segments

TimeOQutinterval

TCP sender (simplified)

data received from application above
create segment, seq. #: NextSeqNum

pass segment to IP (i.e., “send”)
NextSegNum = NextSegNum + length(data)
if (timer currently not running)
A start timer
NextSegNum = InitialSegNum
SendBase = InitialSeqNum
timeout

retransmit not-yet-acked segment

with smallest seq. #
start timer
ACK received, with ACK field value y

if (y > SendBase) {
SendBase =y

[* SendBase—1: last cumulatively ACKed byte */

if (there are currently not-yet-acked segments)
start timer

else stop timer

}

TCP: retransmission scenarios

Host A Host B

—— timeout —*

\
Seq=92, 8 bytes of data
/
ACK=100
X

Seq=92, 8 bytes of data

/

ACK=100

—

lost ACK scenario

Host A Host B
| E

SendBase=92

/

Seq=92, 8 bytes of data

\

Seq=100, 20 bytes of dat

ACK=10/

ACK=120

/

—— timeout ——

Seq=92, 8

SendBase=100 bytes of data—__|

SendBase=120

\

ACK=120

\

SendBase=120

premature timeout

TCP: retransmission scenarios

Host B

I
o
%]
~+
>
%]

%

o

\
Seq=92, 8 bytes of data

\
Seg=100, 20 bytes of d

ACK=100
X
ACK=120

/

\K

———— timeout —*

\

Seq=120, 15 bytes of data

/

cumulative ACK

TCP ACK generation [RFC 1122, RFC 2581]

event at receiver TCP receiver action

arrival of in-order segment with delayed ACK. Wait up to 500ms
expected seq #. All data up to for next segment. If no next segment,
expected seq # already ACKed send ACK

arrival of in-order segment with immediately send single cumulative
expected seq #. One other ACK, ACKing both in-order segments
segment has ACK pending

arrival of out-of-order segment immediately send duplicate ACK,
higher-than-expect seq. # . indicating seq. # of next expected byte

Gap detected

arrival of segment that immediate send ACK, provided that
partially or completely fills gap segment starts at lower end of gap

TCP fast retransmit

" time-out period often
relatively long:
* long delay before
resending lost packet
" detect lost segments
via duplicate ACKs.

e sender often sends
many segments back-
to-back

* if segment is lost, there
will likely be many
duplicate ACKs.

— JCP fast retransmit —

if sender receives 3
ACKs for same data

(“triple duplicate ACKs"),
resend unacked
segment with smallest
seq #
" |ikely that unacked
segment lost, so don’ t

wait for timeout

TCP fast retransmit

Host A Host

g e

d

/

— Seq=92, 8 bytes of data

\seqzloow
\X

ACK=100

ACK=100

“ﬁ(zloo

/
ACK=100

<
Seq=100, 20 bytes of data

\.

v VL

fast retransmit after sender
receipt of triple duplicate ACK

b=

timeout

A 4

TCP flow control

application may

application
process

remove data from

TCP socket buffers

... Slower than TCP
receiver is delivering —
(sender is sending)

— A

r?

TCP socket
receiver buffers
N\

TCP
code

IP
code

— flow control
receiver controls sender, so

sender won’ t overflow
receiver s buffer by transmitting
too much, too fast

|
e .
I ! '
from sender

receiver protocol stack

TCP round trip time, timeout

Q: how to set TCP
timeout value?

" longer than RTT
e but RTT varies
" too short: premature

timeout, unnecessary
retransmissions

" too long: slow reaction
to segment loss

Q: how to estimate RTT?

= SampleRTT: measured
time from segment
transmission until ACK
receipt
* ignore retransmissions

= SampleRTT will vary, want
estimated RTT “smoother”

* average several recent
measurements, not just
current SampleRTT

TCP round trip time, timeout

EstimatedRTT = (1- a)*EstimatedRTT + a*SampleRTT

= exponential weighted moving average
" influence of past sample decreases exponentially fast
= typical value:a = 0.125

350 ~

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr,

,U? 300 1
©
c
: \ I
g 250 K K » N Y/‘
E
l: 200
o
& sampleRTT
EstimatedRTT

100

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconds)

TCP round trip time, timeout

" timeout interval: EstimatedRTT plus “safety margin”
* large variation in EStimatedRTT -> larger safety margin

= estimate SampleRTT deviation from EstimatedRTT:

DevRTT = (1-B)*DevRTT +
B*|SampleRTT-EstimatedRTT]

(typically, B = 0.25)

Timeoutlnterval = EstimatedRTT + 4*DevRTT

- | |

estimated RTT “safety margin”

* Check out the online interactive exercises for more
examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

TCP flow control

. 11 . 7
= receiver advertises free

buffer space by including to application process
rwnd value in TCP header rlj
of receiver-to-sender F
segments Rchufier buffered data
e RcvBuffer size set via T
socket options (typical default rwnd free buffer space
is 4096 bytes) !
* many operating systems '

autoadjust RcvBuffer

= sender limits amount of
unacked (“in-flight”) data to
receiver s rwnd value

" guarantees receive buffer
will not overflow

TCP segment payloads

recelver-side buffering

TCP: closing a connection

= client, server each close their side of connection
e send TCP segment with FIN bit = |

= respond to received FIN with ACK

 on receiving FIN, ACK can be combined with own FIN
= simultaneous FIN exchanges can be handled

TCP: closing a connection

client state V/ H server state
ESTAB T ESTAB
| clientSocket.close() \FINb't 1
FIN_ WAIT 1 can no longer =1, seq=xX
n B send but can q\ v
receive data __— CLOSE_WAIT
| ACKbit=1; ACKnum=x+1 can still
FIN._WAIT 2 wait for server |e&—" send data
close
— LAST_ACK
’ ‘)Nbitzl, seq=y
TIMED WAIT —_ can no longer
B \ ~— send data
ACKbit=1; ACKnum=y+1
timed wait ~—— v
for 2*max CLOSED

segment lifetime

CLOSED l

Exam Review

	TCP (Part 2)
	Muddiest Points
	Goals for Today
	TCP segment structure
	TCP seq. numbers, ACKs
	Connection Management
	TCP 3-way handshake
	TCP 3-way handshake: FSM
	TCP seq. numbers, ACKs
	TCP reliable data transfer
	TCP sender events:
	TCP sender (simplified)
	TCP: retransmission scenarios
	TCP: retransmission scenarios
	TCP ACK generation [RFC 1122, RFC 2581]
	TCP fast retransmit
	TCP fast retransmit
	TCP flow control
	TCP round trip time, timeout
	TCP round trip time, timeout
	TCP round trip time, timeout
	TCP flow control
	TCP: closing a connection
	TCP: closing a connection
	Exam Review

