Data as an Asset

Session 10

INST 301

Introduction to Information Science

Data as a Model

- Data <u>represents</u> some <u>aspect(s)</u> of reality
 - Reality itself is way too complex
- All models are wrong
 - Some models are <u>useful</u>
- Things that are useful are useful for a <u>purpose</u>
 - Which need not be the original intended purpose

Some Examples

• Bank account

Airline ticket

• Email

Find the Data

Date: Wed Dec 20 08:57:00 EST 2000

From: Kay Mann <kay.mann@enron.com>

To: Suzanne Adams < suzanne.adams@enron.com>

Subject: Re: GE Conference Call has be rescheduled

Did Sheila want Scott to participate? Looks like the call will be too late for him.

Some Aspects of Reality

- People
- Places
- Organizations
- Events
- Objects
- Concepts

- Amounts
- Times
- Time periods
- Statements
- Attitudes

Historical Development

Big Data

Knowledge bases

Data mining

OLAP

Data warehousing

Database management systems

COBOL

1960s ,70s 1980s 1990s 2000 2010 (and before)

Data abstraction

- moving from the nuts and bolts to the big picture
- hiding the complexity of data storage and operations from the user
- levels of abstraction from the trees to the forest
 - the physical level
 - the conceptual level
 - the view level

Database Management System

- Special-purpose programming language for:
 - Defining a database
 - Data
 - Relationships
 - Populating the database
 - Initialization, update, deletion, ...
 - Using the database
 - Queries
 - Reports

Database Lifecycle

- Identify a need
- Analyze specific goals
- Create a model
- Implement the database
- Initialize the data
- Use it for the intended purpose(s)
 - Support the business process(es)
 - Interoperate with other data systems
- Optionally, repurpose the data
- Migrate or retire the data

Data Warehouse

- Collection of technologies designed to convert heaps of data to usable information
 - an environment, not a process
- Three applications
 - improve traditional information presentation technologies
 - support online analytical processing
 - enable use of data mining techniques

Data Warehouse

- Aggregates data from different systems
 - Can require reconciliation that no system needed
- Updated mostly by addition
 - Permits current and historical analysis
- Read-intensive offline analysis
 - Different access pattern than operational systems
- Small number of expert users

Online Analytical Processing (OLAP)

- Exploration tool
 - Slice and dice to "preprocess" the data
 - Visualization to explore relationships
- Example:
 - What percentage of employees in the southeast region who had been covered under health plan A have switched to health plan B since January, broken down by employee family demographics and by office, and how does that compare with our projections?

Data Mining

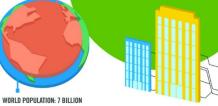
- Statistical analysis to uncover patterns
- Rule-based:
 - We know what pattern we want
- Supervised:
 - We have examples of patterns like what we want
- Unsupervised:
 - We know what kind of a pattern we want

6 BILLION

PEOPLE

have cell

phones .



It's estimated that 2.5 QUINTILLION BYTES

[2.3 TRILLION GIGABYTES] of data are created each day

Most companies in the U.S. have at least

Modern cars have close to

that monitor items such as

fuel level and tire pressure

100 TERABYTES

100,000 GIGABYTES 1

100 SENSORS

of data stored

The New York Stock Exchange captures

1 TB OF TRADE INFORMATION

during each trading session

Velocity

By 2016, it is projected there will be

18.9 BILLION **NETWORK** CONNECTIONS

- almost 2.5 connections per person on earth

The FOUR V's of Big **Data**

break big data into four dimensions: Volume, **Velocity, Variety and Veracity**

4.4 MILLION IT JOBS

As of 2011, the global size of data in healthcare was estimated to be

150 EXABYTES

[161 BILLION GIGABYTES]

Variety

DIFFERENT **FORMS OF DATA**

4 BILLION+ HOURS OF VIDEO

By 2014, it's anticipated

WEARABLE, WIRELESS

HEALTH MONITORS

there will be

420 MILLION

are watched on YouTube each month

30 BILLION PIECES OF CONTENT

are shared on Facebook every month

are sent per day by about 200 million monthly active users

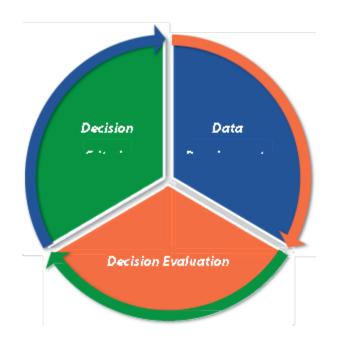
1 IN 3 BUSINESS **LEADERS**

don't trust the information they use to make decisions

in one survey were unsure of how much of their data was inaccurate

Poor data quality costs the US economy around

\$3.1 TRILLION A YEAR


Veracity UNCERTAINTY OF DATA



Data Quality

- Valid
- Accurate
- Precise
- Consistent
- Complete
- Current
- ...

Data-Driven Decisions

