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Preface

Knowledge leads to wisdom and better understanding. Data mining
builds knowledge from information, adding value to the ever-increasing
stores of electronic data that abound today. Emerging from the database
community in the late 1980s’ data mining grew quickly to encompass
researchers and technologies from machine learning, high-performance
computing, visualisation, and statistics, recognising the growing oppor-
tunity to add value to data. Today, this multidisciplinary and transdisci-
plinary effort continues to deliver new techniques and tools for the anal-
ysis of very large collections of data. Working on databases that are now
measured in the terabytes and petabytes, data mining delivers discover-
ies that can improve the way an organisation does business. Data min-
ing enables companies to remain competitive in this modern, data-rich,
information-poor, knowledge-hungry, and wisdom-scarce world. Data
mining delivers knowledge to drive the getting of wisdom.

A wide range of techniques and algorithms are used in data mining.
In performing data mining, many decisions need to be made regarding
the choice of methodology, data, tools, and algorithms.

Throughout this book, we will be introduced to the basic concepts
and algorithms of data mining. We use the free and open source software
Rattle (Williams, 2009), built on top of the R statistical software package
(R Development Core Team, 2011). As free software the source code
of Rattle and R is available to everyone, without limitation. Everyone
is permitted, and indeed encouraged, to read the source code to learn,
understand verify, and extend it. R is supported by a worldwide network
of some of the world’s leading statisticians and implements all of the key
algorithms for data mining.

This book will guide the reader through the various options that
Rattle provides and serves to guide the new data miner through the use
of Rattle. Many excursions into using R itself are presented, with the aim
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viii Preface

of encouraging readers to use R directly as a scripting language. Through
scripting comes the necessary integrity and repeatability required for
professional data mining.

Features

A key feature of this book, which differentiates it from many other very
good textbooks on data mining, is the focus on the hands-on end-to-end
process for data mining. We cover data understanding, data preparation,
model building, model evaluation, data refinement, and practical deploy-
ment. Most data mining textbooks have their primary focus on just the
model building—that is, the algorithms for data mining. This book, on
the other hand, shares the focus with data and with model evaluation
and deployment.

In addition to presenting descriptions of approaches and techniques
for data mining using modern tools, we provide a very practical resource
with actual examples using Rattle. Rattle is easy to use and is built on top
of R. As mentioned above, we also provide excursions into the command
line, giving numerous examples of direct interaction with R. The reader
will learn to rapidly deliver a data mining project using software obtained
for free from the Internet. Rattle and R deliver a very sophisticated data
mining environment.

This book encourages the concept of programming with data, and
this theme relies on some familiarity with the programming of comput-
ers. However, students without that background will still benefit from the
material by staying with the Rattle application. All readers are encour-
aged, though, to consider becoming familiar with some level of writing
commands to process and analyse data.

The book is accessible to many readers and not necessarily just those
with strong backgrounds in computer science or statistics. At times, we
do introduce more sophisticated statistical, mathematical, and computer
science notation, but generally aim to keep it simple. Sometimes this
means oversimplifying concepts, but only where it does not lose the intent
of the concept and only where it retains its fundamental accuracy.

At other times, the presentation will leave the more statistically so-
phisticated wanting. As important as the material is, it is not always
easily covered within the confines of a short book. Other resources cover
such material in more detail. The reader is directed to the extensive
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mathematical treatment by Hastie et al. (2009). For a more introduc-
tory treatment using R for statistics, see Dalgaard (2008). For a broader
perspective on using R, including a brief introduction to the tools in R
for data mining, Adler (2010) is recommended. For an introduction to
data mining with a case study orientation, see Torgo (2010).

Organisation

Chapter 1 sets the context for our data mining. It presents an overview
of data mining, the process of data mining, and issues associated with
data mining. It also canvasses open source software for data mining.

Chapter 2 then introduces Rattle as a graphical user interface (GUI)
developed to simplify data mining projects. This covers the basics of
interacting with R and Rattle, providing a quick-start guide to data min-
ing.

Chapters 3 to 7 deal with data—we discuss the data, exploratory,
and transformational steps of the data mining process. We introduce
data and how to select variables and the partitioning of our data in
Chapter 3. Chapter 4 covers the loading of data into Rattle and R.
Chapters 5 and 6 then review various approaches to exploring the data
in order for us to gain our initial insights about the data. We also learn
about the distribution of the data and how to assess the appropriateness
of any analysis. Often, our exploration of the data will lead us to identify
various issues with the data. We thus begin cleaning the data, dealing
with missing data, transforming the data, and reducing the data, as we
describe in Chapter 7.

Chapters 8 to 14 then cover the building of models. This is the next
step in data mining, where we begin to represent the knowledge discov-
ered. The concepts of modelling are introduced in Chapter 8, introducing
descriptive and predictive data mining. Specific descriptive data mining
approaches are then covered in Chapters 9 (clusters) and 10 (association
rules). Predictive data mining approaches are covered in Chapters 11
(decision trees), 12 (random forests), 13 (boosting), and 14 (support vec-
tor machines). Not all predictive data mining approaches are included,
leaving some of the well-covered topics (including linear regression and
neural networks) to other books.

Having built a model, we need to consider how to evaluate its perfor-
mance. This is the topic for Chapter 15. We then consider the task of
deploying our models in Chapter 16.
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Appendix A can be consulted for installing R and Rattle. Both R
and Rattle are open source software and both are freely available on
multiple platforms. Appendix B describes in detail how the datasets
used throughout the book were obtained from their sources and how
they were transformed into the datasets made available through rattle.

Production and Typographical Conventions

This book has been typeset by the author using LATEX and R’s Sweave().
All R code segments included in the book are run at the time of typeset-
ting the book, and the results displayed are directly and automatically
obtained from R itself. The Rattle screen shots are also automatically
generated as the book is typeset.

Because all R code and screen shots are automatically generated,
the output we see in the book should be reproducible by the reader. All
code is run on a 64 bit deployment of R on a Ubuntu GNU/Linux system.
Running the same code on other systems (particularly on 32 bit systems)
may result in slight variations in the results of the numeric calculations
performed by R.

Other minor differences will occur with regard to the widths of lines
and rounding of numbers. The following options are set when typesetting
the book. We can see that width= is set to 58 to limit the line width for
publication. The two options scipen= and digits= affect how numbers
are presented:

> options(width=58, scipen=5, digits=4, continue=" ")

Sample code used to illustrate the interactive sessions using R will
include the R prompt, which by default is “> ”. However, we generally
do not include the usual continuation prompt, which by default consists
of “+ ”. The continuation prompt is used by R when a single command
extends over multiple lines to indicate that R is still waiting for input from
the user. For our purposes, including the continuation prompt makes it
more difficult to cut-and-paste from the examples in the electronic version
of the book. The options() example above includes this change to the
continuation prompt.

R code examples will appear as code blocks like the following exam-
ple (though the continuation prompt, which is shown in the following
example, will not be included in the code blocks in the book).
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> library(rattle)

Rattle: A free graphical interface for data mining with R.

Version 2.6.7 Copyright (c) 2006-2011 Togaware Pty Ltd.

Type 'rattle()' to shake, rattle, and roll your data.

> rattle()

Rattle timestamp: 2011-06-13 09:57:52

> cat("Welcome to Rattle",

+ "and the world of Data Mining.\n")

Welcome to Rattle and the world of Data Mining.

In providing example output from commands, at times we will trun-
cate the listing and indicate missing components with [...]. While most
examples will illustrate the output exactly as it appears in R, there will
be times where the format will be modified slightly to fit publication
limitations. This might involve silently removing or adding blank lines.

In describing the functionality of Rattle, we will use a sans serif font
to identify a Rattle widget (a graphical user interface component that
we interact with, such as a button or menu). The kinds of widgets
that are used in Rattle include the check box for turning options on and
off, the radio button for selecting an option from a list of alternatives,
file selectors for identifying files to load data from or to save data to,
combo boxes for making selections, buttons to click for further plots or
information, spin buttons for setting numeric options, and the text view,
where the output from R commands will be displayed.

R provides very many packages that together deliver an extensive
toolkit for data mining. rattle is itself an R package—we use a bold
font to refer to R packages. When we discuss the functions or commands
that we can type at the R prompt, we will include parentheses with
the function name so that it is clearly a reference to an R function.
The command rattle(), for example, will start the user interface for
Rattle. Many functions and commands can also take arguments, which
we indicate by trailing the argument with an equals sign. The rattle()

command, for example, can accept the command argument csvfile=.
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Implementing Rattle

Rattle has been developed using the Gnome (1997) toolkit with the Glade
(1998) graphical user interface (GUI) builder. Gnome is independent of
any programming language, and the GUI side of Rattle started out using
the Python (1989) programming language. I soon moved to R directly,
once RGtk2 (Lawrence and Temple Lang, 2010) became available, pro-
viding access to Gnome from R. Moving to R allowed us to avoid the
idiosyncrasies of interfacing multiple languages.

The Glade graphical interface builder is used to generate an XML file
that describes the interface independent of the programming language.
That file can be loaded into any supported programming language to
display the GUI. The actual functionality underlying the application is
then written in any supported language, which includes Java, C, C++,
Ada, Python, Ruby, and R! Through the use of Glade, we have the
freedom to quickly change languages if the need arises.

R itself is written in the procedural programming language C. Where
computation requirements are significant, R code is often translated into
C code, which will generally execute faster. The details are not important
for us here, but this allows R to be surprisingly fast when it needs to be,
without the users of R actually needing to be aware of how the function
they are using is implemented.

Currency

New versions of R are released twice a year, in April and October. R
is free, so a sensible approach is to upgrade whenever we can. This will
ensure that we keep up with bug fixes and new developments, and we
won’t annoy the developers with questions about problems that have
already been fixed.

The examples included in this book are from version 2.13.0 of R and
version 2.6.7 of Rattle. Rattle is an ever-evolving package and, over time,
whilst the concepts remain, the details will change. For example, the
advent of ggplot2 (Wickham, 2009) provides an opportunity to signif-
icantly develop its graphics capabilities. Similarly, caret (Kuhn et al.,
2011) offers a newer approach to interfacing various data mining algo-
rithms, and we may see Rattle take advantage of this. New data mining
algorithms continue to emerge and may be incorporated over time.
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Similarly, the screen shots included in this book are current only
for the version of Rattle available at the time the book was typeset.
Expect some minor changes in various windows and text views, and the
occasional major change with the addition of new functionality.

Appendix A includes links to guides for installing Rattle. We also list
there the versions of the primary packages used by Rattle, at least as of
the date of typesetting this book.
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Chapter 1

Introduction

For the keen data miner, Chapter 2 provides a quick-start guide to data
mining with Rattle, working through a sample process of loading a dataset
and building a model.

Data mining is the art and science of intelligent data analysis. The
aim is to discover meaningful insights and knowledge from data. Discov-
eries are often expressed as models, and we often describe data mining
as the process of building models. A model captures, in some formula-
tion, the essence of the discovered knowledge. A model can be used to
assist in our understanding of the world. Models can also be used to
make predictions.

For the data miner, the discovery of new knowledge and the building
of models that nicely predict the future can be quite rewarding. Indeed,
data mining should be exciting and fun as we watch new insights and
knowledge emerge from our data. With growing enthusiasm, we mean-
der through our data analyses, following our intuitions and making new
discoveries all the time—discoveries that will continue to help change our
world for the better.

Data mining has been applied in most areas of endeavour. There
are data mining teams working in business, government, financial ser-
vices, biology, medicine, risk and intelligence, science, and engineering.
Anywhere we collect data, data mining is being applied and feeding new
knowledge into human endeavour.

We are living in a time where data is collected and stored in un-
precedented volumes. Large and small government agencies, commercial
enterprises, and noncommercial organisations collect data about their
businesses, customers, human resources, products, manufacturing pro-
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cesses, suppliers, business partners, local and international markets, and
competitors. Data is the fuel that we inject into the data mining engine.

Turning data into information and then turning that information into
knowledge remains a key factor for “success.” Data contains valuable
information that can support managers in their business decisions to
effectively and efficiently run a business. Amongst data there can be
hidden clues of the fraudulent activity of criminals. Data provides the
basis for understanding the scientific processes that we observe in our
world. Turning data into information is the basis for identifying new
opportunities that lead to the discovery of new knowledge, which is the
linchpin of our society!

Data mining is about building models from data. We build models to
gain insights into the world and how the world works so we can predict
how things behave. A data miner, in building models, deploys many dif-
ferent data analysis and model building techniques. Our choices depend
on the business problems to be solved. Although data mining is not the
only approach, it is becoming very widely used because it is well suited
to the data environments we find in today’s enterprises. This is charac-
terised by the volume of data available, commonly in the gigabytes and
terabytes and fast approaching the petabytes. It is also characterised
by the complexity of that data, both in terms of the relationships that
are awaiting discovery in the data and the data types available today,
including text, image, audio, and video. The business environments are
also rapidly changing, and analyses need to be performed regularly and
models updated regularly to keep up with today’s dynamic world.

Modelling is what people often think of when they think of data
mining. Modelling is the process of turning data into some structured
form or model that reflects the supplied data in some useful way. Overall,
the aim is to explore our data, often to address a specific problem, by
modelling the world. From the models, we gain new insights and develop
a better understanding of the world.

Data mining, in reality, is so much more than simply modelling. It is
also about understanding the business context within which we deploy it.
It is about understanding and collecting data from across an enterprise
and from external sources. It is then about building models and evalu-
ating them. And, most importantly, it is about deploying those models
to deliver benefits.

There is a bewildering array of tools and techniques at the disposal
of the data miner for gaining insights into data and for building models.
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This book introduces some of these as a starting point on a longer journey
to becoming a practising data miner.

1.1 Data Mining Beginnings

Data mining, as a named endeavour, emerged at the end of the 1980s
from the database community, which was wondering where the next big
steps forward were going to come from. Relational database theory had
been developed and successfully deployed, and thus began the era of
collecting large amounts of data. How do we add value to our massive
stores of data?

The first few data mining workshops in the early 1990s attracted the
database community researchers. Before long, other computer science,
and particularly artificial intelligence, researchers began to get interested.
It is useful to note that a key element of “intelligence” is the ability to
learn, and machine learning research had been developing technology for
this for many years. Machine learning is about collecting observational
data through interacting with the world and building models of the world
from such data. That is pretty much what data mining was also setting
about to do. So, naturally, the machine learning and data mining com-
munities started to come together.

However, statistics is one of the fundamental tools for data analysis,
and has been so for over a hundred years. Statistics brings to the table
essential ideas about uncertainty and how to make allowances for it in the
models that we build. Statistics provides a framework for understanding
the “strength” or veracity of models that we might build from data. Dis-
coveries need to be statistically sound and statistically significant, and
any uncertainty associated with the modelling needs to be understood.
Statistics plays a key role in today’s data mining.

Today, data mining is a discipline that draws on sophisticated skills
in computer science, machine learning, and statistics. However, a data
miner will work in a team together with data and domain experts.

1.2 The Data Mining Team

Many data mining projects work with ill-defined and ambiguous goals.
Whilst the first reaction to such an observation is that we should become
better at defining the problem, the reality is that often the problem to

1.2 The Data Mining Team
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be solved is identified and refined as the data mining project progresses.
That’s natural.

An initiation meeting of a data mining project will often involve data
miners, domain experts, and data experts. The data miners bring the
statistical and algorithmic understanding, programming skills, and key
investigative ability that underlies any analysis. The domain experts
know about the actual problem being tackled, and are often the business
experts who have been working in the area for many years. The data
experts know about the data, how it has been collected, where it has been
stored, how to access and combine the data required for the analysis, and
any idiosyncrasies and data traps that await the data miner.

Generally, neither the domain expert nor the data expert understand
the needs of the data miner. In particular, as a data miner we will often
find ourselves encouraging the data experts to provide (or to provide
access to) all of the data, and not just the data the data expert thinks
might be useful. As data miners we will often think of ourselves as
“greedy” consumers of all the data we can get our hands on.

It is critical that all three experts come together to deliver a data
mining project. Their different understandings of the problem to be
tackled all need to meld to deliver a common pathway for the data mining
project. In particular, the data miner needs to understand the problem
domain perspective and understand what data is available that relates to
the problem and how to get that data, and identify what data processing
is required prior to modelling.

1.3 Agile Data Mining

Building models is only one of the tasks that the data miner performs.
There are many other important tasks that we will find ourselves involved
in. These include ensuring our data mining activities are tackling the
right problem; understanding the data that is available, turning noisy
data into data from which we can build robust models; evaluating and
demonstrating the performance of our models; and ensuring the effective
deployment of our models.

Whilst we can easily describe these steps, it is important to be aware
that data mining is an agile activity. The concept of agility comes from
the agile software engineering principles, which include the evolution or
incremental development of the problem requirements, the requirement
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for regular client input or feedback, the testing of our models as they are
being developed, and frequent rebuilding of the models to improve their
performance.

An allied aspect is the concept of pair programming, where two data
miners work together on the same data in a friendly, competitive, and
collaborative approach to building models. The agile approach also em-
phasises the importance of face-to-face communication, above and be-
yond all of the effort that is otherwise often expended, and often wasted,
on written documentation. This is not to remove the need to write doc-
uments but to identify what is really required to be documented.

We now identify the common steps in a data mining project and note
that the following chapters of this book then walk us through these steps
one step at a time!

1.4 The Data Mining Process

The Cross Industry Process for Data Mining (CRISP-DM, 1996) pro-
vides a common and well-developed framework for delivering data min-
ing projects. CRISP-DM identifies six steps within a typical data mining
project:

1. Problem Understanding

2. Data Understanding

3. Data Preparation

4. Modeling

5. Evaluation

6. Deployment

The chapters in this book essentially follow this step-by-step process
of a data mining project, and Rattle is very much based around these
same steps. Using a tab-based interface, each tab represents one of the
steps, and we proceed through the tabs as we work our way through a
data mining project. One noticeable exception to this is the first step,
problem understanding. That is something that needs study, discussion,
thought, and brain power. Practical tools to help in this process are not
common.
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1.5 A Typical Journey

Many organisations are looking to set up a data mining capability, often
called the analytics team. Within the organisation, data mining projects
can be initiated by the business or by this analytics team. Often, for
best business engagement, a business-initiated project works best, though
business is not always equipped to understand where data mining can be
applied. It is often a mutual journey.

Data miners, by themselves, rarely have the deeper knowledge of
business that a professional from the business itself has. Yet the business
owner will often have very little knowledge of what data mining is about,
and indeed, given the hype, may well have the wrong idea. It is not
until they start getting to see some actual data mining models for their
business that they start to understand the project, the possibilities, and
a glimpse of the potential outcomes.

We will relate an actual experience over six months with six significant
meetings of the business team and the analytics team. The picture we
paint here is a little simplified and idealised but is not too far from reality.

Meeting One The data miners sit in the corner to listen and learn.
The business team understands little about what the data miners might
be able to deliver. They discuss their current business issues and steps
being taken to improve processes. The data miners have little to offer
just yet but are on the lookout for the availability of data from which
they can learn.

Meeting Two The data miners will now often present some obser-
vations of the data from their initial analyses. Whilst the analyses might
be well presented graphically, and are perhaps interesting, they are yet
to deliver any new insights into the business. At least the data miners
are starting to get the idea of the business, as far as the business team
is concerned.

Meeting Three The data miners start to demonstrate some initial
modelling outcomes. The results begin to look interesting to the business
team. They are becoming engaged, asking questions, and understanding
that the data mining team has uncovered some interesting insights.

Meeting Four The data miners are the main agenda item. Their
analyses are starting to ring true. They have made some quite interest-
ing discoveries from the data that the business team (the domain and
data experts) supplied. The discoveries are nonobvious, and sometimes
intriguing. Sometimes they are also rather obvious.
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Meeting Five The models are presented for evaluation. The data
mining team has presented its evaluation of how well the models perform
and explained the context for the deployment of the models. The business
team is now keen to evaluate the model on real cases and monitor its
performance over a period of time.

Meeting Six The models have been deployed into business and are
being run daily to match customers and products for marketing, to iden-
tify insurance claims or credit card transactions that may be fraudulent,
or taxpayers whose tax returns may require refinement. Procedures are
in place to monitor the performance of the model over time and to sound
alarm bells once the model begins to deviate from expectations.

The key to much of the data mining work described here, in addition
to the significance of communication, is the reliance and focus on data.
This leads us to identify some key principles for data mining.

1.6 Insights for Data Mining

The starting point with all data mining is the data. We need to have good
data that relates to a process that we wish to understand and improve.
Without data we are simply guessing.

Considerable time and effort spent getting our data into shape is a key
factor in the success of a data mining project. In many circumstances,
once we have the right data for mining, the rest is straightforward. As
many others note, this effort in data collection and data preparation can
in fact be the most substantial component of a data mining project.

My list of insights for data mining, in no particular order, includes:

1. Focus on the data and understand the business.

2. Use training/validate/test datasets to build/tune/evaluate models.

3. Build multiple models: most give very similar performance.

4. Question the “perfect” model as too good to be true.

5. Don’t overlook how the model is to be deployed.

6. Stress repeatability and efficiency, using scripts for everything.

7. Let the data talk to you but not mislead you.

8. Communicate discoveries effectively and visually.
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1.7 Documenting Data Mining

An important task whilst data mining is the recording of the process.
We need to be vigilant to record all that is done. This is often best
done through the code we write to perform the analysis rather than
having to document the process separately. Having a separate process to
document the data mining will often mean that it is rarely completed.
An implication of this is that we often capture the process as transparent,
executable code rather than as a list of instructions for using a GUI.

There are many important advantages to ensuring we document a
project through our coding of the data analyses. There will be times
when we need to hand a project to another data miner. Or we may cease
work on a project for a period of time and return to it at a later stage.
Or we have performed a series of analyses and much the same process
will need to be repeated again in a year’s time. For whatever reason,
when we return to a project, we find the documentation, through the
coding, essential in being efficient and effective data miners.

Various things should be documented, and most can be documented
through a combination of code and comments. We need to document our
access to the source data, how the data was transformed and cleaned,
what new variables were constructed, and what summaries were gener-
ated to understand the data. Then we also need to record how we built
models and what models were chosen and considered. Finally, we record
the evaluation and how we collect the data to support the benefit that
we propose to obtain from the model.

Through documentation, and ideally by developing documented code
that tells the story of the data mining project and the actual process
as well, we will be communicating to others how we can mine data.
Our processes can be easily reviewed, improved, and automated. We
can transparently stand behind the results of the data mining by having
openly available the process and the data that have led to the results.

1.8 Tools for Data Mining: R

R is used throughout this book to illustrate data mining procedures. It is
the programming language used to implement the Rattle graphical user
interface for data mining. If you are moving to R from SAS or SPSS,
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then you will find Muenchen (2008) a great resource.1

R is a sophisticated statistical software package, easily installed, in-
structional, state-of-the-art, and it is free and open source. It provides all
of the common, most of the less common, and all of the new approaches
to data mining.

The basic modus operandi in using R is to write scripts using the R
language. After a while you will want to do more than issue single simple
commands and rather write programs and systems for common tasks that
suit your own data mining. Thus, saving our commands to an R script
file (often with the .R filename extension) is important. We can then
rerun our scripts to transform our source data, at will and automatically,
into information and knowledge. As we progress through the book, we
will become familiar with the common R functions and commands that
we might combine into a script.

Whilst for data mining purposes we will focus on the use of the Rat-
tle GUI, more advanced users might prefer the powerful Emacs editor,
augmented with the ESS package, to develop R code directly. Both run
under GNU/Linux, Mac/OSX, and Microsoft Windows.

We also note that direct interaction with R has a steeper learning
curve than using GUI based systems, but once over the hurdle, perform-
ing operations over the same or similar datasets becomes very easy using
its programming language interface.

A paradigm that is encouraged throughout this book is that of learn-
ing by example or programming by example (Cypher, 1993). The inten-
tion is that anyone will be able to easily replicate the examples from the
book and then fine-tune them to suit their own needs. This is one of
the underlying principles of Rattle, where all of the R commands that
are used under the graphical user interface are also exposed to the user.
This makes it a useful teaching tool in learning R for the specific task of
data mining, and also a good memory aid!

1.9 Tools for Data Mining: Rattle

Rattle is built on the statistical language R, but an understanding of R
is not required in order to use it. Rattle is simple to use, quick to deploy,
and allows us to rapidly work through the data processing, modelling,
and evaluation phases of a data mining project. On the other hand,

1An early version is available from http://r4stats.com.
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R provides a very powerful language for performing data mining well
beyond the limitations that are embodied in any graphical user interface
and the consequently canned approaches to data mining. When we need
to fine-tune and further develop our data mining projects, we can migrate
from Rattle to R.

Rattle can save the current state of a data mining task as a Rattle
project. A Rattle project can then be loaded at a later time or shared
with other users. Projects can be loaded, modified, and saved, allow-
ing check pointing and parallel explorations. Projects also retain all of
the R code for transparency and repeatability. This is an important as-
pect of any scientific and deployed endeavour—to be able to repeat our
“experiments.”

Whilst a user of Rattle need not necessarily learn R, Rattle exposes
all of the underlying R code to allow it to be directly deployed within the
R Console as well as saved in R scripts for future reference. The R code
can be loaded into R (outside of Rattle) to repeat any data mining task.

Rattle by itself may be sufficient for all of a user’s needs, particularly
in the context of introducing data mining. However, it also provides
a stepping stone to more sophisticated processing and modelling in R
itself. It is worth emphasising that the user is not limited to how Rat-
tle does things. For sophisticated and unconstrained data mining, the
experienced user will progress to interacting directly with R.

The typical workflow for a data mining project was introduced above.
In the context of Rattle, it can be summarised as:

1. Load a Dataset.

2. Select variables and entities for exploring and mining.

3. Explore the data to understand how it is distributed or spread.

4. Transform the data to suit our data mining purposes.

5. Build our Models.

6. Evaluate the models on other datasets.

7. Export the models for deployment.

It is important to note that at any stage the next step could well be a
step to a previous stage. Also, we can save the contents of Rattle’s Log
tab as a repeatable record of the data mining process.

We illustrate a typical workflow that is embodied in the Rattle inter-
face in Figure 1.1.



1.10 Why R and Rattle? 13

Evaluate performance, structure,

complexity, and deployability.

Deploy Model

Monitor Performance

Identify Data

Understand Business

Select Variables

Explore Distributions

Exploring data is important for

itself entail a mini data mining

Understanding the business may

project of a few days.

Clean and Transform

Build and Tune Models

Evaluate Models

We may loop around here many

then build and tune our models.

Start by getting as much data
as we can and then cull.

size, and content.

us to understand their shape,

times as we clean, transform, and

Is the model run manually on

demand or on an automatic

alone or integrated into current

systems?

shecdule?  Is it deployed stand−

and Their Roles

Figure 1.1: The typical workflow of a data mining project as supported by
Rattle.

1.10 Why R and Rattle?

R and Rattle are free software in terms of allowing anyone the freedom to
do as they wish with them. This is also referred to as open source software
to distinguish it from closed source software, which does not provide the
source code. Closed source software usually has quite restrictive licenses
associated with it, aimed at limiting our freedom using it. This is separate
from the issue of whether the software can be obtained for free (which is



14 1 Introduction

often, but not necessarily, the case for open source software) or must be
purchased. R and Rattle can be obtained for free.

On 7 January 2009, the New York Times carried a front page tech-
nology article on R where a vendor representative was quoted:

I think it addresses a niche market for high-end data analysts
that want free, readily available code. ...We have customers
who build engines for aircraft. I am happy they are not using
freeware when I get on a jet.

This is a common misunderstanding about the concept of free and
open source software. R, being free and open source software, is in fact a
peer-reviewed software product that a number of the worlds top statisti-
cians have developed and others have reviewed. In fact, anyone is permit-
ted to review the R source code. Over the years, many bugs and issues
have been identified and rectified by a large community of developers and
users.

On the other hand, a closed source software product cannot be so
readily and independently verified or viewed by others at will. Bugs and
enhancement requests need to be reported back to the vendor. Customers
then need to rely on a very select group of vendor-chosen people to assure
the software, rectify any bugs in it, and enhance it with new algorithms.
Bug fixes and enhancements can take months or years, and generally
customers need to purchase the new versions of the software.

Both scenarios (open source and closed source) see a lot of effort put
into the quality of their software. With open source, though, we all share
it, whereas we can share and learn very little about the algorithms we
use from closed source software.

It is worthwhile to highlight another reason for using R in the con-
text of free and commercial software. In obtaining any software, due
diligence is required in assessing what is available. However, what is fi-
nally delivered may be quite different from what was promised or even
possible with the software, whether it is open source or closed source,
free or commercial. With free open source software, we are free to use it
without restriction. If we find that it does not serve our purposes, we can
move on with minimal cost. With closed source commercial purchases,
once the commitment is made to buy the software and it turns out not
to meet our requirements, we are generally stuck with it, having made
the financial commitment, and have to make do.
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Moving back to R specifically, many have identified the pros and cons
of using this statistical software package. We list some of the advantages
with using R:

� R is the most comprehensive statistical analysis package available.
It incorporates all of the standard statistical tests, models, and
analyses, as well as providing a comprehensive language for manag-
ing and manipulating data. New technology and ideas often appear
first in R.

� R is a programming language and environment developed for statis-
tical analysis by practising statisticians and researchers. It reflects
well on a very competent community of computational statisticians.

� R is now maintained by a core team of some 19 developers, including
some very senior statisticians.

� The graphical capabilities of R are outstanding, providing a fully
programmable graphics language that surpasses most other statis-
tical and graphical packages.

� The validity of the R software is ensured through openly validated
and comprehensive governance as documented for the US Food
and Drug Administration (R Foundation for Statistical Computing,
2008). Because R is open source, unlike closed source software, it
has been reviewed by many internationally renowned statisticians
and computational scientists.

� R is free and open source software, allowing anyone to use and,
importantly, to modify it. R is licensed under the GNU General
Public License, with copyright held by The R Foundation for Sta-
tistical Computing.

� R has no license restrictions (other than ensuring our freedom to
use it at our own discretion), and so we can run it anywhere and
at any time, and even sell it under the conditions of the license.

� Anyone is welcome to provide bug fixes, code enhancements, and
new packages, and the wealth of quality packages available for R is
a testament to this approach to software development and sharing.
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� R has over 4800 packages available from multiple repositories spe-
cialising in topics like econometrics, data mining, spatial analysis,
and bio-informatics.

� R is cross-platform. R runs on many operating systems and different
hardware. It is popularly used on GNU/Linux, Macintosh, and
Microsoft Windows, running on both 32 and 64 bit processors.

� R plays well with many other tools, importing data, for example,
from CSV files, SAS, and SPSS, or directly from Microsoft Excel,
Microsoft Access, Oracle, MySQL, and SQLite. It can also produce
graphics output in PDF, JPG, PNG, and SVG formats, and table
output for LATEX and HTML.

� R has active user groups where questions can be asked and are often
quickly responded to, often by the very people who developed the
environment—this support is second to none. Have you ever tried
getting support from the core developers of a commercial vendor?

� New books for R (the Springer Use R! series) are emerging, and
there is now a very good library of books for using R.

Whilst the advantages might flow from the pen with a great deal of
enthusiasm, it is useful to note some of the disadvantages or weaknesses
of R, even if they are perhaps transitory!

� R has a steep learning curve—it does take a while to get used to the
power of R—but no steeper than for other statistical languages.

� R is not so easy to use for the novice. There are several simple-to-
use graphical user interfaces (GUIs) for R that encompass point-
and-click interactions, but they generally do not have the polish of
the commercial offerings.

� Documentation is sometimes patchy and terse, and impenetrable
to the non-statistician. However, some very high-standard books
are increasingly plugging the documentation gaps.

� The quality of some packages is less than perfect, although if a
package is useful to many people, it will quickly evolve into a very
robust product through collaborative efforts.



1.11 Privacy 17

� There is, in general, no one to complain to if something doesn’t
work. R is a software application that many people freely devote
their own time to developing. Problems are usually dealt with
quickly on the open mailing lists, and bugs disappear with lightning
speed. Users who do require it can purchase support from a number
of vendors internationally.

� Many R commands give little thought to memory management, and
so R can very quickly consume all available memory. This can be
a restriction when doing data mining. There are various solutions,
including using 64 bit operating systems that can access much more
memory than 32 bit ones.

1.11 Privacy

Before closing out our introduction to data mining and tools for doing
it, we need to touch upon the topic of privacy. Laws in many countries
can directly affect data mining, and it is very worthwhile to be aware of
them and their penalties, which can often be severe.

There are basic principles relating to the protection of privacy that
we should adhere to. Some are captured by the privacy principles devel-
oped by the international Organisation for Economic Co-operation and
Development—the OECD (Organisation for Economic Co-operation and
Development (OECD), 1980). They include:

� Collection limitation
Data should be obtained lawfully and fairly, while some very sen-
sitive data should not be held at all.

� Data quality
Data should be relevant to the stated purposes, accurate, complete,
and up-to-date; proper precautions should be taken to ensure this
accuracy.

� Purpose specification
The purposes for which data will be used should be identified, and
the data should be destroyed if it no longer serves the given purpose.

� Use limitation
Use of data for purposes other than specified is forbidden.
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As data miners, we have a social responsibility to protect our society
and individuals for the good and benefit of all of society. Please take
that responsibility seriously. Think often and carefully about what you
are doing.

1.12 Resources

This book does not attempt to be a comprehensive introduction to using
R. Some basic familiarity with R will be gained through our travels in
data mining using the Rattle interface and some excursions into R. In
this respect, most of what we need to know about R is contained within
the book. But there is much more to learn about R and its associated
packages. We do list and comment on here a number of books that
provide an entrée to R.

A good starting point for handling data in R is Data Manipulation
with R (Spector, 2008). The book covers the basic data structures, read-
ing and writing data, subscripting, manipulating, aggregating, and re-
shaping data.

Introductory Statistics with R (Dalgaard, 2008), as mentioned earlier,
is a good introduction to statistics using R. Modern Applied Statistics
with S (Venables and Ripley, 2002) is quite an extensive introduction to
statistics using R. Moving more towards areas related to data mining,
Data Analysis and Graphics Using R (Maindonald and Braun, 2007)
provides excellent practical coverage of many aspects of exploring and
modelling data using R. The Elements of Statistical Learning (Hastie
et al., 2009) is a more mathematical treatise, covering all of the machine
learning techniques discussed in this book in quite some mathematical
depth. If you are coming to R from a SAS or SPSS background, then R
for SAS and SPSS Users (Muenchen, 2008) is an excellent choice. Even
if you are not a SAS or SPSS user, the book provides a straightforward
introduction to using R.

Quite a few specialist books using R are now available, including Lat-
tice: Multivariate Data Visualization with R (Sarkar, 2008), which covers
the extensive capabilities of one of the graphics/plotting packages avail-
able for R. A newer graphics framework is detailed in ggplot2: Elegant
Graphics for Data Analysis (Wickham, 2009). Bivand et al. (2008) cover
applied spatial data analysis, Kleiber and Zeileis (2008) cover applied
econometrics, and Cowpertwait and Metcalfe (2009) cover time series, to
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name just a few books in the R library.
Moving on from R itself and into data mining, there are very many

general introductions available. One that is commonly used for teaching
in computer science is Han and Kamber (2006). It provides a compre-
hensive generic introduction to most of the algorithms used by a data
miner. It is presented at a level suitable for information technology and
database graduates.





Chapter 2

Getting Started

New ideas are often most effectively understood and appreciated by ac-
tually doing something with them. So it is with data mining. Fun-
damentally, data mining is about practical application—application of
the algorithms developed by researchers in artificial intelligence, machine
learning, computer science, and statistics. This chapter is about getting
started with data mining.

Our aim throughout this book is to provide hands-on practise in data
mining, and to do so we need some computer software. There is a choice
of software packages available for data mining. These include commercial
closed source software (which is also often quite expensive) as well as free
open source software. Open source software (whether freely available or
commercially available) is always the best option, as it offers us the
freedom to do whatever we like with it, as discussed in Chapter 1. This
includes extending it, verifying it, tuning it to suit our needs, and even
selling it. Such software is often of higher quality than commercial closed
source software because of its open nature.

For our purposes, we need some good tools that are freely available
to everyone and can be freely modified and extended by anyone. There-
fore we use the open source and free data mining tool Rattle, which is
built on the open source and free statistical software environment R. See
Appendix A for instructions on obtaining the software. Now is a good
time to install R. Much of what follows for the rest of the book, and
specifically this chapter, relies on interacting with R and Rattle.

We can, quite quickly, begin our first data mining project, with Rat-
tle’s support. The aim is to build a model that captures the essence of
the knowledge discovered from our data. Be careful though—there is a
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lot of effort required in getting our data into shape. Once we have qual-
ity data, Rattle can build a model with just four mouse clicks, but the
effort is in preparing the data and understanding and then fine-tuning
the models.

In this chapter, we use Rattle to build our first data mining model—a
simple decision tree model, which is one of the most common models in
data mining. We cover starting up (and quitting from) R, an overview
of how we interact with Rattle, and then how to load a dataset and build
a model. Once the enthusiasm for building a model is satisfied, we then
review the larger tasks of understanding the data and evaluating the
model. Each element of Rattle’s user interface is then reviewed before we
finish by introducing some basic concepts related to interacting directly
with and writing instructions for R.

2.1 Starting R

R is a command line tool that is initiated either by typing the letter
R (capital R—R is case-sensitive) into a command line window (e.g., a
terminal in GNU/Linux) or by opening R from the desktop icon (e.g., in
Microsoft Windows and Mac/OSX). This assumes that we have already
installed R, as detailed in Appendix A.

One way or another, we should see a window (Figure 2.1) displaying
the R prompt (> ), indicating that R is waiting for our commands. We
will generally refer to this as the R Console.

The Microsoft Windows R Console provides additional menus specif-
ically for working with R. These include options for working with script
files, managing packages, and obtaining help.

We start Rattle by loading rattle into the R library using library().
We supply the name of the package to load as the argument to the com-
mand. The rattle() command is then entered with an empty argument
list, as shown below. We will then see the Rattle GUI displayed, as in
Figure 2.2.

> library(rattle)

> rattle()

The Rattle user interface is a simple tab-based interface, with the idea
being to work from the leftmost tab to the rightmost tab, mimicking the
typical data mining process.
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Figure 2.1: The R Console for GNU/Linux and Microsoft Windows. The
prompt indicates that R is awaiting user commands.
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Figure 2.2: The initial Rattle window displays a welcome message and a little
introduction to Rattle and R.

Tip: The key to using Rattle, as hinted at in the status bar on starting
up Rattle, is to supply the appropriate information for a particular tab
and to then click the Execute button to perform the action. Always
make sure you have clicked the Execute button before proceeding to the
next step.

2.2 Quitting Rattle and R

A rather important piece of information, before we get into the details,
is how to quit from the applications. To exit from Rattle, we simply click
the Quit button. In general, this won’t terminate the R Console. For R,
the startup message (Figure 2.1) tells us to type q() to quit. We type
this command into the R Console, including the parentheses so that the
command is invoked rather than simply listing its definition. Pressing
Enter will then ask R to quit:

> q()

Save workspace image? [y/n/c]:
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We are prompted to save our workspace image. The workspace refers
to all of the datasets and any other objects we have created in the cur-
rent R session. We can save all of the objects currently available in a
workspace between different invocations of R. We do so by choosing the
y option. We might be in the middle of some complex analysis and wish
to resume it at a later time, so this option is useful.

Many users generally answer n each time here, having already cap-
tured their analyses into script files. Script files allow us to automatically
regenerate the results as required, and perhaps avoid saving and manag-
ing very large workspace files.

If we do not actually want to quit, we can answer c to cancel the
operation and return to the R Console.

2.3 First Contact

In Chapter 1, we identified that a significant amount of effort within a
data mining project is spent in processing our data into a form suitable
for data mining. The amount of such effort should not be underestimated,
but we do skip this step for now.

Once we have processed our data, we are ready to build a model—and
with Rattle we can build the model with just a few mouse clicks. Using a
sample dataset that someone else has already prepared for us, in Rattle
we simply:

1. Click on the Execute button.
Rattle will notice that no dataset has been identified, so it will take
action, as in the next step, to ensure we have some data. This is
covered in detail in Section 2.4 and Chapter 4.

2. Click on Yes within the resulting popup.
The weather dataset is provided with Rattle as a small and simple
dataset to explore the concepts of data mining. The dataset is
described in detail in Chapter 3.

3. Click on the Model tab.
This will change the contents of Rattle’s main window to display
options and information related to the building of models. This is
where we tell Rattle what kind of model we want to build and how
it should be built. The Model tab is described in more detail in
Section 2.5, and model building is discussed in considerable detail
in Chapters 8 to 14.
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4. Click on the Execute button.
Once we have specified what we want done, we ask Rattle to do it
by clicking the Execute button. For simple model builders for small
datasets, Rattle will only take a second or two before we see the
results displayed in the text view window.

The resulting decision tree model, displayed textually in Rattle’s text
view, is based on a sample dataset of historic daily weather observations
(the curious can skip a few pages ahead to see the actual decision tree in
Figure 2.5 on page 30).

The data comes from a weather monitoring station located in Can-
berra, Australia, via the Australian Bureau of Meteorology. Each obser-
vation is a summary of the weather conditions on a particular day. It
has been processed to include a target variable that indicates whether it
rained the day following the particular observation. Using this historic
data, we have built a model to predict whether it will rain tomorrow.
Weather data is commonly available, and you might be able to build a
similar model based on data from your own region.

With only one or two more clicks, further models can be built. A few
more clicks and we have an evaluation chart displaying the performance
of the model. Then, with just a click or two more, we will have the model
applied to a new dataset to generate scores for new observations.

Now to the details. We will continue to use Rattle and also the simple
command line facility. The command line is not strictly necessary in
using Rattle, but as we develop our data mining capability, it will become
useful. We will load data into Rattle and explain the model that we have
built. We will build a second model and compare their performances.
We will then apply the model to a new dataset to provide scores for
a collection of new observations (i.e., predictions of the likelihood of it
raining tomorrow).

2.4 Loading a Dataset

With Rattle we can load a sample dataset in preparation for modelling, as
we have just done. Now we want to illustrate loading any data (perhaps
our own data) into Rattle.

If we have followed the four steps in Section 2.3, then we will now
need to reset Rattle. Simply click the New button within the toolbar.
We are asked to confirm that we would like to clear the current project.
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Alternatively, we might have exited Rattle and R, as described in Sec-
tion 2.1, and need to restart everything, as also described in Section 2.1.
Either way, we need to have a fresh Rattle ready so that we can follow
the examples below.

On starting Rattle, we can, without any other action, click the Execute
button in the toolbar. Rattle will notice that no CSV file (the default
data format) has been specified (notice the “(None)” in the Filename:
chooser) and will ask whether we wish to use one of the sample datasets
supplied with the package. Click on Yes to do so, to see the data listed,
as shown in Figure 2.3.

Figure 2.3: The sample weather.csv file has been loaded into memory as
a dataset ready for mining. The dataset consists of 366 observations and 24
variables, as noted in the status bar. The first variable has a role other than
the default Input role. Rattle uses heuristics to initialise the roles.
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The file weather.csv will be loaded by default into Rattle as its dataset.
Within R, a dataset is actually known as a data frame, and we will see
this terminology frequently.

The dataset summary (Figure 2.3) provides a list of the variables,
their data types, default roles, and other useful information. The types
will generally be Numeric (if the data consists of numbers, like temper-
ature, rainfall, and wind speed) or Categoric (if the data consists of
characters from the alphabet, like the wind direction, which might be N

or S, etc.), though we can also see an Ident (identifier). An Ident is often
one of the variables (columns) in the data that uniquely identifies each
observation (row) of the data. The Comments column includes general
information like the number of unique (or distinct) values the variable
has and how many observations have a missing value for a variable.

2.5 Building a Model

Using Rattle, we click the Model tab and are presented with the Model
options (Figure 2.4). To build a decision tree model, one of the most
common data mining models, click the Execute button (decision trees are
the default). A textual representation of the model is shown in Figure 2.4.

The target variable (which stores the outcome we want to model or
predict) is RainTomorrow, as we see in the Data tab window of Figure 2.3.
Rattle automatically chose this variable as the target because it is the last
variable in the data file and is a binary (i.e., two-valued) categoric. Using
the weather dataset, our modelling task is to learn about the prospect of
it raining tomorrow given what we know about today.

The textual presentation of the model in Figure 2.4 takes a little
effort to understand and is further explained in Chapter 11. For now,
we might click on the Draw button provided by Rattle to obtain the plot
that we see in Figure 2.5. The plot provides a better idea of why it is
called a decision tree. This is just a different way of representing the
same model.

Clicking the Rules button will display a list of rules that are derived
directly from the decision tree (we’ll need to scroll the panel contained
in the Model tab to see them). This is yet another way to represent the
same model. The rules are listed here, and we explain them in detail
next.
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Figure 2.4: The weather dataset has been loaded, and a decision tree model
has been built.

Rule number: 7 [RainTomorrow=Yes cover=27 (11%) prob=0.74]

Pressure3pm< 1012

Sunshine< 8.85

Rule number: 5 [RainTomorrow=Yes cover=9 (4%) prob=0.67]

Pressure3pm>=1012

Cloud3pm>=7.5

Rule number: 6 [RainTomorrow=No cover=25 (10%) prob=0.20]

Pressure3pm< 1012

Sunshine>=8.85

Rule number: 4 [RainTomorrow=No cover=195 (76%) prob=0.05]

Pressure3pm>=1012

Cloud3pm< 7.5

A well-recognised advantage of the decision tree representation for a
model is that the paths through the decision tree can be interpreted as
a collection of rules, as above. The rules are perhaps the more readable
representation of the model. They are listed in the order of the prob-
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Figure 2.5: The decision tree built “out of the box” with Rattle. We traverse
the tree by following the branches corresponding to the tests at each node.
The > =< notation on the root (top) node indicates that we travel left if
Pressure3pm is greater than 1011.9 and down the right branch if it is less
than or equal to 1011.9. The <= > is similar, but reversed. The leaf nodes
include a node number for reference, a decision of No or Yes to indicate whether
it will RainTomorrow, the number of training observations, and the strength
or confidence of the decision.

ability (prob) that we see listed with each rule. The interpretation of
the probability will be explained in more detail in Chapter 11, but we
provide an intuitive reading here.

Rule number 7 (which also corresponds to the “7)” in Figure 2.4 and
leaf node number 7 in Figure 2.5) is the strongest rule predicting rain
(having the highest probability for a Yes). We can read it as saying
that if the atmospheric pressure (reduced to mean sea level) at 3 pm was
less than 1012 hectopascals and the amount of sunshine today was less
than 8.85 hours, then it seems there is a 74% chance of rain tomorrow
(yval = yes and prob = 0.74). That is to say that on most days when
we have previously seen these conditions (as represented in the data) it
has rained the following day.
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Progressing down to the other end of the list of rules, we find the
conditions under which it appears much less likely that there will be rain
the following day. Rule number 4 has two conditions: the atmospheric
pressure at 3 pm greater than or equal to 1012 hectopascals and cloud
cover at 3 pm less than 7.5. When these conditions hold, the historic
data tells us that it is unlikely to be raining tomorrow. In this particular
case, it suggests only a 5% probability (prob=0.05) of rain tomorrow.

We now have our first model. We have data-mined our historic ob-
servations of weather to help provide some insight about the likelihood
of it raining tomorrow.

2.6 Understanding Our Data

We have reviewed the modelling part of data mining above with very
little attention to the data. A realistic data mining project, though, will
precede modelling with quite an extensive exploration of data, in addition
to understanding the business, understanding what data is available, and
transforming such data into a form suitable for modelling. There is a lot
more involved than just building a model. We look now at exploring our
data to better understand it and to identify what we might want to do
with it.

Rattle’s Explore tab provides access to some common plots as well
as extensive data exploration possibilities through latticist (Andrews,
2010) and rggobi (Lang et al., 2011). We will cover exploratory data
analysis in detail in Chapters 5 and 6. We present here an initial flavour
of exploratory data analysis.

One of the first things we might want to know is how the values of the
target variable (RainTomorrow) are distributed. A histogram might be
useful for this. The simplest way to create one is to go to the Data tab,
click on the Input role for RainTomorrow, and click the Execute button.
Then go to the Explore tab, choose the Distributions option, and then
select Bar Plot for RainTomorrow. The plot of Figure 2.6 will be shown.

We can see from Figure 2.6 that the target variable is highly skewed.
More than 80% of the days have no rain. This is typical of data mining,
where even greater skewness is not uncommon. We need to be aware of
the skewness, for example, in evaluating any models we build—a model
that simply predicts that it never rains is going to be over 80% accurate,
but pretty useless.
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Figure 2.6: The target variable, RainTomorrow, is skewed, with Yes being
quite underrepresented.

We can display other simple plots from the Explore tab by selecting
the Distributions option. Under both the Box Plot and Histogram columns,
select MaxTemp and Sunshine (as in Figure 2.7). Then click on Execute
to display the plots in Figure 2.8. The plots begin to tell a story about
the data. We sketch the story here, leaving the details to Chapter 5.

The top two plots are known as box-and-whisker plots. The top left
plot tells us that the maximum temperature is generally higher the day
before it rains (the plot above the x-axis label Yes) than before the days
when it does not rain (above the No).

The top right plot suggests an even more dramatic skew for the
amount of sunshine the day prior to the prediction. Generally we see
that if there is less sunshine the day before, then the chance of rain
(Yes) seems to be increased.

Both box plots also give another clue about the distribution of the
values of the target variable. The width of the boxes in a box plot
provides a visual indication of this distribution.

Each bottom plot overlays three separate plots that give further in-
sight into the distribution of the observations. The three plots within
each figure are a histogram (bars), a density plot (lines), and a rug plot
(short spikes on the x-axis), each of which we now briefly describe.

The histogram has partitioned the numeric data into segments of
equal width, showing the frequency for each segment. We see again that
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Figure 2.7: The weather dataset has been loaded and a decision tree model
has been built.

sunshine (the bottom right) is quite skewed compared with the maximum
temperature.

The density plots tend to convey a more accurate picture of the dis-
tribution of the data. Because the density plot is a simple line, we can
also display the density plots for each of the target classes (Yes and No).

Along the x-axis is the rug plot. The short vertical lines represent
actual observations. This can give us an idea of where any extreme values
are, and the dense parts show where more of the observations lie.

These plots are useful in understanding the distribution of the nu-
meric data. Rattle similarly provides a number of simple standard plots
for categoric variables. A selection are shown in Figure 2.9. All three
plots show a different view of the one variable, WindDir9am, as we now
describe.

The top plot of Figure 2.9 shows a very simple bar chart, with bars
corresponding to each of the levels (or values) of the categoric variable of
interest (WindDir9am). The bar chart has been sorted from the overall
most frequent to the overall least frequent categoric value. We note that
each value of the variable (e.g., the value “SE,” representing a wind direc-
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Figure 2.8: A sample of distribution plots for two variables.

tion of southeast) has three bars. The first bar is the overall frequency
(i.e., the number of days) for which the wind direction at 9 am was from
the southeast. The second and third bars show the breakdown for the
values across the respective values of the categoric target variable (i.e.,
for No and Yes). We can see that the distribution within each wind di-
rection differs between the three groups, some more than others. Recall
that the three groups correspond to all observations (All), observations
where it did not rain on the following day (No), and observations where
it did (Yes).

The lower two plots show essentially the same information, in different
forms. The bottom left plot is a dot plot. It is similar to the bar chart, on
its side, and with dots representing the “top” of the bars. The breakdown
into the levels of the target variable is compactly shown as dots within
the same row.

The bottom right plot is a mosaic plot, with all bars having the same
height. The relative frequencies between the values of WindDir9am are
now indicated by the widths of the bars. Thus, SE is the widest bar, and
WSW is the thinnest. The proportion between No and Yes within each bar
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Figure 2.9: A sample of the three distribution plots for the one categoric
variable.

is clearly shown.
A mosaic plot allows us to easily identify levels that have very differ-

ent proportions associated with the levels of the target variable. We can
see that a north wind direction has a higher proportion of observations
where it rains the following day. That is, if there is a northerly wind
today, then the chance of rain tomorrow seems to be increased.

These examples demonstrate that data visualisation (or exploratory
data analysis) is a powerful tool for understanding our data—a picture
is worth a thousand words. We actually learn quite a lot about our data
even before we start to specifically model it. Many data miners begin
to deliver significant benefits to their clients simply by providing such
insights. We delve further into exploring data in Chapter 5.

2.7 Evaluating the Model: Confusion Matrix

We often begin a data mining project by exploring the data to gain our
initial insights. In all likelihood, we then also transform and clean up
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our data in various ways. We have illustrated above how to then build
our first model. It is now time to evaluate the performance or quality of
the model.

Evaluation is a critical step in any data mining process, and one that
is often left underdone. For the sake of getting started, we will look at
a simple evaluation tool. The confusion matrix (also referred to as the
error matrix ) is a common mechanism for evaluating model performance.

In building our model we used a 70% subset of all of the available data.
Figure 2.3 (page 27) shows the default sampling strategy of 70/15/15.
We call the 70% sample the training dataset. The remainder is split
equally into a validation dataset (15%) and a testing dataset (15%).

The validation dataset is used to test different parameter settings or
different choices of variables whilst we are data mining. It is important to
note that this dataset should not be used to provide any error estimations
of the final results from data mining since it has been used as part of the
process of building the model.

The testing dataset is only to be used to predict the unbiased error
of the final results. It is important not to use this testing dataset in any
way in building or even fine-tuning the models that we build. Otherwise,
it no longer provides an unbiased estimate of the model performance.

The testing dataset and, whilst we are building models, the validation
dataset, are used to test the performance of the models we build. This
often involves calculating the model error rate. A confusion matrix sim-
ply compares the decisions made by the model with the actual decisions.
This will provide us with an understanding of the level of accuracy of the
model in terms of how well the model will perform on new, previously
unseen, data.

Figure 2.10 shows the Evaluate tab with the Error Matrix (confusion
matrix) using the Testing dataset for the Tree model that we have pre-
viously seen in Figures 2.4 and 2.5. Two tables are presented. The first
lists the actual counts of observations and the second the percentages.
We can observe that for 62% of the predictions the model correctly pre-
dicts that it won’t rain (called the true negatives). That is, 35 days out
of the 56 days are correctly predicted as not raining. Similarly, we see
the model correctly predicts rain (called the true positives) on 18% of
the days.

In terms of how correct the model is, we observe that it correctly
predicts rain for 10 days out of the 15 days on which it actually does
rain. This is a 67% accuracy in predicting rain. We call this the true
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Figure 2.10: A confusion matrix applying the model to the testing dataset is
displayed.

positive rate, but it is also known as the recall and the sensitivity of the
model. Similarly, the true negative rate (also called the specificity of the
model) is 85%.

We also see six days when we are expecting rain and none occurs
(called the false positives). If we were using this model to help us decide
whether to take an umbrella or raincoat with us on our travels tomorrow,
then it is probably not a serious loss in this circumstance—we had to
carry an umbrella without needing to use it. Perhaps more serious though
is that there are five days when our model tells us there will be no rain
yet it rains (called the false negatives). We might get inconveniently
wet without our umbrella. The concepts of true and false positives and
negatives will be further covered in Chapter 15.

The performance measure here tells us that we are going to get wet
more often than we would like. This is an important issue—the fact that
the different types of errors have different consequences for us. We’ll also
see more about this in Chapter 15.

It is useful to compare the performance as measured using the val-
idation and testing datasets with the performance as measured using
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the training dataset. To do so, we can select the Validation and then the
Training options (and for completeness the Full option) from the Data line
of the Evaluate tab and then Execute each. The resulting performance
will be reported. We reproduce all four here for comparison, including
the count and the percentages.

Evaluation Using the Training Dataset:
Count Predict

No Yes

Actual No 205 10
Yes 15 26

Percentage Predict
No Yes

Actual No 80 4
Yes 6 10

Evaluation Using the Validation Dataset:
Count Predict

No Yes

Actual No 39 5
Yes 5 5

Percentage Predict
No Yes

Actual No 72 9
Yes 9 9

Evaluation Using the Testing Dataset:
Count Predict

No Yes

Actual No 35 6
Yes 5 10

Percentage Predict
No Yes

Actual No 62 11
Yes 9 18

Evaluation Using the Full Dataset:
Count Predict

No Yes

Actual No 279 21
Yes 25 41

Percentage Predict
No Yes

Actual No 76 6
Yes 7 11

We can see that there are fewer errors in the training dataset than
in either the validation or testing datasets. That is not surprising since
the tree was built using the training dataset, and so it should be more
accurate on what it has already seen. This provides a hint as to why
we do not validate our model on the training dataset—the evaluation
will provide optimistic estimates of the performance of the model. By
applying the model to the validation and testing datasets (which the
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model has not previously seen), we expect to obtain a more realistic
estimate of the performance of the model on new data.

Notice that the overall accuracy from the training dataset is 90%
(i.e., adding the diagonal percentages, 80% plus 10%), which is excellent.
For the validation and testing datasets, it is around 80%. This is more
likely how accurate the model will be longer-term as we apply it to new
observations.

2.8 Interacting with Rattle

We have now stepped through some of the process of data mining. We
have loaded some data, explored it, cleaned and transformed it, built a
model, and evaluated the model. The model is now ready to be deployed.
Of course, there is a lot more to what we have just done than what we
have covered here. The remainder of the book provides much of these
details. Before proceeding to the details, though, we might review how
we interact with Rattle and R.

We have seen the Rattle interface throughout this chapter and we now
introduce it more systematically. The interface is based on a set of tabs
through which we progress as we work our way through a data mining
project. For any tab, once we have set up the required information, we
will click the Execute button to perform the actions. Take a moment to
explore the interface a little. Notice the Help menu and that the help
layout mimics the tab layout.

The Rattle interface is designed as a simple interface to a powerful
suite of underlying tools for data mining. The general process is to step
through each tab, left to right, performing the corresponding actions.
For any tab, we configure the options and then click the Execute button
(or F2) to perform the appropriate tasks. It is important to note that the
tasks are not performed until the Execute button (or F2 or the Execute
menu item under Tools) is clicked.

The Status Bar at the base of the window will indicate when the
action is completed. Messages from R (e.g., error messages) may appear
in the R Console from which Rattle was started. Since Rattle is a simple
graphical interface sitting on top of R itself, it is important to remember
that some errors encountered by R on loading the data (and in fact during
any operation performed by Rattle) may be displayed in the R Console.
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The R code that Rattle passes on to R to execute underneath the
interface is recorded in the Log tab. This allows us to review the R
commands that perform the corresponding data mining tasks. The R
code snippets can be copied as text from the Log tab and pasted into
the R Console from which Rattle is running, to be directly executed. This
allows us to deploy Rattle for basic tasks yet still gives us the full power
of R to be deployed as needed, perhaps through using more command
options than are exposed through the Rattle interface. This also allows
us the opportunity to export the whole session as an R script file.

The log serves as a record of the actions taken and allows those actions
to be repeated directly and automatically through R itself at a later time.
Simply select (to display) the Log tab and click on the Export button.
This will export the log to a file that will have an R extension. We can
choose to include or exclude the extensive comments provided in the log
and to rename the internal Rattle variables (from “crs$” to a string of
our own choosing).

We now traverse the main elements of the Rattle user interface, specif-
ically the toolbar and menus. We begin with a basic concept—a project.

Projects

A project is a packaging of a dataset, variable selections, explorations,
and models built from the data. Rattle allows projects to be saved for
later resumption of the work or for sharing the data mining project with
other users.

A project is typically saved to a file with a rattle extension. In fact,
the file is a standard binary RData file used by R to store objects in a
more compact binary form. Any R system can load such a file and hence
have access to these objects, even without running Rattle.

Loading a rattle file into Rattle (using the Open button) will load
that project into Rattle, restoring the data, models, and other displayed
information related to the project, including the log and summary infor-
mation. We can then resume our data mining from that point.

From a file system point of view, we can rename the files (as well as the
filename extension, though that is not recommended) without impacting
the project file itself—that is, the filename has no formal bearing on the
contents, so use it to be descriptive. It is best to avoid spaces and unusual
characters in the filenames.
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Projects are opened and saved using the appropriate buttons on the
toolbar or from the Project menu.

Toolbar

The most important button on the Toolbar (Figure 2.11) is the Execute
button. All action is initiated with an Execute, often with a click of the
Execute button. A keyboard shortcut for Execute is the F2 function key.
A menu item for Execute is also available. It is worth repeating that the
user interface paradigm used within Rattle is to set up the parameters
on a tab and then Execute the tab.

Figure 2.11: The Rattle menu and toolbar.

The next few buttons on the Toolbar relate to the concept of a project
within Rattle. Projects were discussed above.

Clicking on the New button will restore Rattle to its pristine startup
state with no dataset loaded. This can be useful when a source dataset
has been externally modified (external to Rattle and R). We might, for
example, have manipulated our data in a spreadsheet or database pro-
gram and re-exported the data to a CSV file. To reload this file into
Rattle, if we have previously loaded it into the current Rattle session, we
need to clear Rattle as with a click of the New button. We can then
specify the filename and reload it.

The Report button will generate a formatted report based on the cur-
rent tab. A number of report templates are provided with Rattle and
will generate a document in the open standard ODT format, for the
open source and open standards supporting LibreOffice. Whilst sup-
port for user-generated reports is limited, the log provides the necessary
commands used to generate the ODT file. We can thus create our own
ODT templates and apply them within the context of the current Rattle
session.

The Export button is available to export various objects and entities
from Rattle. Details are available together with the specific sections in
the following chapters. The nature of the export depends on which tab
is active and within the tab, which option is active. For example, if
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the Model tab is on display then Export will save the current model as
PMML (the Predictive Modelling Markup Language—see Chapter 16).
The Export button is not available for all tabs and options.

Menus

The menus (Figure 2.11) provide alternative access to many of the func-
tions of the interface. A key point in introducing menus is that they can
be navigated from the keyboard and contain keyboard shortcuts so that
we can navigate more easily through Rattle using the keyboard.

The Project menu provides access to the Open and Save options for
loading and saving projects from or to files. The Tools menu provides
access to some of the other toolbar functions as well as access to spe-
cific tabs. The Settings menu allows us to control a number of optional
characteristics of Rattle. This includes tooltips and the use of the more
modern Cairo graphics device.

Extensive help is available through the Help menu. The structure of
the menu follows that of the tabs of the main interface. On selecting a
help topic, a brief text popup will display some basic information. Many
of the popups then have the option of displaying further information,
which will be displayed within a Web browser. This additional docu-
mentation comes directly from the documentation provided by R or the
relevant R package.

Interacting with Plots

It is useful to know how we interact with plots in Rattle. Often we will
generate plots and want to include them in our own reports. Plots are
generated from various places within the Rattle interface.

Rattle optionally uses the Cairo device, which is a vector graphics
engine for displaying high-quality graphic plots. If the Cairo device
is not available within your installation, then Rattle resorts to the de-
fault window device for the operating system (x11() for GNU/Linux
and window() for Microsoft Windows). The Settings menu also allows
control of the choice of graphics device (allowing us to use the default by
disabling support for Cairo). The Cairo device has a number of advan-
tages, one being that it can be encapsulated within other windows, as is
done with Rattle. This allows Rattle to provide some operating-system-
independent functionality and a common interface. If we choose not to
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use the Cairo device, we will have the default devices, which still work
just fine, but with less obvious functionality.

Figure 2.8 (page 34) shows a typical Rattle plot window. At the
bottom of the window, we see a series of buttons that allow us to Save
the plot to a file, to Print it, and Close it.

The Save button allows us to save the graphics to a file in one of
the supported formats. The supported formats include pdf (for high-
resolution pictures), png (for vector images and text), jpg (for colourful
images), svg (for general scalable vector graphics), and, in Microsoft
Windows, wmf (for Windows Metafile, Microsoft Windows-specific vector
graphics). A popup will request the filename to save to. The default is
to save in PDF format, saving to a file with the filename extension of
.pdf. You can choose to save in the other formats simply by specifying
the appropriate filename extension.

The Print button will send the plot to a printer. This requires the un-
derlying R application to have been set up properly to access the required
printer. This should be the case by default.

Once we are finished with the plot, we can click the Close button to
shut down that particular plot window.

Keyboard Navigation

Keyboard navigation of the menus is usually initiated with the F10 func-
tion key. The keyboard arrow keys can then be used to navigate. Pressing
the keyboard’s Enter key will then select the highlighted menu item.

Judicious use of the keyboard (in particular, the arrow keys, the Tab
and Shift-Tab keys, and the Enter key, together with F2 and F10) allows
us to completely control Rattle from the keyboard if desired or required.

2.9 Interacting with R

R is a command line tool. We saw in Section 2.1 how to interact with R
to start up Rattle. Essentially, R displays a prompt to indicate that it is
waiting for us to issue a command. Two such commands are library()

and rattle(). In this section, we introduce some basic concepts and
commands for interacting with R directly.
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Basic Functionality

Generally we instruct R to evaluate functions—a technical term used
to describe mathematical objects that return a result. All functions in
R return a result, and that result can be passed to other functions to
do other things. This simple idea is actually a very powerful concept,
allowing functions to do well what they are designed to do (like building
a model) and pass on their output to other functions to do something
with it (like formatting it for easy reading).

We saw in Section 2.1 two function calls, which we repeat below.
The first was a call to the function library(), where we asked R to load
rattle. We then started up Rattle with a call to the rattle() function:

> library(rattle)

> rattle()

Irrespective of the purpose of the function, for each function call we
usually supply arguments that refine the behaviour of the function. We
did that above in the call to library(), where the argument was rattle.
Another simple example is to call dim() (dimensions) with the argument
weather.

> dim(weather)

[1] 366 24

Here, weather is an object name. We can think of it simply as a
reference to some object (something that contains data). The object in
this case is the weather dataset as used in this chapter. It is organised
as rows and columns. The dim() function reports the number of rows
and columns.

If we type a name (e.g., either weather or dim) at the R prompt,
R will respond by showing us the object. Typing weather (followed by
pressing the Enter key) will result in the actual data. We will see all 366
rows of data scrolled on the screen. If we type dim and press Enter, we
will see the definition of the function (which in this case is a primitive
function coded into the core of R):

> dim

function (x) .Primitive("dim")
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A common mistake made by new users is to type a function name
by itself (without arguments) and end up a little confused about the
resulting output. To actually invoke the function, we need to supply the
argument list, which may be an empty list. Thus, at a minimum, we add
() to the function call on the command line:

> dim()

Error in dim: 0 arguments passed to 'dim' which requires 1

As we see, executing this function will generate an error message. We
note that dim() actually needs one argument, and no arguments were
passed to it. Some functions can be invoked with no arguments, as is the
case for rattle().

The examples above illustrate how we will show our interaction with
R. The “> ” is R’s prompt, and when we see that we know that R is
waiting for commands. We type the string of characters dim(weather)

as the command—in this case a call to the dim function. We then press
the Enter key to send the command to R. R responds with the result from
the function. In the case above, it returned the result [1] 366 24.

Technically, dim() returns a vector (a sequence of elements or values)
of length 2. The [1] simply tells us that the first number we see from the
vector (the 366) is the first element of the vector. The second element is
24.

The two numbers listed by R in the example above (i.e., the vector
returned by dim()) are the number of rows and columns, respectively, in
the weather dataset—that is, its dimensions.

For very long vectors, the list of the elements of the vector will be
wrapped to fit across the screen, and each line will start with a number
within square brackets to indicate what element of the vector we are up
to. We can illustrate this with seq(), which generates a sequence of
numbers:

> seq(1, 50)

[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

[19] 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

[37] 37 38 39 40 41 42 43 44 45 46 47 48 49 50

We saw above that we can view the actual data stored in an object
by typing the name of the object (weather) at the command prompt.
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Generally this will print too many lines (although only 366 in the case
of the weather dataset). A useful pair of functions for inspecting our
data are head() and tail(). These will list just the top and bottom six
observations (or rows of data), by default, from the data frame, based
on the order in which they appear there. Here we request, through the
arguments to the function, to list the top two observations (and we also
use indexing, described shortly, to list only the first nine variables):

> head(weather[1:9], 2)

Date Location MinTemp MaxTemp Rainfall

1 2007-11-01 Canberra 8 24.3 0.0

2 2007-11-02 Canberra 14 26.9 3.6

Evaporation Sunshine WindGustDir WindGustSpeed

1 3.4 6.3 NW 30

2 4.4 9.7 ENE 39

Similarly, we can request the bottom three rows of the dataset.

> tail(weather[1:9], 3)

Date Location MinTemp MaxTemp Rainfall

364 2008-10-29 Canberra 12.5 19.9 0

365 2008-10-30 Canberra 12.5 26.9 0

366 2008-10-31 Canberra 12.3 30.2 0

Evaporation Sunshine WindGustDir WindGustSpeed

364 8.4 5.3 ESE 43

365 5.0 7.1 NW 46

366 6.0 12.6 NW 78

The weather dataset is more complex than the simple vectors we have
seen above. In fact, it is a special kind of list called a data frame, which
is one of the most common data structures in R for storing our datasets.
A data frame is essentially a list of columns. The weather dataset has
24 columns. For a data frame, each column is a vector, each of the same
length.

If we only want to review certain rows or columns of the data frame,
we can index the dataset name. Indexing simply uses square brackets to
list the row numbers and column numbers that are of interest to us:



2.9 Interacting with R 47

> weather[4:8, 2:4]

Location MinTemp MaxTemp

4 Canberra 13.3 15.5

5 Canberra 7.6 16.1

6 Canberra 6.2 16.9

7 Canberra 6.1 18.2

8 Canberra 8.3 17.0

Notice the notation for a sequence of numbers. The string 4:8 is actually
equivalent to a call to seq() with two arguments, 4 and 8. The function
returns a vector containing the integers from 4 to 8. It’s the same as
listing them all and combining them using c():

> 4:8

[1] 4 5 6 7 8

> seq(4, 8)

[1] 4 5 6 7 8

> c(4, 5, 6, 7, 8)

[1] 4 5 6 7 8

Getting Help

It is important to know how we can learn more about using R. From the
command line, we obtain help on commands by calling help():

> help(dim)

A shorthand is to precede the argument with a ? as in: ?dim. This is
automatically converted into a call to help().

The help.search() function will search the documentation to list
functions that may be of relevance to the topic we supply as an argument:

> help.search("dimensions")

The shorthand here is to precede the string with two question marks as
in ??dimensions.

A third command for searching for help on a topic is RSiteSearch().
This will submit a query to the R project’s search engine on the Internet:
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> RSiteSearch("dimensions")

Quitting R

Recall that to exit from R, as we saw in Section 2.1, we issue q():

> q()

Our first session with R is now complete. The command line, as we
have introduced here, is where we access the full power of R. But not
everyone wants to learn and remember commands, so Rattle will get us
started quite quickly into data mining, with only our minimal knowledge
of the command line.

R and Rattle Interactions

Rattle generates R commands that are passed on through to R at various
times during our interactions with Rattle. In particular, whenever the
Execute button is clicked, Rattle constructs the appropriate R commands
and then sends them off to R and awaits R’s response.

We can also interact with R itself directly, and even interleave our
interactions with Rattle and R. In Section 2.5, for example, we saw a
decision tree model represented textually within Rattle’s text view. The
same can also be viewed in the R Console using print(). We can replicate
that here once we have built the decision tree model as described in
Section 2.5.

The R Console window is where we can enter R commands directly.
We first need to make the window active, usually by clicking the mouse
within that window. For the example below, we assume we have run
Rattle on the weather dataset to build a decision tree as described in
Section 2.5.

We can then type the print() command at the prompt. We see this
in the code box below. The command itself consists of the name of an R
function we wish to call on (print() in this case), followed by a list of
arguments we pass to the function. The arguments provide information
about what we want the function to do. The reference we see here,
crs$rpart, identifies where the model itself has been saved internally
by Rattle. The parameter digits= specifies the precision of the printed
numbers. In this case we are choosing a single digit.
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After typing the full command (including the function name and ar-
guments) we then press the Enter key. This has the effect of passing the
command to R. R will respond with the text exactly as shown below.
The text starts with an indication of the number of observations (256).
This is followed by the same textual presentation of the model we saw in
Section 2.5.

> print(crs$rpart, digits=1)

n= 256

node), split, n, loss, yval, (yprob)

* denotes terminal node

1) root 256 40 No (0.84 0.16)

2) Pressure3pm>=1e+03 204 20 No (0.92 0.08)

4) Cloud3pm< 8 195 10 No (0.95 0.05) *

5) Cloud3pm>=8 9 3 Yes (0.33 0.67) *

3) Pressure3pm< 1e+03 52 20 No (0.52 0.48)

6) Sunshine>=9 25 5 No (0.80 0.20) *

7) Sunshine< 9 27 7 Yes (0.26 0.74) *

Commands versus Functions

We have referred above to the R command line, where we enter commands
to be executed. We also talked about functions that we type on the
command line that make up the command to be executed. In this book,
we will adopt a particular terminology around functions and commands,
which we describe here.

In its true mathematical sense, a function is some operation that con-
sumes some data and returns some result. Functions like dim(), seq(),
and head(), as we have seen, do this. Functions might also have what we
often call side effects—that is, they might do more than simply returning
some result. In fact, the purpose of some functions is actually to perform
some other action without necessarily returning a result. Such functions
we will tend to call commands. The function rattle(), for example,
does not return any result to the command line as such. Instead, its
purpose is to start up the GUI and allow us to start data mining. Whilst
rattle() is still a function, we will usually refer to it as a command
rather than a function. The two terms can be used interchangeably.
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Programming Styles for R

R is a programming language supporting different programming styles.
We can use R to write programs that analyse data—we program the
data analyses. Note that if we are only using Rattle, then we will not
need to program directly. Nonetheless, for the programs we might write,
we can take advantage of the numerous programming styles offered by
R to develop code that analyses data in a consistent, simple, reusable,
transparent, and error-free way.

Mistakenly, we are often trained to think that writing sentences in a
programming language is primarily for the benefit of having a computer
perform some activity for us. Instead, we should think of the task as
really writing sentences that convey to other humans a story—a story
about analysing our data. Coincidentally, we also want a computer to
perform some activity.

Keeping this simple message in mind, whenever writing in R, helps
to ensure we write in such a way that others can easily understand what
we are doing and that we can also understand what we have done when
we come back to it after six months or more.

Environments as Containers in R

For a particular project, we will usually analyse a collection of data,
possibly transforming it and storing different bits of information about
it. It is convenient to package all of our data and what we learn about
it into some container, which we might save as a binary R object and
reload more efficiently at a later time. We will use R’s concept of an
environment for this.

As a programming style, we can create a storage space and give it a
name (i.e., it will look like a programming language variable) to act as
a container. The container is an R environment and is initialised using
new.env() (new environment). Here, we create a new environment and
give it the name en:

> en <- new.env()

The object en now acts as a single container into which we can place
all the relevant information associated with the dataset and that can also
be shared amongst several models. We will store and access the relevant
information from this container.
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Data is placed into the container using the $ notation and the assign-
ment operator, as we see in the following example:

> en$obs <- 4:8

> en$obs

[1] 4 5 6 7 8

> en$vars <- 2:4

> en$vars

[1] 2 3 4

The variables obs and vars are now contained within the environment
referenced as en.

We can operate on variables within an environment without using
the $ notation (which can become quite cumbersome) by wrapping the
commands within evalq():

> evalq(

{

nobs <- length(obs)

nvars <- length(vars)

}, en)

> en$nobs

[1] 5

> en$nvars

[1] 3

The use of evalq() becomes most convenient when we have more
than a couple of statements to write.

At any time, we can list the contents of the container using ls():

> ls(en)

[1] "nobs" "nvars" "obs" "vars"

Another useful function, provided by gdata (Warnes, 2011), is ll(),
which provides a little more information:
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> library(gdata)

> ll(en)

Class KB

nobs integer 0

nvars integer 0

obs integer 0

vars integer 0

We can also convert the environment to a list using as.list():

> as.list(en)

$nvars

[1] 3

$nobs

[1] 5

$vars

[1] 2 3 4

$obs

[1] 4 5 6 7 8

By keeping all the data related to a project together, we can save and
load the project through this one object. We also avoid “polluting” the
global environment with lots of objects and losing track of what they all
related to, possibly confusing ourselves and others.

We can now also quite easily use the same variable names, but within
different containers. Then, when we write scripts to build models, for
example, often we will be able to use exactly the same scripts, changing
only the name of the container. This encourages the reuse of our code
and promotes efficiencies.

This approach is also sympathetic to the concept of object-oriented
programming. The container is a basic “object” in the object-oriented
programming context.

We will use this approach of encapsulating all of our data and infor-
mation within a container when we start building models. The following
provides the basic template:
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> library(rpart)

> weatherDS <- new.env()

> evalq({

data <- weather

nobs <- nrow(data)

vars <- c(2:22, 24)

form <- formula(RainTomorrow ~ .)

target <- all.vars(form)[1]

train <- sample(nobs, 0.7*nobs)

}, weatherDS)

> weatherRPART <- new.env(parent=weatherDS)

> evalq({

model <- rpart(formula=form, data=data[train, vars])

predictions <- predict(model, data[-train, vars])

}, weatherRPART)

Here we have created two containers, one for the data and the other for
the model. The model container (weatherRPART) has as its parent the
data container (weatherDS), which is achieved by specifying the parent=
argument. This makes the variables defined in the data container avail-
able within the model container.

To save a container to a file for use at a later time, or to document
stages within the data mining project, use save():

> save(weatherDS, file="weatherDS.Rdata")

It can later be loaded using load():

> load("weatherDS.Rdata")

It can at times become tiresome to be wrapping our code up within
a container. Whilst we retain the discipline of using containers we can
also quickly interact with the variables in a container without having to
specify the container each time. WE use attach and detach to add a
container into the so called search path used by R to find variables. Thus
we could do something like the following:

> attach(weatherRPART)

> print(model)

> detach(weatherRPART)



54 2 Getting Started

However, creating new variables to store within the environment will not
work in the same way. Thus:

> attach(weatherRPART)

> new.model <- model

> detach(weatherRPART)

does not place the variable new.model into the weatherRPART environ-
ment. Instead it goes into the global environment.

A convenient feature, particularly with the layout used within the
evalq() examples above and generally throughout the book, is that we
could ignore the string that starts a block of code (which is the line
containing “evalq({”) and the string that ends a block of code (which
is the line containing “}, weatherDS)”) and simply copy-and-paste the
other commands directly into the R console. The variables (data, nobs,
etc.) are then created in the global environment, and nothing special is
needed to access them. This is useful for quickly testing out ideas, for
example, and is provided as a choice if you prefer not to use the container
concept yourself. Containers do, however, provide useful benefits.

Rattle uses containers internally to collect together the data it needs.
The Rattle container is called crs (the current rattle store). Once a
dataset is loaded into Rattle, for example, it is stored as crs$dataset.
We saw crs$rpart above as referring to the decision tree we built above.

2.10 Summary

In this chapter, we have become familiar with the Rattle interface for data
mining with R. We have also built our first data mining model, albeit
using an already prepared dataset. We have also introduced some of the
basics of interacting with the R language.

We are now ready to delve into the details of data mining. Each
of the following chapters will cover a specific aspect of the data mining
process and illustrate how this is accomplished within Rattle and then
further extended with direct coding in R.

Before proceeding, it is advisable to review Chapter 1 as an intro-
duction to the overall data mining process if you have not already done
so.
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2.11 Command Summary

This chapter has referenced the following R packages, commands, func-
tions, and datasets:
<- function Assign a value into a named reference.
c() function Concatenate values into a vector.
dim() function Return the dimensions of a dataset.
evalq() function Access the environment for storing data.
head() function Return the first few rows of a dataset.
help() command Display help for a specific function.
help.search() command Search for help on a specific topic.
latticist package Interactive visualisation of data.
library() command Load a package into the R library.
ll() function Longer list of an environment.
load() command Load R objects from a file.
ls() function List the contents of an environment.
new.env() function Create a new object to store data.
nrow() function Number of rows in a dataset.
print() command Display representation of an R object.
q() command Quit from R.
R shell Start up the R statistical environment.
rattle() command Start the Rattle GUI.
rggobi package Interactive visualisation of data.
rpart() function Build a decision tree predictive model.
rpart package Provides decision tree functions.
RSiteSearch() command Search the R Web site for help.
sample() function Random selection of its first argument.
save() command Save R objects into a file.
seq() function Return a sequence of numbers.
table() function Make a table from some variables.
tail() function Return the last few rows of a dataset.
weather dataset Sample dataset from rattle.
window() command Open a new plot in Microsoft Windows.
x11() command Open a new plot in Unix/Linux.





Chapter 3

Working with Data

Data is the starting point for all data mining—without it there is nothing
to mine. In today’s world, there is certainly no shortage of data, but
turning that data into information, knowledge, and, eventually, wisdom
is not a simple matter. We often think of data as being numbers or
categories. But data can also be text, images, videos, and sounds. Data
mining generally only deals with numbers and categories. Often, the
other forms of data can be mapped into numbers and categories if we
wish to analyse them using the approaches we present here.

Whilst data abounds in our modern era, we still need to scout around
to obtain the data we need. Many of today’s organisations maintain mas-
sive warehouses of data. This provides a fertile ground for sourcing data
but also an extensive headache for us in navigating through a massive
landscape.

An early step in a data mining project is to gather all the required
data together. This seemingly simple task can be a significant burden on
the budgeted resources for data mining, perhaps consuming up to 70–90%
of the elapsed time of a project. It should not be underestimated.

When bringing data together, a number of issues need to be consid-
ered. These include the provenance (source and purpose) and quality
(accuracy and reliability) of the data. Data collected for different pur-
poses may well store different information in confusingly similar ways.
Also, some data requires appropriate permission for its use, and the pri-
vacy of anyone the data relates to needs to be considered. Time spent
at this stage getting to know your data will be time well spent.

In this chapter, we introduce data, starting with the language we use
to describe and talk about data.
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3.1 Data Nomenclature

Data miners have a plethora of terminology, often using many different
terms to describe the same concept. A lot of this confusion of termi-
nology is due to the history of data mining, with its roots in many dif-
ferent disciplines, including databases, machine learning, and statistics.
Throughout this book, we will use a consistent and generally accepted
nomenclature, which we introduce here.

We refer to a collection of data as a dataset. This might be called
in mathematical terms a matrix or in database terms a table. Figure 3.1
illustrates a dataset annotated with our chosen nomenclature.

We often view a dataset as consisting of rows, which we refer to as ob-
servations, and those observations are recorded in terms of variables,
which form the columns of the dataset. Observations are also known as
entities, rows, records, and objects. Variables are also known as fields,
columns, attributes, characteristics, and features. The dimension of a
dataset refers to the number of observations (rows) and the number of
variables (columns).

Variables can serve different roles: as input variables or output
variables. Input variables are measured or preset data items. They
might also be known as predictors, covariates, independent variables, ob-
served variables, and descriptive variables. An output variable may be
identified in the data. These are variables that are often “influenced”
by the input variables. They might also be known as target, response,
or dependent variables. In data mining, we often build models to pre-
dict the output variables in terms of the input variables. Early on in a
data mining project, we may not know for sure which variables, if any,
are output variables. For some data mining tasks (e.g., clustering), we
might not have any output variables.

Some variables may only serve to uniquely identify the observations.
Common examples include social security and other such government
identity numbers. Even the date may be a unique identifier for particular
observations. We refer to such variables as identifiers. Identifiers are
not normally used in modelling, particularly those that are essentially
randomly generated.

Variables can store different types of data. The values might be the
names or the qualities of objects, represented as character strings. Or
the values may be quantitative and thereby represented numerically. At
a high level we often only need to distinguish these two broad types of
data, as we do here.
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Date

10 Dec

25 Jan

02 Apr

08 May

10 May

04 Jun

04 Jul

01 Aug

07 Aug

Temp

23

25

22

17

21

13

10

9

6

Wind Dir.
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E

SSW

NW
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SSW

NW

SE

Evap

10.4

6.8

3.6

4.4

2.4

0.2

1.8

2.6

3.0

Rain?

Y

Y

N

N

N

Y

N

N

Y

Variables

Numeric
Categoric

Numeric
Categoric

Observations

Identifier Input Output

Figure 3.1: A simple dataset showing the nomenclature used. Each column is
a variable and each row is an observation.

A categoric variable1 is one that takes on a single value, for a
particular observation, from a fixed set of possible values. Examples
include eye colour (with possible values including blue, green, and
brown), age group (with possible values young, middle age, and old),
and rain tomorrow (with only two possible values, Yes and No). Cat-
egoric variables are always discrete (i.e., they can only take on specific
values).

Categoric variables like eye colour are also known as nominal vari-
ables, qualitative variables, or factors. The possible values have no order
to them. That is, blue is no less than or greater than green.

On the other hand, categoric variables like age group are also known
as ordinal variables. The possible values have a natural order to them,
so that young is in some sense less than middle age, which in turn is
less than old.

1We use the terms categoric rather than categorical and numeric rather than
numerical.
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A categoric variable like rain tomorrow, having only two possible
values, is also known as a binary variable.

A numeric variable has values that are integers or real numbers,
such as a person’s age or weight or their income or bank balance. Numeric
variables are also known as quantitative variables. Numeric variables can
be discrete (integers) or continuous (real).

A dataset (or, in particular, different randomly chosen subsets of
a dataset) can have different roles. For building predictive models, for
example, we often partition a dataset into three independent datasets: a
training dataset, a validation dataset, and a testing dataset. The
partitioning is done randomly to ensure each dataset is representative of
the whole collection of observations. Typical splits might be 40/30/30 or
70/15/15. A validation dataset is also known as a design dataset (since
it assists in the design of the model).

We build our model using the training dataset. The validation dataset
is used to assess the model’s performance. This will lead us to tune the
model, perhaps through setting different model parameters. Once we
are satisfied with the model, we assess its expected performance into the
future using the testing dataset.

It is important to understand the significance of the testing dataset.
This dataset must be a so-called holdout or out-of-sample dataset. It
consists of randomly selected observations from the full dataset that are
not used in any way in the building of the model. That is, it contains no
observations in common with the training or validation datasets. This is
important in relation to ensuring we obtain an unbiased estimate of the
true performance of a model on new, previously unseen observations.

We can summarise our generic nomenclature, in one sentence, as:

A dataset consists of observations recorded using vari-
ables, which consist of a mixture of input variables and
output variables, either of which may be categoric or nu-
meric.

Having introduced our generic nomenclature, we also need to relate
the same concepts to how they are implemented in an actual system, like
R. We do so, briefly, here.

R has the concept of a data frame to represent a dataset. A data frame
is, technically, a list of variables. Each variable in the list represents a
column of data—a variable stores a collection of data items that are all
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of the same type. For example, this might be a collection of integers
recording the ages of clients. Technically, R refers to what we call a
variable within a dataset as a vector.

Each variable will record the same number of data items, and thus
we can picture the dataset as a rectangular matrix, as we illustrated in
Figure 3.1. A data frame is much like a table in a database or a page
in a spreadsheet. It consists of rows, which we have called observations,
and columns, which we have called variables.

3.2 Sourcing Data for Mining

To start a data mining project, we must first recognise and understand
the problem to tackle. Whilst that might be quite obvious, there are
subtleties we need to address, as discussed in Chapter 1. We also need
data—again, somewhat obvious. As we suggested above, though, sourc-
ing our data is usually not a trivial matter. We discuss the general data
issue here before we delve into some technical aspects of data.

In an ideal world, the data we require for data mining will be nicely
stored in a data warehouse or a database, or perhaps a spreadsheet. How-
ever, we live in a less than ideal world. Data is stored in many different
forms and on many different systems, with many different meanings.
Data is everywhere, for sure, but we need to find it, understand it, and
bring it together.

Over the years, organisations have implemented well-managed data
warehouse systems. They serve as the organisation-wide repository of
data. It is true, though that, despite this, data will always spring up
outside of the data warehouse, and will have none of the careful controls
that surround the data warehouse with regard to data provenance and
data quality. Eventually the organisation’s data custodians will recapture
the useful new “cottage industry” repositories into the data warehouse
and the cycle of new “cottage industries” will begin once again. We will
always face the challenge of finding data from many sources within an
organisation.

An organisation’s data is often not the only data we access within a
data mining project. Data can be sourced from outside the organisation.
This could include data publicly available, commercially collected, or
legislatively obtained. The data will be in a variety of formats and of
varying quality. An early task for us is to assess whether the data will
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be useful for the business problem and how we will bring the new data
together with our other data. We delve further into understanding the
data in Chapter 5. We consider data quality now.

3.3 Data Quality

No real-world data is perfectly collected. Despite the amount of effort
organisations put into ensuring the quality of the data they collect, errors
will always occur. We need to understand issues relating to, for example,
consistency, accuracy, completeness, interpretability, accessibility, and
timeliness.

It is important that we recognise and understand that our data will
be of varying quality. We need to treat (i.e., transform) our data appro-
priately and be aware of the limitations (uncertainties) of any analysis
we perform on it. Chapter 7 covers many aspects of data quality and
how we can work towards improving the quality of our available data.
Below we summarise some of the issues.

In the past, much data was entered by data entry staff working from
forms or directly in conversation with clients. Different data entry staff
often interpret different data fields (variables) differently. Such incon-
sistencies might include using different formats for dates or recording
expenses in different currencies in the same field, with no information to
identify the currency.

Often in the collection of data some data is more carefully (or accu-
rately) collected than other data. For bank transactions, for example, the
dollar amounts must be very accurate. The precise spelling of a person’s
name or address might not need to be quite so accurate. Where the data
must be accurate, extra resources will be made available to ensure data
quality. Where accuracy is less critical, resources might be saved. In
analysing data, it is important to understand these aspects of accuracy.

Related to accuracy is the issue of completeness. Some less important
data might only be optionally collected, and thus we end up with much
missing data in our datasets. Alternatively, some data might be hard to
collect, and so for some observations it will be missing. When analysing
data, we need to understand the reasons for missing data and deal with
the data appropriately. We cover this in detail in Chapter 7.

Another major issue faced by the data miner is the interpretation of
the data. Having a thorough understanding of the meaning of the data is
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critical. Knowing that height is measured in feet or in meters will make a
difference to the analysis. We might find that some data was entered as
feet and other data as meters (the consistency problem). We might have
dollar amounts over many years, and our analysis might need to interpret
the amounts in terms of their relative present-day value. Codes are also
often used, and we need to understand what each code means and how
different codes relate to each other. As the data ages, the meaning of
the different variables will often change or be altogether lost. We need
to understand and deal with this.

The accessibility of the right data for analysis will often also be an
issue. A typical process in data collection involves checking for obvious
data errors in the data supplied and correcting those errors. In collecting
tax return data from taxpayers, for example, basic checks will be per-
formed to ensure the data appears correct (e.g., checking for mistakes
that enter data as 3450 to mean $3450, whereas it was meant to be
$34.50). Sometimes the checks might involve discussing the data with its
supplier and modifying it appropriately. Often it is this “cleaner” data
that is stored on the system rather than the original data supplied. The
original data is often archived, but often it is such data that we actually
need for the analysis—we want to analyse the data as supplied originally.
Accessing archived data is often problematic.

Accessing the most recent data can sometimes be a challenge. In
an online data processing environment, where the key measure of perfor-
mance is the turnaround time of the transaction, providing other systems
with access to the data in a timely manner can be a problem. In many
environments, the data can only be accessed after a sometimes complex
extract/transform/load (ETL) process. This can mean that the data
may only be available after a day or so, which may present challenges for
its timely analysis. Often, business processes need to be changed so that
more timely access is possible.

3.4 Data Matching

In collecting data from multiple sources, we end up with a major prob-
lem in that we need to match observations from one dataset with those
from another dataset. That is, we need to identify the same entities
(e.g., people or companies) from different data sources. These different
sources could be, for example, patient medical data from a doctor and
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from a hospital. The doctor’s data might contain information about the
patients’ general visits, basic test results, diagnoses, and prescriptions.
The doctor might have a unique number to identify his or her own pa-
tients, as well as their names, dates of birth, and addresses. A hospital
will also record data about patients that are admitted, including their
reason for admission, treatment plan, and medications. The hospital will
probably have its own unique number to identify each patient, as well as
the patient’s name, date and place of birth, and address.

The process of data matching might be as simple as joining two
datasets together based on shared identifiers that are used in each of
the two databases. If the doctor and the hospital share the same unique
numbers to identify the patients, then the data matching process is sim-
plified.

However, the data matching task is usually much more complex. Data
matching often involves, for example, matching of names, addresses, and
dates and places of birth, all of which will have inaccuracies and alterna-
tives for the same thing. The data entered at a doctor’s consulting rooms
will in general be entered by a different receptionist on a different day
from the data entered on admission at a hospital where surgery might
be performed.

It is not uncommon to find, even within a single database, one per-
son’s name recorded differently, let alone when dealing with data from
very different sources. One data source might identify “John L. Smith,”
and another might identify the person as “J.L. Smith,” and a third might
have an error or two but identify the person as “Jon Leslie Smyth.”

The task of data matching is to bring different data sources together
in a reliable and supportable manner so that we have the right data
about the right person. An idea that can improve data matching quality
is that of a trusted data matching bureau. Many data matching bureaus
within organisations almost start each new data matching effort from
scratch. However, over time there is the opportunity to build up a data
matching database that records relevant information about all previous
data matches.

Under this scenario, each time a new data matching effort is un-
dertaken, the identities within this database, and their associated in-
formation, are used to improve the new data matching. Importantly,
the results of the new data matching feed back into the data matching
database to improve the quality of the matched entities and thus even
improve previously matched data.
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Data matching is quite an extensive topic in itself and worth a sep-
arate book. A number of commercially available tools assist with the
basic task. The open source Febrl2 system also provides data matching
capabilities. They all aim to identify the same entity in all of the data
sources.

3.5 Data Warehousing

The process of bringing data together into one unified and carefully man-
aged repository is referred to as data warehousing—the analogy being
with a large building used for the storage of goods. What we store in
our warehouse is data. Data warehouses were topical in the 1990s and
primarily vendor driven, servicing a real opportunity to get on top of
managing data. Inmon (1996) provides a detailed introduction.

We can view a data warehouse as a large database management sys-
tem. It is designed to integrate data from many different sources and to
support analysis for different objectives. In any organisation, the data
warehouse can be the foundation for business intelligence, providing a
single, integrated source of data for the whole organisation.

Typically, a data warehouse will contain data collected together from
multiple sources but focussed around the function of an organisation.
The data sources will often be operational systems (such as transaction
processing systems) that run the day-to-day functions of the organisa-
tion. In banking, for example, the transaction processing systems in-
clude ATMs and EFTPOS machines, which are today most pervasive.
Transaction processing systems collect data that gets uploaded to the
data warehouse on a regular basis (e.g., daily, but perhaps even more
frequently).

Well-organised data warehouses, at least from the point of view of
data mining, will also be nonvolatile. The data stored in our data ware-
houses will capture data regularly, and older data is not removed. Even
when an update to data is to correct existing data items, such data must
be maintained, creating a massive repository of historic data that can be
used to carefully track changes over time.

Consider the case of tax returns held by our various revenue author-
ities. Many corrections are made to individual tax returns over time.
When a tax return is filed, a number of checks for accuracy may result in

2http://sourceforge.net/projects/febrl/.
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simple changes (e.g., correcting a misspelled address). Further changes
might be made at a later time as a taxpayer corrects data originally sup-
plied. Changes might also be the result of audits leading to corrections
made by the revenue authority, or a taxpayer may notify the authority
of a change in address.

Keeping the history of data changes is essential for data mining. It
may be quite significant, from a fraud point of view, that a number of
clients in a short period of time change their details in a common way.
Similarly, it might be significant, from the point of view of understanding
client behaviour, that a client has had ten different addresses in the past
12 months. It might be of interest that a taxpayer always files his or her
tax return on time each year, and then makes the same two adjustments
subsequently, each year. All of this historic data is important in building
a picture of the entities we are interested in. Whilst the operational
systems may only store data for one or two months before it is archived,
having this data accessible for many years within a data warehouse for
data mining is important.

In building a data warehouse, much effort goes into how the data
warehouse is structured. It must be designed to facilitate the queries
that operate on a large proportion of data. A careful design that exposes
all of the data to those who require it will aid in the data mining process.

Data warehouses quickly become unwieldly as more data is collected.
This often leads to the development of specific data marts, which can be
thought of as creating a tuned subset of the data warehouse for specific
purposes. An organisation, for example, may have a finance data mart,
a marketing data mart, and a sales data mart. Each data mart will
draw its information from various other data collected in the warehouse.
Different data sources within the warehouse will be shared by different
data marts and present the data in different ways.

A crucial aspect of a data warehouse (and any data storage, in fact)
is the maintenance of information about the data—so-called metadata.
Metadata helps make the data understandable and thereby useful. We
might talk about two types of metadata: technical metadata and busi-
ness metadata.

Technical metadata captures data about the operational systems from
which the data was obtained, how it was extracted from the source sys-
tems, how it was transformed, how it was loaded into the warehouse,
where it is stored within the warehouse, and its structure as stored in
the warehouse.
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The actual process of extracting, transforming, and then loading data
is often referred to as ETL (extract, transform, load). Many vendors
provide ETL tools, and there is also extensive capability for automating
ETL using open source software, including R.

The business metadata, on the other hand, provides the information
that is useful in understanding the data. It will include descriptions of
the variables contained in the data and measures of their data quality.
It can also include who “owns” the data, who has access to it, the cost
of accessing it, when it was last updated, how frequently it is updated,
and how it is used operationally.

Before data mining became a widely adopted technology, the data
warehouse supported analyses through business intelligence (BI) tech-
nology. The simplest analyses build reports that aggregate the data
within a warehouse in many different ways. Through this technology, an
organisation is able to ensure its executives are aware of its activities.
On-line, analytic processing (OLAP) within the BI technology supports
user-driven and multidimensional analyses of the data contained within
the warehouse. Extending the concept of a human-driven and generally
manual analysis of data, as in business intelligence, data mining provides
a data-driven approach to the analysis of the data.

Ideally, the data warehouse is the primary data source for data min-
ing. Integrating data from multiple sources, the data warehouse should
contain an extensive resource that captures all of the activity of an or-
ganisation. Also, ideally, the data will be consistent, of high quality,
and documented with very good metadata. If all that is true, the data
mining will be quite straightforward. Rarely is this true. Nonetheless,
mining data from the data warehouse can significantly reduce the time for
preparing it and sharing the data across many data mining and reporting
projects.

Data warehouses will often be accessed through the common struc-
tured query language (SQL). Our data will usually be spread across mul-
tiple locations within the warehouse, and SQL queries will be used to
bring them together. Some basic familiarity with SQL will be useful as
we extract our data. Otherwise we will need to ensure we have ready
access to the skills of a data analyst to extract the data for us.
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3.6 Interacting with Data Using R

Once we have scouted for data, matched common entities, and brought
the data together, we need to structure the data into a form suitable
for data mining. More specifically, we need to structure the data to suit
the data mining tool we are intending to use. In our case, this involves
putting the data into a form that allows it to be easily loaded into R,
using Rattle, where we will then explore, test, and transform it in various
ways in preparation for mining.

Once we have loaded a dataset into Rattle, through one of the mech-
anisms we introduce in Chapter 4 (or directly through R itself), we may
want to modify the data, clean it, and transform it into the structures we
require. We may already be familiar with a variety of tools for dealing
with data (like SQL or a spreadsheet). These tools may be quite ade-
quate for the manipulations we need to undertake. We can easily prepare
the data with them and then load it into Rattle when ready. But R itself
is also a very powerful data manipulation language.

Much of R’s capabilities for data management are covered in other
books, including those of Spector (2008), Muenchen (2008), and Cham-
bers (2008). Rattle provides access to some data cleaning operations
under the Transform tab, as covered in Chapter 7. We provide here el-
ementary instruction in using R itself for a limited set of manipulations
that are typical in preparing data for data mining. We do not necessar-
ily cover the details nor provide the systematic coverage of R available
through other means.

One of the most basic operations is accessing the data within a
dataset. We index a dataset using the notation of square brackets, and
within the square brackets we identify the index of the observations and
the variables we are interested in, separating them with a comma. We
briefly saw this previously in Section 2.9.

Using the same weather dataset as in Chapter 2 (available from rat-
tle, which we can load into R’s library()), we can access observations
100 to 105 and variables 5 to 6 by indexing the dataset. If either index
(observations or variables) is left empty, then the result will be all obser-
vations or all variables, respectively, rather than just a subset of them.
Using dim() to report on the resulting size (dimensions) of the dataset,
we can see the effect of the indexing:
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> library(rattle)

> weather[100:105, 5:6]

Rainfall Evaporation

100 16.2 5.4

101 0.0 4.0

102 0.0 5.8

103 0.0 5.0

104 4.4 6.6

105 11.0 3.2

> dim(weather)

[1] 366 24

> dim(weather[100:105, 5:6])

[1] 6 2

> dim(weather[100:105,])

[1] 6 24

> dim(weather[,5:6])

[1] 366 2

> dim(weather[5:6])

[1] 366 2

> dim(weather[,])

[1] 366 24

Note that the notation 100:105 is actually shorthand for a call to
seq(), which generates a list of numbers. Another way to generate a
list of numbers is to use c() (for combine) and list each of the numbers
explicitly. These expressions can replace the “100:105” in the example
above to have the same effect. We can see this in the following code
block.
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> 100:105

[1] 100 101 102 103 104 105

> seq(100, 105)

[1] 100 101 102 103 104 105

> c(100, 101, 102, 103, 104, 105)

[1] 100 101 102 103 104 105

Variables can be referred to by their position number, as above, or by
the variable name. In the following example, we extract six observations
of just two variables. Note the use of the vars object to list the variables
of interest and then from that index the dataset.

> vars <- c("Evaporation", "Sunshine")

> weather[100:105, vars]

Evaporation Sunshine

100 5.4 5.6

101 4.0 8.9

102 5.8 9.6

103 5.0 10.7

104 6.6 5.9

105 3.2 0.4

We can list the variable names contained within a dataset using
names():

> head(names(weather))

[1] "Date" "Location" "MinTemp"

[4] "MaxTemp" "Rainfall" "Evaporation"

In this example we list only the first six names, making use of head().
This example also illustrates the “functional” nature of R. Notice how we
directly feed the output of one function (names()) into another function
(head()).

We could also use indexing to achieve the same result:

> names(weather)[1:6]

[1] "Date" "Location" "MinTemp"

[4] "MaxTemp" "Rainfall" "Evaporation"
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When we index a dataset with single brackets, as in weather[2]

or weather[4:7], we retrieve a “subset” of the dataset—specifically, we
retrieve a subset of the variables. The result itself is another dataset, even
if it contains just a single variable. Compare this with weather[[2]],
which returns the actual values of the variable. The differences may
appear subtle, but as we gain experience with R, they become important.
We do not dwell on this here, though.

> head(weather[2])

Location

1 Canberra

2 Canberra

3 Canberra

4 Canberra

5 Canberra

6 Canberra

> head(weather[[2]])

[1] Canberra Canberra Canberra Canberra Canberra Canberra

46 Levels: Adelaide Albany Albury ... Woomera

We can use the $ notation to access specific variables within a dataset.
The expression weather$MinTemp refers to the MinTemp variable of the
weather dataset:

> head(weather$MinTemp)

[1] 8.0 14.0 13.7 13.3 7.6 6.2

3.7 Documenting the Data

The weather dataset, for example, though very small in the number of
observations, is somewhat typical of data mining. We have obtained
the dataset from a known source and have processed it to build a dataset
ready for our data mining. To do this, we’ve had to research the meaning
of the variables and read about any idiosyncrasies associated with the
collection of the data. Such information needs to be captured in a data
mining report. The report should record where our data has come from,
our understanding of its integrity, and the meaning of the variables. This
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information will come from a variety of sources and usually from multiple
domain experts. We need to understand and document the provenance of
the data: how it was collected, who collected it, and how they understood
what they were collecting.

The following summary will be useful. It is obtained from pro-
cessing the output from the str(). That output, which is normally
only displayed in the console, is first captured into a variable using
capture.output():

> sw <- capture.output(str(weather, vec.len=1))

> cat(sw[1])

'data.frame': 366 obs. of 24 variables:

The output is then processed to add a variable number and appropri-
ately fit the page. The processing first uses sprintf() to generate a list
of variable numbers, each number stored as a string of width 2 (“%2d”):

> swa <- sprintf("%2d", 1:length(sw[-1]))

Each number is then pasted to each line of the output, collapsing the
separate lines to form one long string with a new line (“\n”) separating
each line:

> swa <- paste(swa, sw[-1], sep="", collapse="\n")

The gsub() function is then used to truncate lines that are too long
by substituting a particular pattern of dots and digits with just “..”.

> swa <- gsub("\\.\\.: [0-9]+ [0-9]+ \\.\\.\\.", "..", swa)

The final substitution removes some unnecessary characters, again to
save on space. That is a little complex at this stage but illustrates the
power of R for string processing (as well as statistics).

> swa <- gsub("( \\$|:|)", "", swa)

We use cat() to then display the results of this processing.



3.8 Summary 73

> cat(swa)

1 Date Date, format "2007-11-01" ...

2 Location Factor w/ 46 levels "Adelaide","Albany",..

3 MinTemp num 8 14 ...

4 MaxTemp num 24.3 26.9 ...

5 Rainfall num 0 3.6 ...

6 Evaporation num 3.4 4.4 ...

7 Sunshine num 6.3 9.7 ...

8 WindGustDir Ord.factor w/ 16 levels "N"<"NNE"<"NE"<..

9 WindGustSpeed num 30 39 ...

10 WindDir9am Ord.factor w/ 16 levels "N"<"NNE"<"NE"<..

11 WindDir3pm Ord.factor w/ 16 levels "N"<"NNE"<"NE"<..

12 WindSpeed9am num 6 4 ...

13 WindSpeed3pm num 20 17 ...

14 Humidity9am int 68 80 ...

15 Humidity3pm int 29 36 ...

16 Pressure9am num 1020 ...

17 Pressure3pm num 1015 ...

18 Cloud9am int 7 5 ...

19 Cloud3pm int 7 3 ...

20 Temp9am num 14.4 17.5 ...

21 Temp3pm num 23.6 25.7 ...

22 RainToday Factor w/ 2 levels "No","Yes" 1 2 ...

23 RISK_MM num 3.6 3.6 ...

24 RainTomorrow Factor w/ 2 levels "No","Yes" 2 2 ...

3.8 Summary

In this chapter, we have introduced the concepts of data and dataset. We
have described how we obtain data and issues related to the data we use
for data mining. We have also introduced some basic data manipulation
using R. We will revisit the weather, weatherAUS, and audit datasets
throughout the book. Appendix B describes in detail how these datasets
are obtained and processed into a form for use in data mining. The
amount of detail there and the R code provided may be useful in learning
more about manipulating data in R.
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3.9 Command Summary

This chapter has referenced the following R packages, commands, func-
tions, and datasets:

<- function Assign a value into a named reference.
$ function Extract a variable from a dataset.
audit dataset Sample dataset from rattle.
c() function Combine items to form a collection.
cat() function Display the arguments to the screen.
dim() function Report the rows and columns of a dataset.
gsub() function Globally substitute one string for another.
head() function Show top observations of a dataset.
library() command Load a package into the R library.
names() function Show variables contained in a dataset.
paste() function Combine strings into one string.
rattle package Provides the weather and audit datasets.
seq() function Generate a sequence of numbers.
sprintf function Format a string with substitution.
str() function Show the structure of an object.
weather dataset Sample dataset from rattle.
weatherAUS dataset A larger dataset from rattle.



Chapter 4

Loading Data

Data can come in many different formats from many different sources.
By using R’s extensive capabilities, Rattle provides direct access to such
data. Indeed, we are fortunate with the R system in that it is an open
system and therefore is strong on sharing and cooperating with other
applications. R supports importing data in many formats.

One of the most common formats for data exchange between applica-
tions is the comma-separated value (CSV) file. Such files typically have a
csv filename extension. This is a simple text file format that is oriented
around rows and columns, using a comma to separate the columns in the
file. Such files can be used to transfer data through export and import
between spreadsheets, databases, weather monitoring stations, and many
other applications. A variation on the idea is to separate the columns
with other markers, such as a tab character, which is often associated
with files having a txt filename extension.

These simple data files (the CSV and TXT files) contain no explicit
metadata information—that is, there is no data to describe the structure
of the data contained in the file. That information often needs to be
guessed at by the software reading the data.

Other types of data sources do provide information about the data so
that our software does not need to make guesses about what it is reading.
Attribute-Relation File Format files (Section 4.2) have an arff filename
extension and add metadata to the CSV format.

Extracting data directly from a database often delivers the metadata
along with the data itself. The Open Database Connectivity (ODBC)
standard provides an open access method for accessing data stored in a
variety of databases and is supported by R. This allows direct connection
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to a vast collection of data sources, including Microsoft Excel, Microsoft
Access, SQL Server, Oracle, MySQL, Postgres, and SQLite. Section 4.3
covers the package RODBC.

The full variety of R’s capability for loading data is necessarily not
available directly within Rattle. However, we can use the underlying R
commands to load data and then access it within Rattle, as in Section 4.4.

R packages themselves also provide an extensive collection of sample
datasets. Whilst many datasets will be irrelevant to our specific tasks,
they can be used to experiment with data mining using R. A list of
datasets contained in the R Library is available through the Rattle inter-
face by choosing Library as the Source on the Data tab. We cover this
further in Section 4.6.

Having loaded our data into Rattle through some mechanism, we need
to decide on the role played by each of the variables in the dataset. We
also need to decide how the observations in the dataset are going to
be used in the mining. We record these decisions through the Rattle
interface, with Rattle itself providing useful defaults.

Once a dataset source has been identified and the Data tab executed,
an overview of the data will be displayed in the text view. Figure 4.1
displays the Rattle application after loading the weather.csv file, which
is supplied as a sample dataset with the Rattle package. We get here
by starting up R and then loading rattle, starting up Rattle, and then
clicking the Execute button for an offer to load the weather dataset:

> library(rattle)

> rattle()

In this chapter, we review the different source data formats and dis-
cuss how to load them for data mining. We then review the options that
Rattle provides for identifying how the data is to be used for data mining.

4.1 CSV Data

One of the simplest and most common ways of sharing data today is via
the comma-separated values (CSV) format. CSV has become a standard
file format used to exchange data between many different applications.
CSV files, which usually have a csv extension, can be exported and im-
ported by spreadsheets and databases, including LibreOffice Calc, Gnu-
meric, Microsoft Excel, SAS/Enterprise Miner, Teradata, Netezza, and
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Figure 4.1: Loading the weather.csv dataset.

very many other applications. For these reasons, CSV is a good option
for importing data into Rattle. The downside is that a CSV file does not
contain explicit metadata (i.e., data about the data—including whether
the data is numeric or categoric). Without this metadata, R sometimes
determines the wrong data type for a particular column. This is not
usually fatal, and we can help R along when loading data using R.

Locating and Loading Data

Using the Spreadsheet option of Rattle’s Data tab, we can load data di-
rectly from a CSV file. Click the Filename button (Figure 4.2) to display
the file chooser dialogue (Figure 4.3). We can browse to the CSV file we
wish to load, highlight it, and click the Open button.

We now need to actually load the data into Rattle from the file. As
always, we do this with a click on the Execute button (or a press of the
F2 key). This will load the contents of the file from the hard disk into
the computer’s memory for processing by Rattle as a dataset.

Rattle supplies a number of sample CSV files and in particular pro-
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Figure 4.2: The Spreadsheet option of the Data tab, highlighting the Filename
button. Click this button to open up the file chooser.

vides the weather.csv data file. The data file will have been installed
when rattle was installed. We can ask R to tell us the actual location of
the file using system.file(), which we can type into the R Console:

> system.file("csv", "weather.csv", package="rattle")

[1] "/usr/local/lib/R/site-library/rattle/csv/weather.csv"

The location reported will depend on your particular installation and
operating system. Here the location is relative to a standard installation
of a Ubuntu GNU/Linux system.

Tip: We can also load this file into a new instance of Rattle with just
two mouse clicks (Execute and Yes). We can then click the Filename
button (displaying weather.csv) to open up a file browser showing the
file path at the top of the window.

We can review the contents of the file using file.show(). This will
pop up a window displaying the contents of the file:

> fn <- system.file("csv", "weather.csv", package="rattle")

> file.show(fn)

The file contents can be directly viewed outside of R and Rattle with
any simple text editor. If you aren’t familiar with CSV files, it is instruc-
tional to become so. We will see that the top of the file begins:

Date,Location,MinTemp,MaxTemp,Rainfall,Evaporation...

2007-11-01,Canberra,8,24.3,0,3.4,6.3,NW,30,SW,NW...

2007-11-02,Canberra,14,26.9,3.6,4.4,9.7,ENE,39,E,W...

2007-11-03,Canberra,13.7,23.4,3.6,5.8,3.3,NW,85,N,NNE...
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Figure 4.3: The CSV file chooser showing just those files with a .csv extension
in the folder. We can also select to display just the .txt files (e.g., the extension
often used for tab-delimited files) or else all files by selecting from the drop-
down menu at the bottom right.

A CSV file is just a normal text file that commonly begins with a
header line listing the names of the variables, each separated by a comma.
The remainder of the file after the header row is expected to consist of
rows of data that record the observations. For each observation, the fields
are separated by commas, delimiting the actual observation of each of
the variables.

Loading data into Rattle from a CSV file uses read.csv(). We can
see this by reviewing the contents of the Log tab. From the Log tab we
will see something like the following:

> crs$dataset <- read.csv("file:.../weather.csv",

na.strings=c(".", "NA", "", "?"),

strip.white=TRUE)

The full path to the weather.csv file is truncated here for brevity, so
the command above won’t succeed with a copy-and-paste. Instead, copy
the corresponding line from the Log tab into the R Console. The result
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of executing this function is that the dataset itself is loaded into memory
and referenced using the name crs\$dataset.

The second argument in the function call above (na.strings=) lists
the four strings that, if found as the value of a variable, will be trans-
lated into R’s representation for missing values (NA). The list of strings
used here captures the most common approaches to representing missing
values. SAS, for example, uses the dot (“.”) to denote missing values,
and R uses the special string “NA”. Other applications simply use the
empty string, whilst yet others (including machine learning applications
like C4.5) use the question mark (“?”).

We also use the strip.white= argument, setting it to TRUE, which
has the effect of stripping white space (i.e., spaces and/or tabs). This
allows the source CSV file to have the commas aligned for easier human
viewing and still support missing values appropriately.

The read.csv() function need not be quite so complex. If we have
a CSV file to load into R (again substituting the “. . . ” with the actual
path to the file), we can usually simply type the following command:

> ds <- read.csv(".../weather.csv")

We can also load data directly from the Internet. For example, the
weather dataset is available from togaware.com:

> ds <- read.csv("http://rattle.togaware.com/weather.csv")

As we saw in Chapter 2 Rattle will offer to load the supplied sample data
file (weather.csv) if no other data file is specified through the Filename
button. This is the simplest way to load sample data into Rattle, and is
useful for learning the Rattle interface.

After identifying the file to load, we do need to remember to click the
Execute button to actually load the dataset into Rattle. The main text
panel of the Data tab then changes to list the variables, together with
their types and roles and some other useful information, as can be seen
in Figure 4.1.

After loading the data from the file into Rattle, thereby creating a
dataset, we can begin to explore it. The top of the file can be viewed in
the R Console, as we saw in Chapter 2. Here we limit the display to just
the first five variables and request just six observations:
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> head(crs$dataset[1:5], 6)

Date Location MinTemp MaxTemp Rainfall

1 2007-11-01 Canberra 8.0 24.3 0.0

2 2007-11-02 Canberra 14.0 26.9 3.6

3 2007-11-03 Canberra 13.7 23.4 3.6

4 2007-11-04 Canberra 13.3 15.5 39.8

5 2007-11-05 Canberra 7.6 16.1 2.8

6 2007-11-06 Canberra 6.2 16.9 0.0

As we described earlier (Section 2.9, page 50), Rattle stores the dataset

within an environment called crs, so we can reference it directly in R as
crs$dataset.

Through the Rattle interface, once we have loaded the dataset, we
can also view it as a spreadsheet by clicking the View button, which uses
dfedit() from RGtk2Extras (Taverner et al., 2010).

Data Variations

The Rattle interface provides options for tuning how we read the data
from a CSV file. As we can see in Figure 4.2, the options include the
Separator and Header.

We can choose the field delimiter through the Separator entry. A
comma is the default. To load a TXT file, which uses a tab as the field
separator, we replace the comma with the special code \\t (that is, two
slashes followed by a t) to represent a tab. We can also leave the entry
empty and any white space (i.e., any number of spaces and/or tabs) will
be used as the separator.

From the read.csv() viewpoint, the effect of the separator entry is to
include the appropriate argument (using sep=) in the call to the function.
In this example, if we happen to have a file named “mydata.txt” that
contained tab-delimited data, then we would include the sep=:

> ds <- read.csv("mydata.txt", sep="\t")

Tip: Note that when specifying the tab as the separator directly within
R we use a single slash rather than the double slashes through the Rattle
interface.

Another option of interest when loading a dataset is the Header check
box. Generally, a CSV file will have as its first row a list of column names.
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These names will be used by R and Rattle as the names of the variables.
However, not all CSV files include headers. For such files, uncheck the
Header check box. On loading a CSV file that does not contain headers,
R will generate variable names for the columns. The check box translates
to the header= argument in the call to read.csv(). Setting the value of
header= to FALSE will result in the first line being read as data rather
than as a header line. If we had such a file, perhaps called “mydata.csv”,
then the call to read.csv() would be:

> ds <- read.csv("mydata.csv", header=FALSE)

Tip: The data can contain different numbers of columns in different
rows, with missing columns at the end of a row being filled with NAs.
This is handled using the fill= argument of read.csv(), which is TRUE
by default.

Basic Data Summary

Once a dataset has been loaded into Rattle, we can start to obtain an
idea of the shape of the data from the simple summary that is displayed.
In Figure 4.1, for example, the first variable, Date, is recognised as a
unique identifier for each observation. It has 366 unique values, which is
the same as the number of observations.

The variable Location has only a single value across all observations
in the dataset. Consequently, it is identified as a constant and plays no
role in the modelling. It is ignored.

The next five variables in Figure 4.1 are all tagged as numeric, fol-
lowed by the categoric WindGustDir, and so on. The Comment column
identifies the unique number of values and the number of missing obser-
vations for each variable. Sunshine, for example, has 114 unique values
and 3 missing values. How to deal with missing values is covered in
Chapter 7.

4.2 ARFF Data

The Attribute-Relation File Format (ARFF) is a text file format that
is essentially a CSV file with a number of rows at the top of the file
that contain metadata. The ARFF format was developed for use in the
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Weka (Witten and Frank, 2005) machine learning software, and there are
many datasets available in this format. We can load an ARFF dataset
into Rattle through the ARFF option (Figure 4.4), specifying the filename
from which the data is loaded.

Rattle provides sample ARFF datasets. To access them, after starting
up Rattle and loading the sample weather dataset (Section 2.4), choose
the ARFF option and then click the Filename chooser. Browse to the
parent folder and then into the arff folder to choose a dataset to load.

Figure 4.4: Choosing the ARFF radio button to load an ARFF file.

The key difference between CSV and ARFF is in the top part of the
file, which contains information about each of the variables in the data—
this is the data description section. An example of the ARFF format for
our weather dataset is shown below. Note that ARFF refers to variables
as attributes.

@relation weather

@attribute Date date

@attribute Location {Adelaide, Albany, ...}

@attribute MinTemp numeric

@attribute MaxTemp numeric

...

@attribute RainTomrrow {No, Yes}

@data

2010-11-01,Canberra,8,24.3,0,...,Yes

2010-11-02,Canberra,14,26.9,3.6,...,Yes

2010-11-03,Canberra,?,23.4,3.6,...,Yes

...

The data description section is straightforward, beginning with the
name of the dataset (or the name of the relation in ARFF terminology).
Each of the variables used to describe each observation is then identi-
fied together with its data type. Each variable definition appears on a
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single line (we have truncated the lines in the example above). Numeric
variables are identified as numeric, real, or integer. For categoric
variables, the possible values are listed.

Two other data types recognised by ARFF are string and date. A
string data type indicates that the variable can have a string (a sequence
of characters) as its value. The date data type can also optionally specify
the format in which the date is recorded. The default for dates is the
ISO-8601 standard format, which is "yyyy-MM-dd'T'HH:mm:ss".

Following the metadata specification, the actual observations are then
listed, each on a single line, with fields separated by commas, exactly as
with a CSV file.

A significant advantage of the ARFF data file over the CSV data file
is the metadata information. This is particularly useful in Rattle, where
for categoric data the possible values are determined from the data when
reading in a CSV file. Any possible values of a categoric variable that
are not present in the data will, of course, not be known. When reading
the data from an ARFF file, the metadata will list all possible values of
a categoric variable, even if one of the values might not be used in the
actual data. We will come across this as an issue, particularly when we
build and deploy random forest models, as covered in Chapter 12.

Comments can also be included in an ARFF file with a “%” at the
beginning of the comment line. Including comments in the data file
allows us to record extra information about the dataset, including how
it was derived, where it came from, and how it might be cited.

Missing values in an ARFF data file are identified using the question
mark “?”. These are identified by R’s read.arff(), and we see them as
the usual NAs in Rattle.

Overall, the ARFF format, whilst simple, is quite an advance over a
CSV file. Nonetheless, CSV still remains the more common data file.

4.3 ODBC Sourced Data

Much data is stored within databases and data warehouses. The Open
Database Connectivity (ODBC) standard has been developed as a com-
mon approach for accessing data from databases (and hence data ware-
houses). The technology is based on the Structured Query Language
(SQL) used to query relational databases. We discuss here how to access
data directly from such databases.
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Rattle can obtain a dataset from any database accessible through
ODBC by using Rattle’s ODBC option (Figure 4.5). Underneath the
GUI, RODBC (Ripley and Lapsley, 2010) provides the actual interface
to the ODBC data source.

Figure 4.5: Loading data through an ODBC database connection.

The key to accessing data via ODBC is to identify the data source
through a so-called data source name (or DSN). Different operating sys-
tems provide different mechanisms for setting up DSNs. Under the
GNU/Linux operating system, for example, using the unixodbc appli-
cation, the system DSNs are often defined in /etc/odbcinst.ini and
/etc/odbc.ini. Under Microsoft Windows, the control panel provides
access to the ODBC Data Sources tool.

Using Rattle, we identify a configured DSN by typing its name into the
DSN text entry (Figure 4.5). Once a DSN is specified, Rattle will attempt
to make a connection. Many ODBC drivers will prompt for a username
and password before establishing the connection. Figure 4.6 illustrates
a typical popup for entering such data, in this case for connecting to a
Netezza data warehouse.

To establish a connection using R directly, we use odbcConnect()

from RODBC. This function establishes what we might think of as a
channel connecting to the remote data source:

> library(RODBC)

> channel <- odbcConnect("myDWH", uid="kayon", pwd="toga")

After establishing a connection to a data source, Rattle will query the
database for the names of the available tables and provide access to that
list through the Table combo box of Figure 4.5. We need to select the
specific table to load.

A limited number of options available in R are exposed through Rattle
for fine-tuning the ODBC connection. One option allows us to limit the
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Figure 4.6: Netezza ODBC connection

number of rows retrieved from the chosen table. If the row limit is set
to 0, then all of the rows from the table are retrieved. Unfortunately,
there is no SQL standard for limiting the number of rows returned from
a query. For some database systems (e.g., Teradata and Netezza), the
SQL keyword is LIMIT, and this is what is used by Rattle.

A variety of R functions, provided by RODBC, are available to in-
teract with the database. For example, the list of available tables is
obtained using sqlTables(). We pass to it the channel that we created
above to communicate with the database:

> tables <- sqlTables(channel)

If there is a table in the connected database called, for example,
clients, we can obtain a list of column names using sqlColumns():

> columns <- sqlColumns(channel, "clients")

Often, we are interested in loading only a specific subset of a table from
the database. We can directly formulate an SQL query to retrieve just
the data we want. For example:

> query <- "SELECT * FROM clients WHERE cost > 2500"

> myds <- sqlQuery(channel, query)

Using R directly provides a lot more scope for carefully identifying the
data we wish to load. Any SQL query can be substituted for the sim-
ple SELECT statement used above. For those with skills in writing SQL
queries, this provides quite a powerful mechanism for refining the data
to be loaded, before it is loaded.

Loading data by directly sending an SQL query to the channel as
above will store the data in R as a dataset, which we can reference as
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myds (as defined above). This dataset can be accessed in Rattle with the
R Dataset option, which we now introduce.

4.4 R Dataset—Other Data Sources

Data can be loaded from any source, one way or another, into R. We have
covered loading data from a data file (as in loading a CSV or TXT file)
or directly from a database. However, R supports many more options for
importing data from a variety of sources.

Rattle can use any dataset (technically, any data frame) that has been
loaded into R as a dataset to be mined. When choosing the R Dataset
option of the Data tab (Figure 4.7), the Data Name box will list each of
the available data frames that can be brought into Rattle as a dataset.

Using foreign (DebRoy and Bivand, 2011), for example, R can be
used to read SPSS datasets (read.spss()), SAS XPORT format datasets
(read.xport()), and DBF database files (read.dbf()). One notable
exception, though, is the proprietary SAS dataset format, which cannot
be loaded unless we have a licensed copy of SAS to read the data for us.

Loading SPSS Datasets

As an example, suppose we have an SPSS data file saved or exported
from SPSS. We can read that into R using read.spss():

> library(foreign)

> mydataset <- read.spss(file="mydataset.sav")

Then, as in Figure 4.7, we can find the data frame name, mydataset,
listed as an available R Dataset:

Figure 4.7: Loading an already defined R data frame as a dataset for use in
Rattle.
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The datasets that we wish to use with Rattle need to be constructed
or loaded into the same R session that is running Rattle (i.e., the same R
Console in which we loaded the Rattle package).

Reading Data from the Clipboard

Figure 4.8: Selected region of a spreadsheet copied to the clipboard.

An interesting variation that may at times be quite convenient is the
ability to directly copy and paste a selection via the system clipboard.
Through this mechanism, we can “copy” (as in “copy-and-paste”) data
from a spreadsheet into the clipboard. Then, within R we can “paste”
the data into a dataset using read.table().

Suppose we have opened a spreadsheet with the data we see in Fig-
ure 4.8. If we select the 16 rows, including the header, in the usual way,
we can very simply load the data using R:

> expenses <- read.table(file("clipboard"), header=TRUE)
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The expenses data frame is then available to Rattle.

Converting Dates

By default, the Date variable in the example above is loaded as categoric.
We can convert it into a date type, as below, before we load it into Rattle,
as in Figure 4.9:

> expenses$Date <- as.Date(expenses$Date,

format="%d-%b-%Y")

> head(expenses)

Date Expense Total

1 2005-11-17 19.5 19.5

2 2005-11-23 -15.0 4.5

3 2005-12-10 30.0 34.5

4 2006-01-23 -110.0 -75.5

5 2006-01-28 -20.0 -95.5

6 2006-02-14 -10.0 -105.5

Figure 4.9: Loading an R data frame that was obtained from a copy-and-paste,
via the clipboard, from a spreadsheet.

Reading Data from the World Wide Web

A lot of data today is available in HTML format on the World Wide Web.
XML (Lang, 2011) provides functions to read such data directly into R
and so make that data available for analysis in Rattle (and, of course,
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R). As an example, we can read data from Google’s list of most visited
web sites, converting it to a data frame and thus making it available to
Rattle. We begin this by loading XML and setting up some locations:

> library(XML)

> google <- "http://www.google.com/"

> path <- "adplanner/static/top1000/"

> top1000urls <- paste(google, path, sep="")

Now we can read in the data using readHTMLTable(), extracting the
relevant table and setting up the column names:

> tables <- readHTMLTable(top1000urls)

> top1000 <- tables[[2]]

> colnames(top1000) <- c('Rank', 'Site', 'Category',

'Users', 'Reach', 'Views',

'Advertising')

The top few rows of data from the table can be viewed using head():

> head(top1000)

Rank Site Category

1 1 facebook.com Social Networks

2 2 youtube.com Online Video

3 3 yahoo.com Web Portals

4 4 live.com Search Engines

5 5 wikipedia.org Dictionaries & Encyclopedias

6 6 msn.com Web Portals

Users Reach Views Advertising

1 880,000,000 47.2% 910,000,000,000 Yes

2 800,000,000 42.7% 100,000,000,000 Yes

3 660,000,000 35.3% 77,000,000,000 Yes

4 550,000,000 29.3% 36,000,000,000 Yes

5 490,000,000 26.2% 7,000,000,000 No

6 450,000,000 24% 15,000,000,000 Yes

4.5 R Data

Using the RData File option (Figure 4.10), data can be loaded directly
from a native binary R data file (usually with the RData filename exten-
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sion). Such files may contain multiple datasets (usually in a compressed
format) and will have been saved from R sometime previously (using
save()).

RData can be loaded by first identifying the file containing the data.
The data will be loaded once the file is identified, and we will be given
an option to choose just one of the available data frames to be loaded as
Rattle’s dataset. We specify this through the Data Name combo box and
then click Execute to make the dataset available within Rattle.

Figure 4.10: Loading a dataset from a binary R data file.

Figure 4.10 illustrates the selection of an RData file. The file is called
cardiac.RData. Having identified the file, Rattle will populate the Data
Name combo box with the names of each of the data frames found in
the file. We can choose the risk dataset, from within the data file, to be
loaded into Rattle.

4.6 Library

Almost every R package provides a sample dataset that is used to illus-
trate the functionality of the package. Rattle, as we have seen, provides
the weather, weatherAUS, and audit datasets. We can explore the wealth
of datasets that are available to us through the packages that are con-
tained in our installed R library.
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The Library option of the Data tab provides access to this vast collec-
tion of sample datasets. Clicking the radio button will generate the list
of available datasets, which can then be accessed from the Data Name
combo box. The dataset name, the package that provides that dataset,
and a short description of the dataset will be included in the list. Note
that the list can be quite long, and its contents will depend on the pack-
ages that are installed. We can see a sample of the list here, illustrating
the R code that Rattle uses to generate the list:

> da <- data(package=.packages(all.available=TRUE))

> sort(paste(da$results[, "Item"], " : ",

da$results[, "Package"], " : ",

da$results[, "Title"], sep=""))

...

[10] "Adult : arules : Adult Data Set"

...

[12] "Affairs : AER : Fair's Extramarital Affairs Data"

...

[14] "Aids2 : MASS : Australian AIDS Survival Data"

...

[19] "airmay : robustbase : Air Quality Data"

...

[23] "ais : DAAG : Australian athletes data set"

...

[66] "audit : rattle : Sample dataset for data mining"

...

[74] "Baseball : vcd : Baseball Data"

...

[1082] "weather : rattle : Sample dataset for ..."

...

To access a dataset provided by a particular package, the actual
package will first need to be loaded using library() (Rattle will do
so automatically). For many packages (specifically those that declare
the datasets as being lazy loaded—that is, loaded when they are refer-
enced), the dataset will then be available from the R Console simply by
typing the dataset name. Otherwise, data() needs to be run before the
dataset can be accessed. We need to provide data() with the name of
the dataset to be made available. Rattle takes care of this for us to ensure
the appropriate action is taken to have the dataset available.
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4.7 Data Options

All of Rattle’s data load options that we have described above share a
common set of further options that relate to the dataset once it has been
loaded. The additional options relate to sampling the data as well as
deciding on the role played by each of the variables. We review these
options in the context of data mining.

Partitioning Data

As we first saw in Section 2.7, the Partition option allows us to partition
our dataset into a training dataset, a validation dataset, and a testing
dataset. The concept of partitioning a dataset was further defined in
Section 3.1. The concepts are primarily oriented towards predictive data
mining. Generally we will build a model using the training dataset.

To evaluate (Chapter 15) the performance of the model, we might
then apply it to the evaluation dataset. This dataset has not been used
to build the model and so provides an estimate of how well the model
will perform when presented with new observations. Depending on the
performance, we may tune the model-building parameters to seek an
improvement in model performance.

Once we have a model that appears to perform well, or as well as
possible with respect to the validation dataset, we might then evaluate
its performance on the third partition, the testing dataset. The model
has not previously been exposed to the observations contained in the
testing dataset. Thus, the performance of the model on this dataset is
probably a very good indication of how well the model will perform on
new observations as they become available.

The concept of partitioning or sampling, though, is more general than
simply a mechanism for partitioning for predictive data mining purposes.
Statisticians have developed an understanding of sampling as a mecha-
nism for analysing a small dataset to make conclusions about the whole
population. Thus there is much literature from the statistics community
on ensuring a good understanding of the uncertainty surrounding any
conclusions we might make from analyses performed on any data. Such
an understanding is important, though often underplayed in the data
mining context.

Rattle creates a random partition/sample using sample(). A random
sample will generally have a good chance of reflecting the distributions of
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the whole population. Thus, exploring the data, as we do in Chapter 5,
will be made easier when very large datasets are sampled down into much
smaller ones. Exploring 10,000 observations is often a more interactive
and practical proposition than exploring 1,000,000 observations. Other
advantages of sampling include allowing analyses or plots to be repeated
over different samples to gauge the stability and statistical accuracy of
results. Model building, as we will see particularly when building random
forests (Chapter 12), can take advantage of this.

The use of sampling in this way will also be necessary in data mining
when the datasets available to model are so large that model building
may take a considerable amount of time (hours or days). Sampling down
to small proportions of a dataset will allow us to experiment more inter-
actively with building a model. Once we are sure of how the data needs
to be cleaned and transformed from our initial interactions, we can start
experimenting with models. After we have the basic model parameters
in place, we might be in a position to clean, transform, and model over
a much larger portion of the data. We can leave the model building to
complete over the possibly many hours that are often needed.

The downside of sampling, particularly in the data mining context,
is that observations that correspond to rare events might disappear from
a sample. Cases of rare diseases, or of the few instances of fraud from
amongst millions of electronic funds transfers, may well be lost, even
though they are the items that are of most interest to us in many data
mining projects. This problem is often referred to as the class imbalance
problem.

Rattle provides a default random partitioning of a dataset with 70%
of the data going into a training dataset, 15% into a validation dataset,
and 15% into a testing dataset (see Figure 4.11). We can override these
choices, depending on our needs. A very small sampling may be required
to perform some explorations of otherwise very large datasets. Smaller
samples may also be required to build models using some of the more
computationally expensive algorithms (like support vector machines).

Random numbers are used to select samples. Any sequence of ran-
dom numbers must start with a so-called seed. If we use the same seed
each time we will get the same sequence of random numbers. Thus the
process is repeatable. By changing the seed we can select different ran-
dom samples. This is often useful when we wish to explore the sensitivity
of our models to different data samples.

Within Rattle a default seed is always used. This ensures, for example,
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Figure 4.11: Sampling the weather dataset.

repeatable modelling. The seed is passed to the R function set.seed()

to set a seed for the next generated sequence of random numbers. Thus,
by setting the seed to the same number each time we can be assured of
obtaining the same sample.

Conversely, we may like to set the seed to a different number in a
series of model building exercises, and to then compare the performance
of each model. Each model will have been built from a different random
sample of the dataset. If we see significant variation between the different
models, we may be concerned about the robustness of the approach we
are taking. We discuss this further in Chapter 15.

Variable Roles

When building a model each variable will play a specific role. Most
variables will be inputs to the model, and one variable is often identified
as the target which we are modelling.

A variable can also be identified as a so-called risk variable. A risk
variable might not be used for modelling as such. Generally it will
record some magnitude associated with the risk or outcome. In the audit
dataset, for example, it records the dollar amount of an adjustment that
results from an audit—this is a measure of the size of the risk associated
with that case. In the weather dataset the risk variable is the amount of
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rain recorded for the following day—the amount of rain can be thought
of as the size of the risk. See Section 15.4 for an example of using risk
variables within Rattle, specifically for model evaluation.

Finally, we might also identify some variables to be ignored in the
modelling altogether.

In loading data into Rattle we need to ensure our variables have their
correct role for modelling. The default role for most variables is that of
an Input variable. Generally, these are the variables that will be used to
predict the value of a Target variable.

A target variable, if there is one associated with the dataset, is gen-
erally the variable of interest, from a predictive modelling point of view.
That is, it is a variable that records the outcome from the historic data.
In the case of the weather dataset this is RainTomrrow, whilst for the
audit dataset the target is Adjusted.

Rattle uses simple heuristics to guess at a variable having a Target role.
The primary heuristic is that a variable with a small number of distinct
values (e.g., less than 5) is considered as a candidate target variable. The
last variable in the dataset is usually considered as a candidate for being
the target variable, because in many public datasets the last variable
often is the target variable. If it has more than 5 distinct values Rattle
will proceed from the first variable until it finds one with less than 5, if
there are any. Only one variable can be tagged as a Target.

In a similar vain, integer variables that have a unique value for each
observation are often automatically identified as an Ident (an identifier).
Any number of variables can be tagged as being an Ident. All Ident vari-
ables are ignored when modelling, but are used after scoring a dataset,
when it is being written to a score file, so that the observations that are
scored can be identified.

Not all variables in our dataset might be wanted for the particular
modelling task at hand. Such variables can be ignored, using the Ignore
radio button.

When loading data into Rattle certain special strings are used to
identify variable roles. For example, if the variable name starts with ID

then the variable is automatically marked as having a role as an Ident.
The user can override this.

Similarly, a variable with a name beginning with IGNORE will have
the default role of Ignore. And so with RISK and TARGET.
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At any one time a target is either treated as categoric or numeric. For
a numeric variable chosen as the target, if it has 10 or fewer unique values
then Rattle will automatically treat it as a categoric variable (by default).
For modelling purposes, the consequence is that only classification type
predictive models will be available. To build regression type predictive
models we need to override the heuristic by selecting the Numeric radio
button of the Data tab.

Weights Calculator and Role

The final data configuration option of the Data tab is the Weight Calcula-
tor and the associated Weight role. A single variable can be identified as
representing some weight associated with each observation. The Weight
Calculator allows us to provide a formula that could involve multiple vari-
ables as well as some scaling to give a weight for each observation. For
example, with the audit dataset, we might enter a formula that uses the
adjustment amount, and this will give more weight to those observations
with a larger adjustment.

4.8 Command Summary

This chapter has referenced the following R packages, commands, func-
tions, and datasets:

archetypes package Archetypal analysis.
audit dataset Sample dataset from rattle.
clients dataset A fictitious dataset.
data() command Make a dataset available to R.
dfedit() command Edit a data frame in a spreadsheet.
file.show() command Display a data frame.
foreign package Access multiple data formats.
library() command Load a package into the R library.
file.show() command Display the contents of a file.
odbcConnect() function Connect to a database.
paste() function Combine strings into one string.
rattle package Provides sample datasets.
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read.arff() function Read an ARFF data file.
read.csv() function Read a comma-separated data file.
read.dbf() function Read data from a DBF database file.
read.delim() function Read a tab-delimited data file.
read.spss() function Read data from an SPSS data file.
read.table() function Read data from a text file.
read.xport() function Read data from a SAS Export data file.
readHTMLTable() function Read data from the World Wide Web.
risk dataset A fictitious dataset.
RODBC package Provides database connectivity.
sample() function Take a random sample of a dataset.
save() command Save R objects to a binary file.
set.seed() command Reset the random number sequence.
skel dataset Dataset from archetypes package.
sqlColumns() function List columns of a database table.
sqlTables() function List tables available from a database.
system.file() function Locate R or package file.
weather dataset Sample dataset from rattle.
XML package Access and generate XML like HTML.



Chapter 5

Exploring Data

As a data miner, we need to live and breathe our data. Even before we
start building our data mining models, we can gain significant insights
through exploring the data. Insights gained can deliver new discoveries
to our clients—discoveries that can offer benefits early on in a data min-
ing project. Through such insights and discoveries, we will increase our
knowledge and understanding.

Through exploring our data, we can discover what the data looks
like, its boundaries (the minimum and maximum values), its numeric
characteristics (the average value), and how it is distributed (how spread
out the data is). The data begins to tell us a story, and we need to build
and understand that story for ourselves. By capturing that story, we can
communicate it back to our clients.

This task of exploratory data analysis (often abbreviated as EDA) is
a core activity in any data mining project. Exploring the data generally
involves getting a basic understanding of a dataset through numerous
variable summaries and visual plots.

Through data exploration, we begin to understand the “lay of the
land” just as a gold miner works to understand the terrain rather than
blindly digging for gold randomly. Through this exploration, we will
often identify problems with the data, including missing values, noise,
erroneous data, and skewed distributions. This in turn will drive our
choice of the most appropriate and, importantly, applicable tools for
preparing and transforming our data and for mining. Some tools, for
example, are limited in use when there is much missing data.

Rattle provides tools ranging from textual summaries to visually ap-
pealing graphical plots for identifying correlations between variables. The
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Explore tab within Rattle provides a window into the tools for helping us
understand our data, driving the many options available in R.

5.1 Summarising Data

Figure 5.1 shows the options available under Rattle’s Explore tab. We
begin our exploration of data with the basic Summary option, which
provides a textual overview of the data. Whilst a picture may be worth
a thousand words, textual summaries still play an important role in our
understanding of data.

Figure 5.1: The Explore tab provides access to a variety of ways in which we
start to understand our data.

Often, we deal with very large datasets, and some of the calculations
and visualisations we perform will be computationally quite expensive.
Thus it may be useful to summarise random subsets of the data instead.
The Partition option of the Data tab is useful here. This uses sample() to
generate a list of row numbers that we can then use to index the dataset.

The following example generates a 20% (i.e., 0.2 times the number of
rows) random sample of our weather dataset. We use nrow() to obtain
the number of rows in the sample (73.2) and dim() for information about
the number of rows and columns in the data frame:

> library(rattle)

> dim(weather)

[1] 366 24

> set.seed(42)

> smpl <- sample(nrow(weather), 0.2*nrow(weather))

> dim(weather[smpl,])

[1] 73 24
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For our weather dataset with only 366 observations, we clearly do not
need to sample.

5.1.1 Basic Summaries

The simplest text-based statistical summary of a dataset is provided by
summary(). This is always a useful starting point in reviewing our data.
It provides a summary of each variable. Here we see summaries for a
mixture of numeric and categoric variables:

> summary(weather[7:9])

Sunshine WindGustDir WindGustSpeed

Min. : 0.00 NW : 73 Min. :13.0

1st Qu.: 5.95 NNW : 44 1st Qu.:31.0

Median : 8.60 E : 37 Median :39.0

Mean : 7.91 WNW : 35 Mean :39.8

3rd Qu.:10.50 ENE : 30 3rd Qu.:46.0

Max. :13.60 (Other):144 Max. :98.0

NA's : 3.00 NA's : 3 NA's : 2.0

For the numeric variables, summary() will list the minimum and max-
imum values together with average values (the mean and median) and
the first and third quartiles. The quartiles represent a partitioning of the
values of the numeric variable into four equally sized sets. The first quar-
tile includes 25% of the observations of this variable that have a value
less than this first quartile. The third quartile is the same, but at the
75% mark. The median is actually also the second quartile, representing
the 50% cutoff (i.e., the middle value).

Generally, if the mean and median are significantly different, then we
would think that there are some observations of this variable that are
quite a distance from the mean in one particular direction (i.e., some
exceptionally large positive or negative values, generally called outliers,
which we cover in Chapter 7). From the variables we see above, Sunshine
has a relatively larger (although still small) gap between its mean and
median, whilst the mean and median of WindGustSpeed are quite similar.
Sunshine has more small observations than large observations, using our
terms rather loosely.
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The categoric variables will have listed for them the top few most
frequent levels with their frequency counts and then aggregate the re-
mainder under the (Other) label. Thus there are 73 observations with
a NW wind gust, 44 with a NNW wind gust, and so on. We observe quite
a predominance of these northwesterly wind gusts. For both types of
listings, the count of any missing values (NAs) will be reported. A some-
what more detailed summary is obtained from describe(), provided by
Hmisc (Harrell, 2010). To illustrate this we first load Hmisc into the
library:

> library(Hmisc)

For numeric variables like Sunshine (which is variable number 7)
describe() outputs two more deciles (10% and 90%) as well as two
other percentiles (5% and 95%). The output continues with a list of
the lowest few and highest few observations of the variable. The extra
information is quite useful in building up our picture of the data.

> describe(weather[7])

weather[7]

1 Variables 366 Observations

----------------------------------------------------------

Sunshine

n missing unique Mean .05 .10 .25

363 3 114 7.909 0.60 2.04 5.95

.50 .75 .90 .95

8.60 10.50 11.80 12.60

lowest : 0.0 0.1 0.2 0.3 0.4

highest: 13.1 13.2 13.3 13.5 13.6

----------------------------------------------------------

For categoric variables like WindGustDir (which is variable number 8)
describe() outputs the frequency count and the percentage this repre-
sents for each level. The information is split over as many lines as is
required, as we see in the following code box.
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> describe(weather[8])

weather[8]

1 Variables 366 Observations

----------------------------------------------------------

WindGustDir

n missing unique

363 3 16

N NNE NE ENE E ESE SE SSE S SSW SW WSW W

Frequency 21 8 16 30 37 23 12 12 22 5 3 2 20

% 6 2 4 8 10 6 3 3 6 1 1 1 6

WNW NW NNW

Frequency 35 73 44

% 10 20 12

----------------------------------------------------------

5.1.2 Detailed Numeric Summaries

An even more detailed summary of the numeric data is provided by
basicStats() from fBasics (Wuertz et al., 2010). Though intended for
time series data, it provides useful statistics in general, as we see in the
code box below.

Some of the same data that we have already seen is presented together
with a little more. Here we see that the variable Sunshine is observed 366
times, of which 3 are missing (NAs). The minimum, maximum, quartiles,
mean, and median are as before.

The statistics then go on to include the total sum of the amount of
sunshine, the standard error of the mean, the lower and upper confidence
limits on the true value of the mean (at a 95% level of confidence), the
variance and standard deviation, and two measures of the shape of the
distribution of the data: skewness and kurtosis (explained below).

The mean is stated as being 7.91. We can be 95% confident that the
actual mean (the true mean) of the population, of which the data we
have here is assumed to be a random sample, is somewhere between 7.55
and 8.27.
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> library(fBasics)

> basicStats(weather$Sunshine)

X..weather.Sunshine

nobs 366.0000

NAs 3.0000

Minimum 0.0000

Maximum 13.6000

1. Quartile 5.9500

3. Quartile 10.5000

Mean 7.9094

Median 8.6000

Sum 2871.1000

SE Mean 0.1827

LCL Mean 7.5500

UCL Mean 8.2687

Variance 12.1210

Stdev 3.4815

Skewness -0.7235

Kurtosis -0.2706

The standard deviation is a measure of how spread out (or how dis-
persed or how variable) the data is with respect to the mean. It is mea-
sured in the same units as the mean itself. We can read it to say that
most observations (about 68% of them) are no more than this distance
from the mean. That is, most days have 7.91 hours of sunshine, plus or
minus 3.48 hours.

Our observation of the mean and standard deviation for the sunshine
data needs to be understood in the context of other knowledge we glean
about the variable. Consider again Figure 2.8 on page 34. An observation
we might make there is that the distribution appears to be what we
might call bimodal—that is it has two distinct scenarios. One is that
of a cloudy day, and for such days the hours of sunshine will be quite
small. The other is that of a sunny day, for which the hours of sunshine
will cover the whole day. This observation might be more important to
us in weather forecasting, than the interval around the mean. We might
want to transform this variable into a binary variable to capture this
observation. Transformations are covered in Chapter 7. The variance is
the square of the standard deviation.
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5.1.3 Distribution

In statistics, we often talk about how observations (i.e., the values of
a variable) are distributed. By “distributed” we mean how many times
each value of some variable might appear in a collection of data. For the
variable Sunshine, for example, the distribution is concerned with how
many days have 8 hours of sunshine, how many have 8.1 hours, and so
on.

The concept is not quite that black and white, though. In fact, the
distribution is often visualised as a smooth curve, as we might be familiar
with from published articles that talk about a normal (or some other
common) distribution. We often hear about the bell curve. This is
a graph that plots a shape similar to that of musical bells. For our
discussion here, it is useful to have a mental picture of such a bell curve,
where the horizontal axis represents the possible values of the variable
(the observations) and the vertical axis represents how often those values
might occur.

5.1.4 Skewness

The skewness is a measure of how asymmetrically our data is distributed.
The skewness indicates whether there is a long tail on one or the other
side of the mean value of the data. Here we use skewness() from Hmisc
to compare the distributions of a number of variables:

> skewness(weather[,c(7,9,12,13)], na.rm=TRUE)

Sunshine WindGustSpeed WindSpeed9am WindSpeed3pm

-0.7235 0.8361 1.3602 0.5913

A skewness of magnitude (i.e., ignoring whether it is positive or neg-
ative) greater than 1 represents quite an obvious extended spread of the
data in one direction or the other. The direction of the spread is indi-
cated by the sign of the skewness. A positive skewness indicates that the
spread is more to the right side of the mean (i.e., above the mean) and is
referred to as having a longer right tail. A negative skewness is the same
but on the left side.

Many models and statistical tests are based on the assumption of a
so-called bell curve distribution of the data, which describes a symmetric
spread of data values around the mean. The greater the skewness, the
greater the distortion to this spread of values. For a large skewness, the
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assumptions of the models and statistical tests will not hold, and so we
need to be a little more careful in their use. The impact tends to be
greater for traditional statistical approaches and less so for more recent
approaches like decision trees.

5.1.5 Kurtosis

A companion for skewness is kurtosis, which is a measure of the nature of
the peaks in the distribution of the data. Once again, we might picture
the distribution of the data as having a shape that is something like that
of a church bell (i.e., a bell curve). The kurtosis tells us how skinny or
fat the bell is. Hmisc provides kurtosis():

> kurtosis(weather[,c(7,9,12,13)], na.rm=TRUE)

Sunshine WindGustSpeed WindSpeed9am WindSpeed3pm

-0.2706 1.4761 1.4758 0.1963

A larger value for the kurtosis indicates that the distribution has a
sharper peak, primarily because there are only a few values with more
extreme values compared with the mean value. Thus, WindSpeed9am

has a sharper peak and a smaller number of more extreme values than
WindSpeed3pm. The lower kurtosis value indicates a flatter peak.

5.1.6 Missing Values

Missing values present challenges to data mining and modelling in gen-
eral. There can be many reasons for missing values, including the fact
that the data is hard to collect and so not always available (e.g., results
of an expensive medical test), or that it is simply not recorded because it
is in fact 0 (e.g., spouse income for a spouse who stays home to manage
the family). Knowing why the data is missing is important in deciding
how to deal with the missing value.

We can explore the nature of the missing data using md.pattern()

from mice (van Buuren and Groothuis-Oudshoorn, 2011), as Rattle does
when activating the Show Missing check button of the Summary option
of the Explore tab. The results can help us understand any structure in
the missing data and even why the data is missing:
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> library(mice)

mice 2.8 2011-03-24

> md.pattern(weather[,7:10])

WindGustSpeed Sunshine WindGustDir WindDir9am

329 1 1 1 1 0

3 1 0 1 1 1

1 1 1 0 1 1

31 1 1 1 0 1

2 0 1 0 1 2

2 3 3 31 39

The table presents, for each variable, a pattern of missing values. Within
the table, a 1 indicates a value is present, whereas a 0 indicates a value
is missing.

The left column records the number of observations that match the
corresponding pattern of missing values. There are 329 observations
with no missing values over these four variables (each having a value of
1 within that row). The final column is the number of missing values
within the pattern. In the case of the first row here, with no missing
values, this is 0.

The rows and columns are sorted in ascending order according to the
amount of missing data. Thus, generally, the first row records the number
of observations that have no missing values. In our example, the second
row corresponds to a pattern of missing values for the variable Sunshine.
There are NA hundred NA three observations that have just Sunshine

missing (and there are three observations overall that have Sunshine

missing based on the final row). This particular row’s pattern has just a
single variable missing, as indicated by the 1 in the final column.

The final row records the number of missing values over the whole
dataset for each of the variables. For example, WindGustSpeed has two
missing values. The total number of missing values over all observations
and variables is noted at the bottom right (39 in this example).

In Section 7.4, we will discuss how we might deal with missing values
through an approach called imputation.
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5.2 Visualising Distributions

In the previous section, we purposely avoided any graphical presentation
of our data. In fact, I rather expect you might have been frustrated that
there was no picture there to help you visualise what we were describing.
The absence of a picture was primarily to make the point that it can get a
little tricky explaining ideas without the aid of pictures. In particular, our
explanation of skewness and kurtosis was quite laboured, and reverted
to painting a mental picture rather than presenting an actual picture.
After reviewing this current section, go back to reconsider the discussion
of skewness and kurtosis. Pictures really do play a significant role in
understanding, and graphical presentations, for many, are more effective
for communicating than tables of numbers.

Graphical tools allow us to visually investigate the data’s characteris-
tics to help us understand it. Such an exploration of the data can clearly
identify errors in the data or oddities about its collection. This will also
guide our choice of options to transform variables in different ways and
to select those variables of interest.

Visualising data has been an area of study within statistics for many
years. A vast array of techniques have been developed for presenting
data visually, and the topic is covered in great detail in many books,
including Cleveland (1993) and Tufte (1985).

It is a good idea, then, early on in a data mining project, to review the
distributions of the values of each of the variables in our dataset graph-
ically. R provides a wealth of options for graphically presenting data.
Indeed, R is one of the most capable data visualisation languages and
allows us to program the visualisations. There are also many standard
types of visualisations, and some of these are available through Rattle’s
Distributions option on the Explore tab (Figure 5.2).

Using Rattle’s Distributions option, we can select specific variables of
interest and display various distribution plots. Selecting many variables
will of course lead to many plots being displayed, and so it may be useful
to display multiple plots per page (i.e., per window). Rattle will do this
for us automatically, controlled by our setting of the appropriate value
for the number of plots per page within the interface. By default, four
plots are displayed per page or window.

Figure 5.3 illustrates a sample of the variety of plots available. Clock-
wise from the top left plot, we have illustrated a box plot, a histogram,
a mosaic plot, and a cumulative function plot. Because we have
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Figure 5.2: The Explore tab’s Distributions option provides convenient access
to a variety of standard plots for the two primary variable types—numeric and
categoric.

identified a target variable (RainTomorrow), the plots include the distri-
butions for each subset of observations associated with each value (No
and Yes) of the target variable. That is, the plots include a visualisation
of the stratification of the data based on the different values of the target
variable.

In brief, the box plot identifies the median and mean of the vari-
able (MinTemp) and the spread from the first quartile to the third, and
indicates the outliers. The histogram splits the range of values of the
variable (Sunshine) into segments (hours in this case) and shows the
number of observations in each segment. The mosaic plot shows the
proportions of data split according to the target (RainTomorrow) and
the chosen variable (WindGustDir, modified to have fewer levels in this
case). The cumulative plot shows the percentage of observations below
any particular value of the variable (WindGustSpeed).

Each of the plots available through Rattle is explained in more detail
in the following sections.
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Figure 5.3: A sample of plots illustrates the different distributions and how
they can be visualised.

5.2.1 Box Plot

A box plot (Tukey, 1977) (also known as a box-and-whisker plot) provides
a graphical overview of how the observations of a variable are distributed.
Rattle’s box plot adds some additional information to the basic box plot
provided by R.

A box plot is useful for quickly ascertaining the distribution of nu-
meric data, covering some of the same statistics presented textually in
Section 5.1.1. In particular, any skewness will be clearly visible.

When a target variable has been identified the box plot will also show
the distribution of the observations of the chosen variable by the levels of
the target variable. We see such a plot for the variable Humidity3pm in
Figure 5.4, noting that RainTomorrow is the target variable. The width
of each of the box plots also indicates the distribution of the values of
the target variable. We see that there are quite a few more observations
with No for RainTomorrow than with Yes.

The box plot (which is shown with Rattle’s Annotate option active
in Figure 5.4) presents a variety of statistics. The thicker horizontal
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Figure 5.4: The Rattle box plot extends the default R box plots to provide a
little more information by default and includes annotations if requested. The
plot here is for the full dataset.

line within the box represents the median (also known as the second
quartile or the 50th percentile). The leftmost box plot in Figure 5.4
(showing the distribution over all of the observations for Humidity3pm)
has the median labelled as 43. The top and bottom extents of the box
(55 and 32, respectively) identify the upper quartile (also known as the
third quartile or the 75th percentile) and the lower quartile (the first
quartile or the 25th percentile). The extent of the box is known as the
interquartile range (55− 32 = 23).

Dashed lines extend to the maximum and minimum data points,
which are no more than 1.5 times the interquartile range from the me-
dian. We might expect most of the rest of the observations to be within
this region. Outliers (points further than 1.5 times the interquartile range
from the median) are then individually plotted (we can see a small num-
ber of outliers for the left two box plots, each being annotated with the
actual value of the observation).

The notches in the box, around the median, indicate an approximate
95% confidence level for the differences between the medians (assuming
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independent observations, which may not be the case). Thus they are
useful in comparing the distributions. In this instance, we can observe
that the median of the values associated with the observations for which
it rained tomorrow (i.e., the variable RainTomorrow has the value Yes) is
significantly different (at the 95% level of confidence) from the median for
those observations for which it did not rain tomorrow. It would appear
that a higher humidity recorded at 3 pm is an indication that it might
rain tomorrow.

The mean is also displayed as the asterisk in each of the boxes. A
large gap between the median and the mean is another indication of a
skewed distribution.

Rattle’s Log tab records the sequence of commands used to draw
the box plot and to annotate it. Basically, boxplot() (the basic plot),
points() (to plot the means), and text() (to label the various points)
are employed.

We can, as always, copy-and-paste these commands into the R Console
to replicate the plot and to then manually modify the plot commands to
suit any specific need. The automatically generated code is shown below,
modified slightly for clarity.

The first step is to generate the data we wish to plot. The following
example creates a single dataset with two columns, one being the ob-
servations of Humidity3pm and the other, identified by a variable called
grp, the group to which the observation belongs. There are three groups,
two corresponding to the two values of the target variable and the other
covering all observations.

The use of with() allows the variables within the original dataset to
be referenced without having to name the dataset each time. We combine
three data.frame() objects row-wise, using rbind(), to generate the
final dataset:

> ds <- with(crs$dataset[crs$train,],

rbind(data.frame(dat=Humidity3pm,

grp="All"),

data.frame(dat=Humidity3pm[RainTomorrow=="No"],

grp="No"),

data.frame(dat=Humidity3pm[RainTomorrow=="Yes"],

grp="Yes")))
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Now we display the boxplot(), grouping our data by the variable
grp:

> bp <- boxplot(formula=dat ~ grp, data=ds,

col=rainbow_hcl(3),

xlab="RainTomorrow", ylab="Humidity3pm",

notch=TRUE)

Notice that we assign to the variable bp the value returned by boxplot().
The function returns the data for the calculation needed to draw the box
plot. By saving the result, we can make further use of it, as we do below,
to annotate the plot.

We will also annotate the plot with the means. To do so, summaryBy()
from doBy comes in handy. The use of points() together with pch=

results in the asterisks we see in Figure 5.4.

> library(doBy)

> points(x=1:3, y=summaryBy(formula=dat ~ grp, data=ds,

FUN=mean, na.rm=TRUE)$dat.mean, pch=8)

Next, we add further text() annotations to identify the median and
interquartile range:

> for (i in seq(ncol(bp$stats)))

{

text(x=i, y=bp$stats[,i] -

0.02*(max(ds$dat, na.rm=TRUE) -

min(ds$dat, na.rm=TRUE)),

labels=bp$stats[,i])

}

The outliers are then annotated using text(), but decreasing the font
size using cex=:

> text(x=bp$group+0.1, y=bp$out, labels=bp$out, cex=0.6)

To round out our plot, we add a title() to include a main= and a sub=

title. We format() the current date and time (Sys.time()) and include
the current user (obtained from Sys.info()) in the titles:
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> title(main="Distribution of Humidity3pm (sample)",

sub=paste("Rattle",

format(Sys.time(), "%Y-%b-%d %H:%M:%S"),

Sys.info()["user"]))

A variation of the box plot is the box-percentile plot. This plot pro-
vides more information about the distribution of the values. We can see
such a plot in Figure 5.5, which is generated using bpplot() of Hmisc.
The following code will generate the plot (at the time of writing this
book, box-percentile plots are not yet available in Rattle):

> library(Hmisc)

> h3 <- weather$Humidity3pm

> hn <- h3[weather$RainTomorrow=="No"]

> hy <- h3[weather$RainTomorrow=="Yes"]

> ds <- list(h3, hn, hy)

> bpplot(ds, name=c("All", "No", "Yes"),

ylab="Humidity3pm", xlab="RainTomorrow")

The width within each box (they aren’t quite boxes as such, but we get
the idea) is determined to be proportional to the number of observations
that are below (or above) that point. The median and the 25th and 75th
percentiles are also shown.

5.2.2 Histogram

A histogram provides a quick and useful graphical view of the spread of
the data. We can very quickly get a feel for the distribution of our data,
including an idea of its skewness and kurtosis. Histograms are probably
one of the more common ways of visually presenting data.

A histogram plot in Rattle includes three components, as we see in
Figure 5.6. The first of these is obviously the vertical bars. The con-
tinuous data in the example here (the wind speed at 9 am) has been
partitioned into ranges, and the frequency of each range is displayed as
the bar. R automatically chooses both the partitioning and how the x-
axis is labelled, showing x-axis points at 0, 10, 20, and so on. We might
observe that the most frequent range of values is in the 4–6 partition.

The plot also includes a line plot showing the so-called density esti-
mate. The density plot is a more accurate display of the actual (at least
estimated true) distribution of the data (the values of WindSpeed9am).
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Figure 5.5: A box-percentile plot provides some more information about the
distribution.

It allows us to see that rather than values in the range 4–6 occurring
frequently, in fact it is “6” itself that occurs most frequently.

The third element of the plot is the so-called rug along the bottom
of the plot. The rug is a single-dimensional plot of the data along the
number line. It is useful in seeing exactly where data points actually
lie. For large collections of data with a relatively even spread of values,
the rug ends up being quite black. From Figure 5.6, we can make some
observations about the data. First, it is clear that the measure of wind
speed is actually an integer. Presumably, in the source data, it is rounded
to the nearest integer. We can also observe that some values are not
represented at all in the dataset. In particular, we can see that 0, 2, 4,
6, 7, and 9 are represented in the data but 1, 3, 5, and 8 are not.

The distribution of the values for WindSpeed9am is also clearly skewed,
having a longer tail to the right than to the left. Recall from Section 5.1.4
that WindSpeed9am had a skewness of 1.36. Similarly, the kurtosis mea-
sure was 1.48, indicating a bit of a narrower peak.

20
40

60
80

Box−Percentile Plot
H

um
id

ity
3p

m

RainTomorrow

All No Yes



116 5 Exploring Data

Figure 5.6: The Rattle histogram extends the default R histogram plots with
a density plot and a rug plot.

We can compare WindSpeed9am with Sunshine, as in Figure 5.7. The
corresponding skewness and kurtosis for Sunshine are −0.72 and −0.27,
respectively. That is, Sunshine has a smaller and negative skew, and a
smaller kurtosis and hence a more spread-out peak.

5.2.3 Cumulative Distribution Plot

Another popular plot for communicating the distribution of the values of
a variable is the cumulative distribution plot. A cumulative distribution
plot displays the proportion of the data that has a value that is less than
or equal to the value shown on the x-axis.

Figure 5.8 shows a cumulative distribution plot for two variables,
WindSpeed9am and Sunshine. Each chart includes three cumulative
plots: one line is drawn for all the data and one line for each of the
values of the target variable.

We can see again that these two variables have quite different distri-
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Figure 5.7: The Rattle histogram for Sunshine for comparison with Wind-

Speed9am.

butions. The plot for WindSpeed9am indicates that the wind speed at 9
am is usually at the lower end of the scale (e.g., less than 10), but there
are a few days with quite extreme wind speeds at 9 am (i.e., outliers).
For Sunshine there is a lot more data around the middle, which is typical
of a more normal type of distribution. There is quite a spread of values
between 6 and 10.

The Sunshine plot is also interesting. We can see quite an obvious
difference between the two lines that represent All of the observations
and just those with a No (i.e., observations for which there is no rain
tomorrow) and the line that represents the Yes observations. It would
appear that lower values of Sunshine today are associated with observa-
tions for which it rains tomorrow.

The Ecdf() command of Hmisc provides a simple interface for pro-
ducing cumulative distribution plots. The code to generate the Sunshine
plot is presented below.

Sunshine
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Figure 5.8: Cumulative distribution plots for WindSpeed9am and Sunshine.

> library(rattle)

> library(Hmisc)

> su <- weather$Sunshine

> sn <- su[weather$RainTomorrow=="No"]

> sy <- su[weather$RainTomorrow=="Yes"]

> Ecdf(su, col="#E495A5", xlab="Sunshine", subtitles=FALSE)

> Ecdf(sn, col="#86B875", lty=2, add=TRUE, subtitles=FALSE)

> Ecdf(sy, col="#7DB0DD", lty=3, add=TRUE, subtitles=FALSE)

We can add a legend and a title to the plot:

> legend("bottomright", c("All","No","Yes"), bty="n",

col=c("#E495A5", "#86B875", "#7DB0DD"),

lty=1:3, inset=c(0.05,0.05))

> title(main=paste("Distribution of Sunshine (sample)",

"by RainTomorrow", sep="\n"),

sub=paste("Rattle", format(Sys.time(),

"%Y-%b-%d %H:%M:%S")))
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5.2.4 Benford’s Law

The use of Benford’s law has proven to be effective in identifying oddities
in data. It has been used for case selection in fraud detection, particularly
in accounting data (Durtschi et al., 2004), where the value of a variable
for a group of related observations might be identified as not conforming
to Benford’s law even though other groups do.

Figure 5.9: A Benford’s law plot of the variable Income from the audit dataset,
particularly showing nonconformance for the population of known noncompliant
clients.

Benford’s law relates to the frequency of occurrence of the first digit
in a collection of numbers. These numbers might be the dollar income
earned by individuals across a population of taxpayers or the height of
buildings in a city. The law generally applies when several orders of
magnitude (e.g., 10, 100, and 1000) are recorded in the observations.

The law states that the digit “1” appears as the first digit of the
numbers some 30% of the time. That is, for income, numbers like $13,245
and $162,385 (having an initial digit of “1”) will appear about 30% of the
time in our population. On the other hand, the digit “9” (for example,
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as in $94,251) appears as the first digit less than 5% of the time. Other
digits have frequencies between these two, as we can see from the black
line in Figure 5.9.

This rather startling observation is certainly found, empirically, to
hold in many collections of numbers, such as bank account balances, tax
refunds, stock prices, death rates, lengths of rivers, and potential fraud
in elections. It is observed to hold for processes that are described by
what are called power laws, which are common in nature. By plotting a
collection of numbers against the expectation as based on Benford’s law,
we are able to quickly see any odd behaviour in the data.

Benford’s law is not valid for all collections of numbers. For example,
peoples’ ages would not be expected to follow Benford’s law, nor would
telephone numbers. So we do need to use caution in relying just on
Benford’s law to identify cases of interest.

We can illustrate Benford’s law using the audit dataset from rattle.
Rattle provides a convenient mechanism for generating a plot to visu-
alise Benford’s law, and we illustrate this with the variable Income in
Figure 5.9.

The darker line corresponds to Benford’s law, and we note that the
lines corresponding to All and 0 follow the expected first-digit distribu-
tion proposed by Benford’s law. However, the line corresponding to 1

(i.e., clients who had to have their claims adjusted) clearly deviates from
the proposed distribution. This might indicate that these numbers have
been made up by someone or that there is some other process happening
that affects this population of numbers.

5.2.5 Bar Plot

The plots we have discussed so far work for numeric data. We now
consider plots that work for categoric data. These include the bar plot,
dot plot, and mosaic plot.

A bar plot, much like a histogram, uses vertical bars to show counts of
the number of observations of each of the possible values of the categoric
variable. There are many ways to graph a bar plot. In Rattle, the default
is to list the possible values along the x-axis, leaving the y-axis for the
frequency or count. When a categoric target variable is active within
Rattle, additional bars will be drawn for each value, corresponding to the
different values of the target. Figure 5.10 shows a typical bar plot. The
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sample bar plot also shows that by default Rattle will sort the bars from
the largest to the smallest.

Figure 5.10: A bar plot for the categoric variable WindGustDir (modified)
from the weather dataset.

5.2.6 Dot Plot

A dot plot illustrates much the same information as a bar plot but uses a
different approach. The bars are replaced by dots that show the height,
thus not filling in as much of the graphic. A dotted line replaces the
extent of the bar, and by default in Rattle the plots are horizontal rather
than vertical. Once again, the categoric values are ordered to produce
the plot in Figure 5.11.

For the dot plot, we illustrate the distribution of observations over all
of the values of the categoric variable WindGustDir. With the horizontal
plot it is more feasible to list all of the values than for the vertical bar
plots. Of course, the bar plots could be drawn horizontally for the same
reason.

Both the bar plot and dot plot are useful in understanding how the
observations are distributed across the different categoric values. One
thing to look for when a target variable is identified is any specific vari-
ation in the distributions between the target values. In Figure 5.11, for
example, we can see that the distributions of the “Yes” and “No” observa-
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Figure 5.11: A dot plot for the categoric variable WindGustDir (original) from
the weather dataset.

tions are quite different from the overall distributions. Such observations
may merely be interesting or might lead to useful questions about the
data. In our data here, we do need to recall that the majority of days
have no rain. Thus the No distribution of values for WindGustDir follows
the distribution of all observations quite closely. We can see a few de-
viations, suggesting that these wind directions have an influence on the
target variable.

5.2.7 Mosaic Plot

A mosaic plot is an effective way to visualise the distribution of the values
of one variable over the different values of another variable, looking for
any structure or relationship between those variables. In Rattle, this
second variable is usually the target variable (e.g., RainTomorrow in our
weather dataset), as in Figure 5.12.

The mosaic plot again provides insights into how the data is dis-
tributed over the values of a second variable. The area of each bar is
proportional to the number of observations having a particular value
for the variable WindGustDir. Once again, the values of WindGustDir
are ordered according to their frequency of occurrence. The value NW

is observed most frequently. The split between the values of the target
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Figure 5.12: A mosaic plot for the categoric variable WindGustDir (original)
from the weather dataset.

variable RainTomorrow is similarly proportional to their frequency.
Once again, we see that a wind gust of west has a high proportion

of days for which RainTomorrow is true. Something that we missed in
reviewing the bar and the dot plots is that a SW wind gust has the highest
proportions of days where it rains tomorrow, followed by SSW.

It is arguable, though, that it is harder to see the overall distribution
of the wind gust directions in a mosaic plot compared with the bar and
dot plots. Mosaic plots are thus generally used in combination with other
plots, and they are particularly good for comparing two or more variables
at the same time.

5.2.8 Pairs and Scatter Plots

The bar and dot plots are basically single-variable (i.e., univariate) plots.
In our plots, we have been including a second variable, the target. Moving
on from considering the distribution of a single variable at a time, we can
compare variables pairwise. Such a plot is called a scatter plot.

Generally we have multiple variables that we might wish to compare
pairwise using multiple scatter plots. Such a plot then becomes a scatter
plot matrix. The pairs() command in R can be used to generate a
matrix of scatter plots. In fact, the function can be fine-tuned to not
only display pairwise scatter plots but also to include histograms and a
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pairwise measure of the correlation between variables (correlations are
discussed in Section 5.3).

For this added functionality we need two support functions that are
a little more complex and that we won’t explain in detail:

> panel.hist <- function(x, ...)

{

usr <- par("usr"); on.exit(par(usr))

par(usr=c(usr[1:2], 0, 1.5) )

h <- hist(x, plot=FALSE)

breaks <- h$breaks; nB <- length(breaks)

y <- h$counts; y <- y/max(y)

rect(breaks[-nB], 0, breaks[-1], y, col="grey90", ...)

}

> panel.cor <- function(x, y, digits=2, prefix="",

cex.cor, ...)

{

usr <- par("usr"); on.exit(par(usr))

par(usr = c(0, 1, 0, 1))

r <- (cor(x, y, use="complete"))

txt <- format(c(r, 0.123456789), digits=digits)[1]

txt <- paste(prefix, txt, sep="")

if(missing(cex.cor)) cex.cor <- 0.8/strwidth(txt)

text(0.5, 0.5, txt)

}

We can then generate the plot with:

> vars <- c(5, 7, 8, 9, 15, 24)

> pairs(weather[vars],

diag.panel=panel.hist,

upper.panel=panel.smooth,

lower.panel=panel.cor)

There are two additional commands defined here, panel.hist() and
panel.cor(), provided as the arguments diag.panel and lower.panel

to pairs(). These two commands are not provided by R directly. Their
definitions can be obtained from the help page for pairs() and pasted
into the R Console.
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Figure 5.13: A pairs plot with a scatter plot matrix displayed in the upper
panel, histograms in the diagonal, and a measure of correlation in the lower
panel.

Tip: Rattle can generate a pairs plot including the scatter plots, his-
tograms, and correlations in the one plot (Figure 5.13). To do so, we
go to the Distributions option of the Explore tab and ensure that no plot
types are selected for any variable (the default). Then click the Execute
button.

Notice that we have only included six variables in the pairs plot. Any
more than this and the plot becomes somewhat crowded. In generating
a pairs plot, Rattle will randomly subset the total number of variables
available down to just six variables. In fact, each time the Execute but-
ton is clicked, a different randomly selected collection of variables will be
displayed. This is a useful exercise to explore for interesting pairwise re-
lationships among our variables. If we are keen to do so, we can generate
plots with more than six variables quite simply by copying the command
from Rattle’s Log tab (which will be similar to pairs(), shown above)
and pasting it into the R Console.

Let’s explore the pairs plot in a little more detail. The diagonal
contains a histogram for the numeric variables and a bar plot (also a
histogram) for the categoric variables. The top right plots (i.e., those
plots above the diagonal) are pairwise scatter plots, which plot the ob-
servations of just two variables at a time. The corresponding variables
are identified from the diagonal.
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126 5 Exploring Data

The top left scatter plot, which appears in the first row and the second
column, has Rainfall on the y-axis and Sunshine on the x-axis. We can
see quite a predominance of days (observations) with what looks like no
rainfall at all, with fewer observations having some rainfall. There does
not appear to be any particular relationship between the amount of rain
and the hours of sunshine, although there are some days with higher
rainfall when there is less sunshine. Note, though, that an outlier for
rainfall (at about 40 mm of rain) appears on a day with about 9 hours of
sunshine. We might decide to explore this apparent anomaly to assure
ourselves that there was no measurement or data error that led to this
observation.

An interesting scatter plot to examine is that in row 2 and column
5. This plot has Sunshine on the y-axis and Humidity3pm on the x-
axis. The solid red lines that are drawn on the plot are a result of
panel.smooth() being provided as the value for the upper.panel argu-
ment in the call to pairs(). The line provides a hint of any trend in
the relationship between the two variables. For this particular scatter
plot, we can see some structure in that higher levels of humidity at 3
pm are observed with lower hours of sunshine. One or two of the other
scatter plots show other, but less pronounced and hence probably less
significant, relationships.

The lower part of our scatter plot matrix contains numbers between
−1 and 1. These are measures of the correlation between two variables.
Pearson’s correlation coefficient is used. We can see that Rainfall and
Humidity3pm (see the number in row 5, column 1) have a small positive
correlation of 0.29. That is not a great deal of correlation. If we square
the correlation value to obtain 0.0841, we can interpret this as indicating
that some 8% of the variation is related. There is perhaps some basis to
expect that when we observe higher rainfall we might also observe higher
humidity at 3 pm.

There is even stronger correlation between the variables Sunshine

and Humidity3pm (row 5, column 2) measured at −0.76. The negative
sign indicates a negative correlation of strength 0.76. Squaring this num-
ber leads us to observe that some 58% of the variation is related. Thus,
observations of more sunshine do tend to occur with observations of less
humidity at 3 pm, as we have already noted. We will come back to
correlations shortly.
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5.2.9 Plots with Groups

Extending the idea of comparing variables, we can usefully plot, for ex-
ample, a box plot of one variable but with the observations split into
groups that are defined by another variable. We have already seen this
with the target variable being the one by which we group our observa-
tions, as in Figure 5.4. Simply through selecting another variable as the
target, we can explore many different relationships quite effectively.

Consider, for example, the distribution of the observations of the
variable Sunshine. We might choose Cloud9am as the target variable (in
Rattle’s Data tab) and then request a box plot from the Explore tab. The
result will be as in Figure 5.14. Note that Cloud9am is actually a numeric
variable, but we are effectively using it here as a categoric variable. This
is okay since it has only nine numeric values and those are used here to
group together different observations (days) having a common value for
the variable.

Figure 5.14: Data displayed through the Distributions tab is grouped using the
target variable values to define the groups. Selecting alternative targets will
group the data differently.

The leftmost box plot shows the distribution of the observations of
Sunshine over the whole dataset. The remaining nine box plots then
collect together the observations of Sunshine for each of the nine possible
values of Cloud9am. Recall that Cloud9am is measured in something
called oktas. An okta of 0 indicates no cloud coverage, 1 indicates one-
eighth of the sky is covered, and so on up to 8, indicating that the sky is
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completely covered in clouds.
The relationship that we see in Figure 5.14 then makes some sense.

There is a clear downward trend in the box plots for the amount of
sunshine as we progressively have more cloud coverage. Some groups are
quite distinct: compare groups 6, 7, and 8. They have different medians,
with their notches clearly not overlapping.

The plot also illustrates some minor idiosyncrasies of the box plot.
The box plots for groups 2 and 4 appear a little different. Each has an
odd arrangement at the end of the quartile on one side of the box. This
occurs when the notch is calculated to be larger than the portion of the
box on one side of the median.

5.3 Correlation Analysis

We have seen from many of the plots in the sections above, particu-
larly those plots with more than a single variable, that we often end up
identifying some kind of relationship or correlation between the observa-
tions of two variables. The relationship we saw between Sunshine and
Humidity3pm in Figure 5.13 is one such example.

A correlation coefficient is a measure of the degree of relationship
between two variables—it is usually a number between −1 and 1. The
magnitude represents the strength of the correlation and the sign repre-
sents the direction of the correlation. A high degree of correlation (closer
to 1 or −1) indicates that the two variables are very highly correlated,
either positively or negatively. A high positive correlation indicates that
observations with a high value for one variable will also tend to have a
high value for the second variable. A high negative correlation indicates
that observations with a high value for one variable will also tend to have
a lower value of the second variable. Correlations of 1 (or −1) indicate
that the two variables are essentially identical, except perhaps for scale
(i.e., one variable is just a multiple of the other).

5.3.1 Correlation Plot

From our previous exploration of the weather dataset, we noted a mod-
erate (negative) correlation between Sunshine and Humidity3pm. Gen-
erally, days with a higher level of sunshine have a lower level of humidity
at 3 pm and vice versa.
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Variables that are very strongly correlated are probably not inde-
pendent. That is, they have some close relationship. The relationship
could be causal in that an increase in one has some physical impact on
the other. But such evidence for this needs to be ascertained separately.
Nonetheless, having correlated variables as input to some algorithms may
misguide the data mining. Thus it is important to recognise this.

R can be used to quite easily generate a matrix of correlations be-
tween variables. The cor() command will calculate and list the Pearson
correlation between variables:

> vars <- c(5, 6, 7, 9, 15)

> cor(weather[vars], use="pairwise", method="pearson")

Rainfall Evaporation Sunshine

Rainfall 1.000000 -0.007293 -0.15099

Evaporation -0.007293 1.000000 0.31803

Sunshine -0.150990 0.318025 1.00000

WindGustSpeed 0.096190 0.288477 0.09584

Humidity3pm 0.289013 -0.391780 -0.75943

WindGustSpeed Humidity3pm

Rainfall 0.09619 0.28901

Evaporation 0.28848 -0.39178

Sunshine 0.09584 -0.75943

WindGustSpeed 1.00000 -0.06944

Humidity3pm -0.06944 1.00000

We can compare these numbers with those in Figure 5.13. They
should agree. Note that each variable is, of course, perfectly correlated
with itself, and that the matrix here is symmetrical about the diagonal
(i.e., the measure of the correlation between Rainfall and Sunshine is
the same as that between Sunshine and Rainfall).

We have to work a little hard to find patterns in the matrix of corre-
lation values expressed in this way. Rattle provides access to a graphical
plot of the correlations between variables in our dataset. The Correlation
option of the Explore tab provides a number of choices for correlation
plots (Figure 5.15). Simply clicking the Execute button will cause the
default correlation plot to be displayed (Figure 5.16).

The first thing we might notice about this correlation plot is that
only the numeric variables appear. Rattle only computes correlations
between numeric variables. The second thing to note about the plot is
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Figure 5.15: The Explore tab’s Correlation option provides access to plots that
visualise correlations between pairs of variables.

that it is symmetric about the diagonal, as is the numeric correlation
matrix we saw above—the correlation between two variables is the same,
irrespective of the order in which we view them. The third thing to note
is that the order of the variables does not correspond to the order in the
dataset but to the order of the strength of any correlations, from the least
to the greatest. This is done to achieve a more pleasing graphic but can
also lead to further insight with groupings of similar correlations. This
is controlled through the Ordered check button.

We can understand the degree of any correlation between two vari-
ables by both the shape and the colour of the graphic elements. Any
variable is, of course, perfectly correlated with itself, and this is reflected
as the straight lines on the diagonal of the plot.

A perfect circle, on the other hand, indicates that there is no (or very
little) correlation between the variables. This appears to be the case,
for example, for the correlation between Sunshine and Pressure9am. In
fact, there is a correlation, just an extremely weak one (0.006), as we see
in Figure 5.15.
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Figure 5.16: The correlation plot graphically displays different degrees of cor-
relation pairwise between variables.

The circles turn into straight lines, by degrees, as the strength of cor-
relation between the two variables increases. Thus we can see that there
is some moderate correlation between Humidity9am and Humidity3pm,
represented as the squashed circle (i.e., an ellipse shape). The more
squashed (i.e., the more like a straight line), the higher the degree of
correlation, as in the correlation between MinTemp and Temp9am. Notice
that, intuitively, all of the observations of correlations make some sense.

The direction of the ellipse indicates whether the correlation is pos-
itive or negative. The correlations we noted above were in the positive
direction. We can see, for example, our previously observed negative
correlation between Sunshine and Humidity3pm.

The colours used to shade the ellipses give another, if redundant,
clue to the strength of the correlation. The intensity of the colour is
maximal (black) for a perfect correlation and minimal (white) if there is
no correlation. Shades of red are used for negative correlations and blue
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for positive correlations.

5.3.2 Missing Value Correlations

An interesting and useful twist on the concept of correlation analysis is
the concept of correlation amongst missing values in our data. In many
datasets, it is often constructive to understand the nature of missing data.
We often find commonality amongst observations with a missing value
for one variable having missing values for other variables. A correlation
plot can effectively highlight such structure in our datasets.

The correlation between missing values can be explored by clicking
the Explore Missing check box. To understand missing values fully, we
have also turned off the partitioning of the dataset on the Data tab so
that all of the data is considered for the plot. The resulting plot is shown
in Figure 5.17.

Figure 5.17: The missing values correlation plot showing correlations between
missing values of variables.

We notice immediately that only six variables are included in this
correlation plot. Rattle has identified that the other variables have no
missing values, and so there is no point including them in the plot. We
also notice that a categoric variable, WindGustDir, is included in the
plot even though it was not included in the usual correlation plot. We
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can obtain a correlation for categoric variables since we only measure the
absence or presence of a value, which is easily interpreted as numeric.

The graphic shows us that WindGustSpeed and WindGustDir are
quite highly correlated with respect to missing values. That is, when the
variable WindGustSpeed has a missing value, WindGustDir also tends to
have a missing value, and vice versa. The actual correlation is 0.81489
(which can be read from the Rattle text view window). There is also a
weak correlation between WindDir9am and WindSpeed9am (0.36427).

On the other hand, there is no (in fact, very little at −0.0079) cor-
relation between Sunshine and WindGustSpeed, or any other variable,
with regard to missing values.

It is important to note that the correlations showing missing values
may be based on very small samples, and this information is included in
the text view of the Rattle window. For example, in this case we can see
in Figure 5.18 that there are only 21 missing observations for WindDir9am
and only two or three for the other variables. This corresponds to ap-
proximately 8% and 1% of the observations, respectively, having missing
values for these variables. This is too little to draw too many conclusions
from.

5.3.3 Hierarchical Correlation

Another useful option provided by Rattle is the hierarchical correlation
plot (Figure 5.19). The plot provides an overview of the correlation
between variables using a tree-like structure known as a dendrogram.

The plot lists the variables in the right column. The variables are
then linked together in the dendrogram according to how well they are
correlated. The x-axis is a measure of the height within the dendrogram,
ranging from 0 to 3. The heights (i.e., lengths of the lines within the den-
drogram) give an indication of the level of correlation between variables,
with shorter heights indicating stronger correlations.

Very quickly we can observe that Temp3pm and MaxTemp are quite
closely correlated (in fact, they have a correlation of 0.99). Similarly,
Cloud3pm and Cloud9am are moderately correlated (0.51). The group
of variables Temp9am, MinTemp, Evaporation, Temp3pm, and MaxTemp,
unsurprisingly, have some higher level of correlation amongst themselves
than they do with other variables.

A number of R functions are used together to generate the plot we
see in Figure 5.19. We take the opportunity to review the R code to gain
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Figure 5.18: The Rattle window displays the underlying data used for the
missing observations correlation plot.

a little more understanding of working directly with R. Rattle’s Log tab
will again provide the steps, which include generating the correlations
for the numeric variables using cor():

> numerics <- c(3:7, 9, 12:21)

> cc <- cor(weather[numerics],

use="pairwise",

method="pearson")

We then generate a hierarchical clustering of the correlations. This can
be done using hclust() (cluster analysis is detailed in Chapter 9):

> hc <- hclust(dist(cc), method="average")

A dendrogram, the graph structure that we see in the plot for Figure 5.19,
can then be constructed using as.dendrogram():

> dn <- as.dendrogram(hc)
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Figure 5.19: The Hierarchical option displays the correlation between variables
using a dendrogram.

The actual plot is drawn using plot():

> plot(dn, horiz = TRUE)

5.4 Command Summary

This chapter has referenced the following R packages, commands, func-
tions, and datasets:

audit dataset Used to illustrate Benford’s law.
basicStats() command Detailed statistics of data.
bpplot() command Box-percentile plot.
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describe() command Detailed data summary.
cor() function Correlation between variables.
Ecdf() command Produce cumulative distribution plot.
fBasics package More comprehensive basic statistics.
hclust() function A hierarchical clustering algorithm.
Hmisc package Additional basic statistics and plots.
kurtosis() function A measure of distribution peakiness.
md.pattern() command Table of patterns of missing values.
mice package Missing data analysis.
pairs() command Matrix of pairwise scatter plots.
panel.hist() command Draw histograms within a pairs plot.
panel.cor() command Correlations within a pairs plot.
panel.smooth() command Add smooth line to pairs plot.
sample() function Select a random sample of a dataset.
skewness() function A measure of distribution skew.
summary() command Basic dataset statistics.
weather dataset Sample dataset from rattle.



Chapter 6

Interactive Graphics

There is more to exploring data than simply generating textual and sta-
tistical summaries and graphical plots. As we have begun to see, R has
some very significant capabilities for generating graphics that assist in
revealing the story our data is telling us and then helps us to effectively
communicate that story to others. However, R is specifically suited to
generating static graphics—that is, as Wickham (2009) says, “there is
no benefit displaying on a computer screen as opposed to on a piece of
paper” when using R’s graphics capabilities.

R graphics were implemented with the idea of presenting the data
visually rather than interacting with it. We write scripts for the display.
We then go back to our script to fine-tune or explore different options for
the displayed data. This is great for repeatable generation of graphics but
not so efficient for the “follow your nose” or “ad hoc reporting” approach
to quick and efficient data exploration.

Being able to easily interact with a plot can add significantly to the
efficiency of our data exploration and lead to the discovery of interesting
and important patterns and relationships. Data miners will need sophis-
ticated skills in dynamically interacting with the visualisations of data
to provide themselves with significant insights. Whilst software supports
this to some extent, the true insights come from the skill of the data
miner. We must take time to explore our data, identify relationships,
discover patterns, and understand the picture painted by the data.

Rattle provides access to two very powerful R packages for interactive
data analysis, latticist (Andrews, 2010) and GGobi, the latter of which is
accessed via rggobi (Lang et al., 2011). These can be initiated through
the Interactive option of the Explore tab (Figure 6.1). We will introduce
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each of the tools in this chapter. Note that each application has much
more functionality than can be covered here, and indeed GGobi has its
own book (Cook and Swayne, 2007), which provides good details.

Figure 6.1: The Explore tab’s Interactive option can initiate a latticist or
GGobi session for interactive data analysis.

6.1 Latticist

Latticist (Andrews, 2010) provides a graphical and interactive interface
to the advanced plotting capabilities of R’s lattice (Sarkar, 2008). It is
written in R itself and allows the underlying R commands that gener-
ate the plots to be directly edited and their effect immediately viewed.
This then provides a more interactive experience with the generation
of R plots. Select the Latticist radio button of the Interactive option of
the Explore tab and then click the toolbar’s Execute button to display
latticist’s window, as shown in Figure 6.2.

From the R Console, we can use latticist() to display the same
interactive window for exploring the weather dataset:

> library(latticist)

> latticist(weather)

With the initial Latticist window, we immediately obtain an overall
view of some of the story from our data. Note that, by default, from Rat-
tle, the plots show the data grouped by the target variable RainTomorrow.
We see that numeric data is illustrated with a density plot, whilst cate-
goric data is displayed using dot plots.

Many of the plots show differences in the distributions for the two
groups (based on whether RainTomorrow is No or Yes). We might note,
for example, that variables MinTemp and MaxTemp (the first two plots of
the top row) have slightly higher values for the observations where it
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Figure 6.2: The Explore tab’s Interactive option can initiate a latticist session
for interactive data analysis..

rains tomorrow. The third plot suggests that the amount of Rainfall
today seems to be almost identically distributed for observations where
it does not rain tomorrow and those where it does. The fifth plot then
indicates that there seems to be less Sunshine on days prior to days on
which it rains.

There is an extensive set of features available for interacting with the
visualisations. The actual command used to generate the current plot
is shown at the top of the window. We can modify the command and
immediately see the result, either by editing the command in place or
clicking the Edit call... button. The latter results in the display of a small
text window in which the command can be edited. There are buttons in
the main window’s toolbar to open the help page for the current plot, to
reload the plot, and to navigate to previous plots.

The default plot is a plot of the marginal distribution of the variables.
The buttons near the bottom left of the window allow us to select between
marginal, splom (pairs), and parallel coordinates plots. A splom is a scatter
plot matrix similar to that in Section 5.2.8. A parallel coordinates plot
draws a line for each observation from one variable to the next, as in
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Figure 6.3. Parallel coordinates plots can be quite useful in identifying
groups of observations with similar values across multiple variables.

Figure 6.3: The parallel coordinates plot from latticist.

The parallel coordinates plot in Figure 6.3 exposes some structure in
the weather dataset. The top variable in this case is the target variable,
RainTomorrow. The other variables are Sunshine, Rainfall, MaxTemp,
and MinTemp. Noting that each line represents a single observation (the
weather details for each day), we might observe that for days when there
is less sunshine it is more likely to rain tomorrow, and similarly when
there is more sunshine it is less likely to rain tomorrow. We can observe
a strong band of observations with no rain tomorrow, higher amounts
of sunshine today, and little or no rainfall today. From there (to the
remaining two variables) we observe less structure in the data.

There is a lot more functionality available in latticist. Exploring
many of the different options through the interface is fruitful. We can
add arrows and text to plots and then export the plots for inclusion
in other documents. The data can be subset and grouped in a variety
of ways using the variables available. This can lead to many insights,
following our nose, so to speak, in navigating our way through the data.
All the time we are on the lookout for structure and must remember to
capture it to support the story that we find the data telling us.
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6.2 GGobi

GGobi is also a powerful open source tool for visualising data, supporting
two of the most useful interactive visualisation concepts, known as brush-
ing and tours. GGobi is not R software as such1 but is integrated with
R through rggobi (Lang et al., 2011) and ggobi(). Key uses in a data
mining context include the exploration of the distribution of observa-
tions for multiple variables, visualisations of missing values, exploration
for the development of classification models, and cluster analysis. Cook
and Swayne (2007) provide extensive coverage of the use of GGobi, par-
ticularly relevant in a data mining context.

To use GGobi from the Interactive option of the Explore tab, the GGobi
application will need to be installed. GGobi runs under GNU/Linux,
Mac OS/X, and Microsoft Windows and is available for download from
http://www.ggobi.org/.

GGobi is very powerful indeed, and here we only cover some basic
functionality. With GGobi we are able to explore high-dimensional data
through highly dynamic and interactive graphics that include tours, scat-
ter plots, bar plots, and parallel coordinates plots. The plots are inter-
active and linked with brushing and identification. Panning and zoom-
ing are supported. Data can be rotated in 3D, and we can tour high-
dimensional data through 1D, 2D, and 2x1D projections, with manual
and automatic control of projection pursuits.

We are also able to interact with GGobi by issuing commands through
the R Console, and thus we can script some standard visualisations from
R using GGobi. For example, patterns found in data using R or Rattle
can be automatically passed to GGobi for interactive exploration. Whilst
interacting with GGobi plots we can also highlight points and have them
communicated back to R for further analysis.

Scatter plot

We can start GGobi from Rattle by clicking the Execute button whilst
having selected GGobi under the Interactive option of the Explore tab, as
in Figure 6.1.

We can also initiate GGobi with rggobi(), providing it with a data
frame to load. In this example, we remove the first two variables (Date
and Location) and pass on to rggobi() the remaining variables:

1A project is under way to implement the concepts of GGobi directly in R.
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Figure 6.4: The Explore tab’s Interactive option can initiate a GGobi session
for interactive data analysis. Select GGobi and then click Execute.

> library(rggobi)

> gg <- rggobi(weather[-c(1,2)])

On starting, GGobi will display the two windows shown in Figure 6.5.
The first provides controls for the visualisations and the other displays
the default visualisation (a two-variable scatter plot of the first two vari-
ables of the data frame supplied, noting that we have removed Date and
Location).

Figure 6.5: The GGobi application control and scatter plot windows.

The control window provides menus to access all of the functionality
of GGobi. Below the menu bar, we can currently see the XY Plot (i.e.,
scatter plot) options. Two variables are selected from the variable list on
the right side of the control window. The variables selected for display
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in the scatter plot are for the x-axis (X) and the y-axis (Y). By default,
the first (MinTemp) and second (MaxTemp) are the chosen variables in our
dataset. We can choose any of our variables to be the X or the Y by
clicking the appropriate button. This will immediately change what is
displayed in the plot.

Multiple Plots

Any number of plots can be displayed simultaneously. From the Display
menu, we can choose a New Scatterplot Display to have two (or more)
plots displayed at one time, each in its own window. Figure 6.6 shows two
scatter plots, with the new one chosen to display Evaporation against
Sunshine. Changes that we make in the controlling window affect the
current, plot which can be chosen by clicking the plot. We can also do
this from the R Console using display():

> display(gg[1], vars=list(X="Evaporation", Y="Sunshine"))

Figure 6.6: Multiple scatter plots from GGobi with and without axes.

Brushing

Brushing allows us to select observations in any plot and see them high-
lighted in all plots. This lets us visualise across many more dimensions
than possible with a single two-dimensional plot.
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From a data mining perspective, we are usually most interested in the
relationship between the input variables and the target variable (using
the variable RainTomorrow in our examples). We can highlight its two
different values for the different observations using colour. From the
Tools menu, choose Automatic Brushing to display the window shown in
Figure 6.7.

Figure 6.7: GGobi’s automatic brushing. The frequencies along the bottom
will be different depending on whether or not the data is partitioned within
Rattle.

From the list of variables that we see at the top of the resulting win-
dow, we can choose RainTomorrow (after scrolling through the list of
variables to find RainTomorrow at the bottom of the list). Notice that
the number ranges that are displayed in the lower colour map change
to reflect the range of values associated with the chosen variable. For
RainTomorrow, which has only the values 0 and 1, any observations hav-
ing RainTomorrow values of 0 will be coloured purple, whilst those with
a value of 1 will be coloured yellow.

We click on the Apply button for the automatic brushing to take effect.
Any plots that GGobi is currently displaying (and any new plots we cause
to be displayed from now on) will colour the observations appropriately,
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as in Figure 6.8. This colouring of points across multiple plots is referred
to as brushing.

Figure 6.8: Automatic brushing of multiple scatterplots using GGobi.

Figure 6.9: Colourful brushing of multiple scatterplots.

Our plots can be made somewhat more colourful by choosing a nu-
meric variable, like Sunshine, as the choice for automatic brushing. We
can see the effect in Figure 6.9. GGobi provides an extensive collection of
colour schemes to choose from for these gradients, for example. Under
the Tools menu, select the Color Schemes option. A nice choice could be
YlOrRd9.
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Other Plots

The Display menu provides a number of other options for plots. The
Scatterplot Matrix, for example, can be used to display a matrix of scatter
plots across many variables at one time. We’ve seen this already in both
Rattle itself and latticist. However, GGobi offers brushing and linked
views across all of the currently displayed GGobi plots.

By default, the Scatterplot Matrix will display the first four variables in
our dataset, as shown in Figure 6.10. We can add and remove variables by
selecting the appropriate buttons in the control window, which we notice
has changed to include just the Scatterplot Matrix options rather than the
previous Scatterplot options. Any manual or automatic brushing in effect
will also be reflected in the scatter plots, as we can see in Figure 6.10.

Figure 6.10: GGobi’s scatter plot matrix.

A parallel coordinates plot is also easily generated from GGobi’s Dis-
play menu. An example can be seen in Figure 6.11, showing five variables,
beginning with Sunshine. The automatic brushing based on Sunshine

is still in effect, and we can see that the coloured lines emanate from
the left end of the plot within colour groups. The yellow lines represent
observations with a higher value of Sunshine, and we can see that these
generally correspond to higher values of the other variables here, except
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for the final variable (Rainfall).

Figure 6.11: GGobi’s parallel coordinates plot.

As with many of the approaches to data visualisation, when there
are many observations the plots can become rather crowded and lose
some of their usefulness. For example, a scatter plot over very many
points will sometimes become a solid block of points showing little useful
information.

Quality Plots Using R

We can save the plots generated by GGobi into an R script file and then
have R generate the plots for us. This allows the plots to be regenerated
as publication-quality graphics using R’s capabilities. DescribeDisplay
(Wickham et al., 2010) is required for this:

> install.packages("DescribeDisplay")

> library(DescribeDisplay)

Then, within GGobi, we choose from the Tools menu to Save Display
Description. This will prompt us for a filename into which GGobi will
write an R script to recreate the current graphic. We can load this script
into R with dd_load() and then generate a plot in the usual way:

> pd <- dd_load("ggobi-saved-display-description.R")

> pdf("ggobi-rplot-deductions-outliers")

> plot(pd)

> dev.off()

> ggplot(pd)
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R code can also be included in LibreOffice documents to directly
generate and include the plots within the document using odfWeave
(Kuhn et al., 2010). For Microsoft Word, SWordInstaller offers similar
functionality.

Further GGobi Documentation

We have only really just started to scratch the surface of using GGobi here.
There is a lot more functionality available, and whilst the functionality
that is likely to be useful for the data miner has been touched on, there
is a lot more to explore. So do explore the other features of GGobi, as
some will surely be useful for new tasks. A very good overview of using
GGobi for visual data mining is presented by Cook and Swayne (2007).
Another overview is provided by Wickham et al. (2008).

6.3 Command Summary

This chapter has referenced the following R packages, commands, func-
tions, and datasets:

dd_load() command Load an rggobi plot script file.
dev.off() command Close a graphics device.
display() command Create a new GGobi display.
ggplot() command Advanced plotting functionality.
ggobi() command Interactive data exploration using GGobi.
latticist() command Interactive data exploration within R.
latticist package Interactive data exploration within R.
odfWeave package Embed R in LibreOffice documents.
plot() command Visualise supplied data.
rggobi package Interactive data exploration using GGobi.
weather dataset Sample dataset from rattle.



Chapter 7

Transforming Data

An interesting issue with the delivery of a data mining project is that in
reality we spend more of our time working on and with the data than
we do building actual models, as we suggested in Chapter 1. In building
models, we will often be looking to improve their performance. The
answer is often to improve our data. This might entail sourcing some
additional data, cleaning up the data, dealing with missing values in the
data, transforming the data, and analysing the data to raise its efficiency
through a better choice of variables.

In general, we need to transform our data from the raw data originally
supplied for a data mining project to the polished and focussed data from
which we build our best models. This is often the make-or-break phase
of a data mining project.

This chapter introduces these data issues. We then review the various
options for dealing with some of these issues, illustrating how to do so in
Rattle and R.

7.1 Data Issues

A review of the winning entries in the annual data mining competitions
reinforces the notion that building models from the right data is crucial
to the success of a data mining project. The ACM KDD Cup, an annual
Data Mining and Knowledge Discovery competition, is often won by a
team that has placed a lot of effort in preprocessing the data supplied.

The 2009 ACM KDD Cup competition is a prime example. The
French telecommunications company Orange supplied data related to
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customer relationship management. It consisted of 50,000 observations
with much missing data. Each observation recorded values for 15,000
(anonymous) variables. There were three target variables to be mod-
elled. One of the common characteristics for many entries was the pre-
processing performed on the data. This included dealing with missing
values, recoding data in various ways, and selecting variables. Some of
the resulting models, for example, used only one or two hundred of the
original 15,000 variables.

We review in this section some of the issues that relate to the quality
of the data that we might have available for data mining. We then
consider how we deal with these issues in the following sections.

An important point to understand is that often in data mining we
are making use of, and indeed making do with, the data that is available.
Such data might be regularly collected for other purposes. Some variables
might be critical to the operation of the business and so special attention
is paid to ensuring its accuracy. However, other data might only be
informational and so less attention is paid to its quality.

We need to understand many different aspects about how and why the
data was collected in order to understand any data issues. It is crucial to
spend time understanding such data issues. We should do this before we
start building models and then again when we are trying to understand
why particular models have emerged. We need to explore the data issues
that may have led to specific patterns or anomalies in our models. We
may then need to rectify those issues and rebuild our models.

Data Cleaning

When collecting data, it is not possible to ensure it is perfectly collected,
except in trivial cases. There will always be errors in the collection,
despite how carefully it might have been collected. It cannot be stressed
enough that we always need to be questioning the quality of the data we
have. Particularly in large data warehouse environments where a lot of
effort has already been expended in addressing data quality issues, there
will still remain dirty data. It is important to always question the data
quality and to be alert to the issue.

There are many reasons for the data to be dirty. Simple data entry
errors occur frequently. Decimal points can be incorrectly placed, turning
$150.00 into $15000. There can be inherent error in any counting or
measuring device. There can also be external factors that cause errors
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to change over time, and so on.
One of the most important ongoing tasks we have in data mining,

then, is cleaning our data. We usually start cleaning the data before
we build our models. Exploring the data and building descriptive and
predictive models will lead us to question the quality of the data at
different times, particularly when we identify odd patterns.

A number of simple steps are available in reviewing the quality of our
data. In exploring data, we will often explore variables through frequency
counts and histograms. Any anomalous patterns there should be explored
and explained. For categoric variables, for example, we would be on the
lookout for categories with very low frequency counts. These might be
mistyped or differently typed (upper/lowercase) categories.

A major task in data cleaning is often focussed around cleaning up
names and addresses. This becomes particularly significant when bring-
ing data together from multiple sources. In combining financial and
business data from numerous government agencies and public sources,
for example, it is not uncommon to see an individual have his or her
name recorded in multiple ways. Up to 20 or 30 variations can be pos-
sible. Street addresses present the same issues. A significant amount of
effort is often expended in dealing with cleaning up such data in many
organisations, and a number of tools have been developed to assist in the
task.

Missing Data

Missing data is a common feature of any dataset. Sometimes there is
no information available to populate some value. Sometimes the data
has simply been lost, or the data is purposefully missing because it does
not apply to a particular observation. For whatever reason the data is
missing, we need to understand and possibly deal with it.

Missing values can be difficult to deal with. Often we will see miss-
ing values replaced with sentinels to mark that they are missing. Such
sentinels can include things like 9999, or 1 Jan 1900, or even special char-
acters that can interfere with automated processing like “*”, “?”, “#”, or
“$”. We consider dealing with missing values through various transfor-
mations, as discussed in Section 7.4.
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Outliers

An outlier is an observation that has values for the variables that are quite
different from most other observations. Typically, an outlier appears at
the maximum or minimum end of a variable and is so large or small
that it skews or otherwise distorts the distribution. It is not uncommon
to have a single instance or a very small number of these outlier values
when compared to the frequency of other values of the variable. When
summarising our data, performing tests on the data, and in building
models, outliers can have an adverse impact on the quality of the results.

Hawkins (1980) captures the concept of an outlier as

an observation that deviates so much from other observations
as to arouse suspicion that it was generated by a different
mechanism.

Outliers can be thought of as exceptional cases. Examples might
include extreme weather conditions on a particular day, a very wealthy
person who financially is very different from the rest of the population,
and so on. Often, an outlier may be interesting but not really a key
observation for our analysis. Sometimes outliers are the rare events that
we are specifically interested in.

We may be interested in rare, unusual, or just infrequent events in
a data mining context when considering fraud in income tax, insurance,
and on-line banking, as well as for marketing.

Identifying whether an observation is an outlier is quite difficult, as
it depends on the context and the model to be built. Perhaps under one
context an observation is an outlier but under another context it might
be a typical observation. The decision of what an outlier is will also vary
by application and by user.

General outlier detection algorithms include those that are based on
distance, density, projections, or distributions. The distance-based ap-
proaches are common in data mining, where an outlier is identified based
on an observation’s distance from nearby observations. The number of
nearby observations and the minimum distance are two parameters. An-
other common approach is to assume a known distribution for the data.
We then consider by how much an observation deviates from the distri-
bution.

Many more recent model builders (including random forests and sup-
port vector machines) are very robust to outliers in that outliers tend
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not to adversely affect the algorithm. Linear regression type approaches
tend to be affected by outliers.

One approach to dealing with outliers is to remove them from the
dataset altogether. However, identifying the outlier remains an issue.

Variable Selection

Variable selection is another approach that can result in improved mod-
elling. By removing irrelevant variables from the modelling process, the
resulting models can be made more robust. Of course, it takes a good
knowledge of the dataset and an understanding of the relevance of vari-
ables to the problem at hand. Some variables will also be found to be
quite related to other variables, creating unnecessary noise when building
models.

Various techniques can be used for variable selection. Simple tech-
niques include considering different subsets of variables to explore for a
subset that provides the best results. Other approaches use modelling
measures (such as the information measure of decision tree induction
discussed in Chapter 11) to identify the more important collection of
variables.

A variety of other techniques are available. Approaches like principal
components analysis and the variable importance measures of random
forests and boosting can guide the choice of variables for building models.

7.2 Transforming Data

With the plethora of issues that we find in data, there is quite a collection
of approaches for transforming data to improve our ability to discover
knowledge. Cleaning our dataset and creating new variables from other
variables in the dataset occupies much of our time as data miners. A
programming language like R provides support for most of the myriad of
approaches possible.

Rattle’s Transform tab (Figure 7.1) provides many options for trans-
forming datasets using many of the more common transformations. This
includes normalising our data, filling in missing values, turning numeric
variables into categoric variables and vice versa, dealing with outliers,
and removing variables or observations with missing values. For the
more complex transformations, we can revert to using R.
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Figure 7.1: The Transform tab options.

We now introduce the various transformations supported by Rattle.
In tuning our dataset, we will often transform it in many different ways.
This often represents quite a lot of work, and we need to capture the
resulting data in some form.

Once the dataset is transformed, we can save the new version to a
CSV file. We do this by clicking on the Export button whilst viewing
the Transform (or the Data) tab. This will prompt us for a CSV filename
under which the current transformed dataset will be saved. We can also
save the whole current state of Rattle as a project, which can easily be
reloaded at a later time.

Another option, and one to be encouraged as good practise, is to save
to a script file the series of transformations as recorded in the Log tab.
Saving these to a script file means we can automate the generation of
the transformed dataset from the original dataset. The automatically
transformed dataset can then be used for building models or for scoring.
For scoring (i.e., applying a model to a new collection of data), we can
simply change the name of the original source data file within the script.
The data is then processed through the R script and we can then apply
our model to this new dataset within R.

The remainder of this chapter introduces each of the classes of trans-
formations that are typical of a data mining project and supported by
Rattle.

7.3 Rescaling Data

Different model builders will have different assumptions on the data from
which the models are built. When building a cluster using any kind of
distance measure, for example, we may need to ensure all variables have
approximately the same scale. Otherwise, a variable like Income will
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overwhelm a variable like Age when calculating distances. A distance of
10 “years” may be more significant than a distance of $10,000, yet 10000
swamps 10 when they are added together, as would be the case when
calculating distances without rescaling the data.

In these situations, we will want to normalise our data. The types of
normalisations (available through the Normalise option of the Transform
tab) we can perform include recentering and rescaling our data to be
around zero (Recenter uses a so-called Z score, which subtracts the mean
and divides by the standard deviation), rescaling our data to be in the
range from 0 to 1 (Scale [0–1]), performing a robust rescaling around
zero using the median (Median/MAD), applying log() to our data, or
transforming multiple variables with one divisor (Matrix). The details of
these transformations will be presented below.

Other rescaling transformations include converting the numbers into
a rank ordering (Rank) and performing a transform to rescale a variable
according to some group that the observation belongs to (By Group).

Figure 7.2: Transforming Temp3pm in five different ways.

Figure 7.2 shows the result of transforming the variable Temp3pm in
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five different ways. The simple summary that we can see for each variable
in Figure 7.2 provides a quick view of how the data has been transformed.
For example, the recenter transform of the variable Temp3pm has changed
the range of values for the variable from the original 5.10 to 34.50 to end
up with −2.13 to 2.30.

Tip: Notice, as we see in Figure 7.2, that the original data is not mod-
ified. Instead, a new variable is created for each transform with a prefix
added to the variable’s name that indicates the kind of transformation.
The prefixes are RRC_ (for Recenter), R01_ (for Scale [0–1]), RMD_ (for
Median/MAD), RLG_ (for Log), and RRK_ (for Rank).

Figure 7.3 illustrates the effect of the four transformations on the
variable Temp3pm compared with the original distribution of the data.
The top left plot shows the original distribution. Note that the three
normalisations (recenter, rescale 0–1, and recenter using the median/-
MAD) all produce new variables with very similar looking distributions.
The log transform changes the distribution quite significantly. The rank
transform simply delivers a variable with a flat distribution since the new
variable simply consists of a sequence of integers and thus each value of
the new variable appears just once.

Recenter

This is a common normalisation that re-centres and rescales our data.
The usual approach is to subtract the mean value of a variable from each
observation’s value of the variable (to recentre the variable) and then
divide the values by their standard deviation (calculating the square root
of the sum of squares), which rescales the variable back to a range within
a few integer values around zero.

To demonstrate the transforms on our weather, we will load rattle
and create a copy of the dataset, to be referred to as ds:

> library(rattle)

> ds <- weather

The following R code can then perform the transformation using
scale():

> ds$RRC_Temp3pm <- scale(ds$Temp3pm)
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Figure 7.3: Comparing distributions after transforming. From the left to right,
top to bottom: original, recenter, rescale to 0–1, rank, log transform, and
recenter using median/MAD.

Scale [0–1]

Rescaling so that our data has a mean around zero might not be so
intuitive for variables that are never negative. Most numeric variables
from the weather dataset naturally only take on positive values, including
Rainfall and WindSpeed3pm.

To rescale whilst retaining only positive values, we might choose the
Scale [0–1] transform, which simply recodes the data so that the values
are all between 0 and 1. This is done by subtracting the minimum value
from the variable’s value for each observation and then dividing by the
difference between the minimum and the maximum values.
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The following R code is used to perform the transformation. We use
rescaler() from reshape (Wickham, 2007):

> library(reshape)

> ds$R01_Temp3pm <- rescaler(ds$Temp3pm, "range")

Median/MAD

This option for recentring and rescaling our data is regarded as a robust
(to outliers) version of the standard Recenter option. Instead of using
the mean and standard deviation, we subtract the median and divide by
the so-called median absolute deviation (MAD).

The following R code is used to perform the transformation. Again
we use rescaler() from reshape:

> library(reshape)

> ds$RMD_Temp3pm <- rescaler(ds$Temp3pm, "robust")

Natural Log

Often the values of a variable can be quite skewed in one direction or
another. A typical example is Income. The majority of a population may
have incomes below $150,000. But there are a relatively small number of
individuals with excessive incomes measured in the millions of dollars. In
many approaches to analysis and model building, these extreme values
(outliers) can adversely affect any analysis.

Logarithm transforms map a very broad range of (positive) numeric
values into a narrower range of (positive) numeric values. The natural
log function effectively reduces the spread of the values of the variable.
This is particularly useful when we have outliers with extremely large
values compared with the rest of the population.

Logarithms can use a so called base with respect to which they do
the transformation. We can use a base 10 transform to explain what the
transform does. With a log10 transform, a salary of $10,000 is recoded
as 4, $100,000 as 5, $150,000 as 5.17609125905568, and $1,000,000 as
6—that is, a logarithm of base 10 recodes each power of 10 (e.g., 105 or
100,000) to the power itself (e.g., 5) and similarly for a logarithm of base
2, which recodes 8 (which is 23) to 3.
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By default, Rattle simply uses the natural logarithm for its transform.
This recodes using a logarithm to base e, where e is the special number
2.718.... This is the default base that R uses for log(). The following R
code is used to perform the transformation. We also recode any resulting
“infinite” values (e.g., log(0)) to be treated as missing values:

> ds$RLG_Temp3pm <- log(ds$Temp3pm)

> ds$RLG_Temp3pm[ds$RLG_Temp3pm == -Inf] <- NA

Rank

On some occasions, we are not interested in the actual value of the vari-
able but rather in the relative position of the value within the distribution
of that variable. For example, in comparing restaurants or universities,
the actual score may be less interesting than where each restaurant or
university sits compared with the others. A rank is then used to capture
the relative position, ignoring the actual scale of any differences.

The Rank option will convert each observation’s numeric value for the
identified variable into a ranking in relation to all other observations in
the dataset. A rank is simply a list of integers, starting from 1, that is
mapped from the minimum value of the variable, progressing by integer
until we reach the maximum value of the variable. The largest value is
thus the sample size, which for the weather dataset is 366. A rank has an
advantage over a recentring transform, as it removes any skewness from
the data (which may or may not be appropriate for the task at hand).

A problem with recoding our data using a rank is that it becomes
difficult when using the resulting model to score new observations. How
do we rank a single observation? For example, suppose we have a model
that tests whether the rank is less than 50 for the variable Temp3pm. What
does this actually mean when we apply this test to a new observation?
We might instead need to revert the rank back to an actual value to be
useful in scoring.

The following R code is used to perform the transformation. Once
again we use rescaler() from reshape:

> library(reshape)

> ds$RRK_Temp3pm <- rescaler(ds$Temp3pm, "rank")
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By Group

A By Group transform recodes the values of a variable into a rank order
between 0 and 100. A categoric variable can also be identified as part
of the transformation. In this case, the observations are grouped by the
values of the categoric variable. These groups are then considered as
peers. The ranking is then performed with respect to the peers rather
than the whole population. An example might be to rank wind speeds
within groups defined by the wind direction. A high wind speed rela-
tive to one direction may not be a high wind speed relative to another
direction. The code to do this gets a little complex.

> library(reshape)

> ds$RBG_SpeedByDir <- ds$WindGustSpeed

> bylevels <- levels(ds$WindGustDir)

> for (vl in bylevels)

{

grp <- sapply(ds$WindGustDir == vl, isTRUE)

ds[grp, "RBG_SpeedByDir"] <-

round(rescaler(ds[grp, "WindGustSpeed"],

"range") * 99)

}

> ds[is.nan(ds$RBG_SpeedByDir), "RBG_SpeedByDir"] <- 50

> v <- c("WindGustSpeed", "WindGustDir", "RBG_SpeedByDir")

We can then selectively display some observations:

> head(ds[ds$WindGustDir %in% c("NW", "SE"), v], 10)

Observation 1, for example, with a WindGustSpeed of 30, is at the
18th percentile within all those observations for which WindGustDir is
NW. Overall, we might observe that the WindGustSpeed is generally less
when the WindGustDir is SE as compared with NW, looking at the rankings
within each group. Instead of generating a rank of between 0 and 100, a
Z score (i.e., Recenter) could be used to recode within each group. This
would require only a minor change to the R code above.

Summary

We summarise this collection of transformations of the first few observa-
tions of the variable Temp3pm:
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Obs. WindGustSpeed WindGustDir RBG SpeedByDir

1 30 NW 18
3 85 NW 83
4 54 NW 47
6 44 SE 86
7 43 SE 83

14 44 NW 35
15 41 NW 31
29 39 SE 70
33 50 NW 42
34 50 NW 42

Obs. Temp3pm RRC R01 RMD RLG RRK

1 23.60 0.66 0.63 0.70 3.16 268
2 25.70 0.97 0.70 0.99 3.25 295
3 20.20 0.15 0.51 0.23 3.01 217
4 14.10 −0.77 0.31 −0.62 2.65 92
5 15.40 −0.58 0.35 −0.44 2.73 117
6 14.80 −0.67 0.33 −0.52 2.69 106

7.4 Imputation

Imputation is the process of filling in the gaps (or missing values) in
data. Data is missing for many different reasons, and it is important to
understand why. This will guide us in dealing with the missing values.
For rainfall variables, for example, a missing value may mean there was
no rain recorded on that day, and hence it is really a surrogate for 0
mm of rain. Alternatively, perhaps the measuring equipment was not
functioning that day and hence recorded no rain.

Imputation can be questionable because, after all, we are inventing
data. We won’t discuss here the pros and cons in any detail, but note
that, despite such concerns, reasonable results can be obtained from sim-
ple imputations.

There are many types of imputations available, only some of which are
directly available in Rattle. Imputation might involve simply replacing
missing values with a particular value. This then allows, for example,
linear regression models to be built using all observations. Or we might
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add an additional variable to record when values are missing. This then
allows the model builder to identify the importance of the missing values,
for example. We do note, however, that not all model builders (e.g.,
decision trees) are troubled by missing values.

Figure 7.4 shows Rattle’s Impute option on the Transform tab selected
with the choices for imputation, including Zero/Missing, Mean, Median,
Mode, and Constant.

Figure 7.4: The Transform tab with the Impute option selected.

When Rattle performs an imputation, it will store the results in a new
variable within the same dataset. The new variable will have the same
name as the variable that is imputed, but prefixed with either IZR_, IMN_,
IMD_, IMO_, or ICN_. Such variables will automatically be identified as
having an Input role, whilst the original variable will have a role of Ignore.

Zero/Missing

The simplest imputations involve replacing all missing values for a vari-
able with a single value. This makes the most sense when we know that
the missing values actually indicate that the value is 0 rather than un-
known. For example, in a taxation context, if a taxpayer does not provide
a value for a specific type of deduction, then we might assume that they
intend it to be zero. Similarly, if the number of children in a family is
not recorded, it could be a reasonable assumption to assume it is zero.

For categoric data, the simplest approach to imputation is to replace
missing values with a special value, such as Missing. The following R
code is used to perform the transformation:

> ds$IZR_Sunshine <- ds$Sunshine

> ds$IZR_Sunshine[is.na(ds$IZR_Sunshine)] <- 0
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Mean/Median/Mode

Often a simple, if not always satisfactory, choice for missing values that
are known not to be zero is to use some “central” value of the variable.
This is often the mean, median, or mode, and thus usually has limited
impact on the distribution. We might choose to use the mean, for ex-
ample, if the variable is otherwise generally normally distributed (and in
particular does not have any skewness). If the data does exhibit some
skewness, though (e.g., there are a small number of very large values),
then the median might be a better choice.

For categoric variables, there is, of course, no mean or median, and
so in such cases we might (but with care) choose to use the mode (the
most frequent value) as the default to fill in for the otherwise missing
values. The mode can also be used for numeric variables. This could
be appropriate for variables that are dominated by a single value. Per-
haps we notice that predominately (e.g., for 80% of the observations) the
temperature at 9 am is 26 degrees Celsius. That could be a reasonable
choice for any missing values.

Whilst this is a simple and computationally quick approach, it is a
very blunt approach to imputation and can lead to poor performance
from the resulting models. However, it has also been found empirically
to be useful. The following R code is used to perform the transformation:

> ds$IMN_Sunshine <- ds$Sunshine

> ds$IMN_Sunshine[is.na(ds$IMN_Sunshine)] <-

mean(ds$Sunshine, na.rm=TRUE)

Constant

This choice allows us to provide our own default value to fill in the gaps.
This might be an integer or real number for numeric variables, or else
a special marker or the choice of something other than the majority
category for categoric variables. The following R code is used to perform
the transformation:

> ds$IZR_Sunshine <- ds$Sunshine

> ds$IZR_Sunshine[is.na(ds$IZR_Sunshine)] <- 0
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7.5 Recoding

The Recode option on the Transform tab provides numerous remapping
operations, including binning and transformations of the type of the data.
Figure 7.5 lists the options.

Figure 7.5: The Transform tab with the Recode option selected.

Binning

Binning is the operation of transforming a continuous numeric variable
into a specific set of categoric values based on the numeric values. Simple
examples include converting an age into an age group, and a temperature
into Low, Medium, and High. Performing a binning transform may lose
valuable information, so do give some thought as to whether binning is
appropriate.

Binning can be useful in simplifying models. It is also useful when we
visualise data. A mosaic plot (Chapter 5), for example, is only useful for
categoric data, and so we could turn Sunshine into a categoric variable
by binning. Binning can also be useful to set a numeric value as the
stratifying variable in various plots in Chapter 5. For example, we could
bin Temp9am and then choose the new BE4_Temp9am (BE4 for binning
into four equal-size bins) as the Target and generate a Box Plot from the
Explore tab to see the relationship with the Evaporation.

Rattle supports automated binning through the use of binning()

(provided by Daniele Medri). The Rattle interface provides an option
to choose between Quantile (or equal count) binning, KMeans binning,
and Equal Width binning. For each option, the default number of bins is
four. We can change this to suit our needs. The variables generated are
prefixed with either BQn_, BKn_, or BEn_, respectively, with n replaced
by the number of bins.
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Indicator Variables

Some model builders often do not directly handle categoric variables.
This is typical of distance-based model builders such as k-means cluster-
ing, as well as the traditional numeric regression types of models.

A simple approach to transforming a categoric variable into a numeric
one is to construct a collection of so-called indicator or dummy variables.
For each possible value of the categoric variable, we can create a new
variable that will have the value 1 for any observation that has this
categoric value and 0 otherwise. The result is a collection of new numeric
variables, one for each of the possible categoric values. An example might
be the categoric variable Colour, which might only allow the possible
values of Red, Green, or Blue. This can be converted to three variables,
Colour_Red, Colour_Green, and Colour_Blue. Only one of these will
have the value 1 at any time, whilst the other(s) will have the value 0.

Rattle’s Transform tab provides an option to transform a categoric
variable into a collection of indicator variables. Each of the new variables
has a name that is prefixed by TIN_. The remainder of the name is made
up of the original name of the categoric variable (e.g., Colour) and the
particular value (e.g., Red). This will give, for example, TIN_Colour_Red
as one of the new variable names. Table 7.1 illustrates how the recoding
works for a collection of observations.

Table 7.1: Examples of recoding a single categoric variable as a number of
numeric indicator variables.

Obs. Colour Colour Red Colour Green Colour Blue

1 Green 0 1 0
2 Blue 0 0 1
3 Blue 0 0 1
4 Red 1 0 0
5 Green 0 1 0
6 Red 1 0 0

In terms of modelling, for a categoric variable with k possible values,
we only need to convert it to k−1 indicator variables. The kth indicator
variable is redundant and in fact is directly determined by the values of
the other k−1 indicators. If all of the other indicators are 0, then clearly
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the kth will be 1. Similarly if any of the other k− 1 indicators is 1, then
the kth must be 0. Consequently, we should only include all but one of
the new indicator variables as having an Input role. Rattle, by default,
will set the role of the first new indicator variable to be Ignore.

There is not always a need to transform a categoric variable. Some
model builders, like the Linear model builder in Rattle, will do it auto-
matically.

Join Categorics

The Join Categorics option provides a convenient way to stratify the
dataset based on multiple categoric variables. It is a simple mechanism
that creates a new variable from the combination of all of the values of
the two constituent variables selected in the Rattle interface. The result-
ing variables are prefixed with TJN_ and include the names of both the
constituent variables.

A simple example might be to join RainToday and RainTomorrow

to give a new variable (TJN here and TJN_RainToday_RainTomorrow in
Rattle):

> ds$TJN <- interaction(paste(ds$RainToday, "_",

ds$RainTomorrow, sep=""))

> ds$TJN[grepl("^NA_|_NA$", ds$TJN)] <- NA

> ds$TJN <- as.factor(as.character(ds$TJN))

> head(ds[c("RainToday", "RainTomorrow", "TJN")])

RainToday RainTomorrow TJN

1 No Yes No_Yes

2 Yes Yes Yes_Yes

3 Yes Yes Yes_Yes

4 Yes Yes Yes_Yes

5 Yes No Yes_No

6 No No No_No

We might also want to join a numeric variable and a categoric vari-
able, like the common Age and Gender stratification. To do this, we first
use the Binning option within Recode to categorise the Age variable and
then use Join Categorics.
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Type Conversion

The As Categoric and As Numeric options will, respectively, convert a
numeric variable to categoric (with the new categoric variable name pre-
fixed with TFC_) and vice versa (with the new numeric variable name
prefixed with TNM_). The R code for these transforms uses as.factor()
and as.numeric():

> ds$TFC_Cloud3pm <- as.factor(ds$Cloud3pm)

> ds$TNM_RainToday <- as.numeric(ds$RainToday)

7.6 Cleanup

It is quite easy to get our dataset variable count up to significant numbers.
The Cleanup option allows us to tell Rattle to actually delete columns from
the dataset. Thus, we can perform numerous transformations and then
save the dataset back into a CSV file (using the Export option).

Various Cleanup options are available. These allow us to remove any
variable that is ignored (Delete Ignored), remove any variables we se-
lect (Delete Selected), or remove any variables that have missing values
(Delete Missing). The Delete Obs with Missing option will remove obser-
vations (rather than variables—i.e., remove rows rather than columns)
that have missing values.

7.7 Command Summary

This chapter has referenced the following R packages, commands, func-
tions, and datasets:

as.factor() function Convert variable to be categoric.
as.numeric() function Convert variable to be numeric.
is.na() function Identify which values are missing.
levels() function List the values of a categoric variable.
log() function Logarithm of a numeric variable.
mean() function Mean value of a numeric variable.
rescaler() function Remap numeric variables.

7.7 Command Summary
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reshape package Transform variables in various ways.
scale() function Remap numeric variables.



Part II

Building Models





Chapter 8

Descriptive and Predictive
Analytics

Modelling is what we most often think of when we think of data mining.
Modelling is the process of taking some data (usually) and building a
simplified description of the processes that might have generated it. The
description is often a computer program or mathematical formula. A
model captures the knowledge exhibited by the data and encodes it in
some language. Often the aim is to address a specific problem through
modelling the world in some form and then use the model to develop a
better understanding of the world.

We now turn our attention to building models. As in any data mining
project, building models is usually the aim, yet we spend a lot more time
understanding the business problem and the data, and working the data
into shape, before we can begin building the models. Often we gain
much valuable knowledge from our preparation for modelling, and some
data mining projects finish at that stage, even without the need to build
a model—that might be unusual, though, and we do need to expect
to build a model or two. As we will find, we build models early on in a
project, then work on our data some more to transform, shape, and clean
it, build more models, then return to processing the data once again, and
so on for many iterations. Each cycle takes us a step closer to achieving
our desired outcomes.

This chapter introduces the concept of models and model builders
that fall into the categories of data mining: descriptive and predictive.
In this chapter, we provide an overview of these approaches. For descrip-
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tive data mining, we present cluster analysis and association rules as two
approaches to model building. For predictive data mining, we consider
both classification and regression models, introducing algorithms like de-
cision trees, random forests, boosting, support vector machines, linear
regression, and neural networks. In each case, in their own chapters,
the algorithms are presented together with a guide to using them within
Rattle and R.

8.1 Model Nomenclature

Much of the terminology used in data mining has grown out of terminol-
ogy used in both machine learning and research statistics. We identify,
for example, two very broad categories of model building algorithms as
descriptive analytics and predictive analytics. In a traditional ma-
chine learning context, these equate to unsupervised learning and su-
pervised learning. We cover both approaches in the following chapters
and describe each in a little more detail in the following sections.

On top of the basic algorithm for building models, we also identify
meta learners, which include ensemble learners. These approaches
suggest building many models and combining them in some way. Some
ideas for ensembles originate from the multiple inductive learning (MIL)
algorithm (Williams, 1988), where multiple decision tree models are built
and combined as a single model.

8.2 A Framework for Modelling

Building models is a common pursuit throughout life. When we think
about it, we build ad hoc and informal models every day when we solve
problems in our head and live our lives. Different professions, like ar-
chitects and engineers, for example, specifically build models to see how
things fit together, to make sure they do fit together, to see how things
will work in the real world, and even to sell the idea behind the model to
others. Data mining is about building models that give us insights into
the world and how it works. But even more than that, our models are
often useful to give us guidance in how to deal with and interact with
the real world.

Building models is thus fundamental to understanding our world. We
start doing it as a child and continue until death. When we build a model,
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whether it be with toy bricks, papier mâché, or computer software, we
get a new perspective of how things fit together or interact. Once we
have some basic models, we can start to get ideas about more complex
ones, building on what has come before. With data mining, our models
are driven by the data and thus aim to be objective. Other models might
be more subjective and reflect our views of what we are modelling.

In understanding new, complex ideas, we often begin by trying to map
the idea into concepts or constructs that we already know. We bring these
constructs together in different ways that reflect how we understand a
new, more complex idea. As we learn more about the new, complex idea,
we change our model to better reflect that idea until eventually we have
a model that is a good enough match to the idea.

The same is true when building models using computers. Writing
any computer program is essentially about building a model. An ac-
countant’s spreadsheet is a model of something in the world. A social
media application captures a model or introduces a new model of how
people communicate. Models of the economy and of the environment pro-
vide insights into how these things work and allow us to explore possible
future scenarios.

An important thing to remember, though, is that no model can per-
fectly represent the real world, except in the most simplistic and trivial
of scenarios. To perfectly model the real world, even if it were possi-
ble, we would need to incorporate into the model every possible variable
imaginable. The real world has so many different factors feeding into it
that all we can really hope to do is to get a good approximation of it.

A model, as a good approximation of the world, will express some un-
derstanding of that world. It needs to be expressed using some language,
whether it be a spoken or written human language, a mathematical lan-
guage, a computer language, or a modelling language. The language is
used to represent our knowledge.

We write or speak in sentences based on the language we have cho-
sen. Some sentences expressed in our chosen language will capture
useful knowledge. Other sentences might capture misinformation, and
yet others may capture beliefs or propositions, and so on. Formally, each
sentence will express or capture some concept within the formal con-
straints of the particular language chosen. We can think of constructing
a sentence to express something about our data as building a model.

For any language, though, there is often an infinite (or at least a
very large) collection of possible sentences (i.e., models) that can be
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expressed. We need some way of measuring how good a sentence is.
This might just be a measure of how well formed our written sentence is—
is it grammatically correct and does it read well? But just as importantly,
does the sentence express a valid statement about the world? Does it
provide useful insight and knowledge about the world? Is it a good
model?

For each of the model builders we introduce, we will use this three-
pronged framework:

� identify the language used to express the discovered knowledge,

� develop a mechanism to search for good sentences within the lan-
guage, and

� define a measure that can be used to assess how good a sentence
is.

This is a quite common framework from the artificial intelligence tra-
dition. There we seek to automatically search for solutions to problems,
within the bounds of a chosen knowledge representation language.

This framework is simply cast for the task of data mining—the task
of building models. We refer to an algorithm for building a model as
a model builder. Rattle supports a number of model builders, includ-
ing clustering, association rules, decision tree induction, random forests,
boosted decision trees, support vector machines, logistic regression, and
neural networks. In essence, the model builders differ in how they repre-
sent the models they build (i.e., the discovered knowledge) and how they
find (or search for) the best model within this representation.

In building a model, we will often look to the structure of the model
itself to provide insights. In particular, we can learn much about the
relationships between the input variables and the target variable (if any)
from studying our models. Sometimes these observations themselves de-
liver benefits from the data mining project, even without actually using
the models directly.

There is generally an infinite number of possible sentences (i.e., mod-
els) given any specific language. In human language, we are generally
very well skilled at choosing sentences from this infinite number of pos-
sibilities to best represent what we would like to communicate. And
so it needs to be with model building. The skill is to express, within
the chosen language, the best sentences that capture what it is we are
attempting to model.
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8.3 Descriptive Analytics

Descriptive analytics is the task of providing a representation of the
knowledge discovered without necessarily modelling a specific outcome.
The tasks of cluster analysis, association and correlation analysis and
pattern discovery, can fall under this category.

From a machine learning perspective, we might compare these al-
gorithms to unsupervised learning. The aim of unsupervised learning
is to identify patterns in the data that extend our knowledge and un-
derstanding of the world that the data reflects. There is generally no
specific target variable that we are attempting to model. Instead, these
approaches shed light on the patterns that emerge from the descriptive
analytics.

8.4 Predictive Analytics

Often our task in data mining is to build a model that can be used
to predict the occurrence of an event. The model builders will extract
knowledge from historic data and represent it in such a form that we
can apply the resulting model to new situations. We refer to this as
predictive analytics.

The tasks of classification and regression are at the heart of what
we often think of as data mining and specifically predictive analytics.
Indeed, we call much of what we do in data mining predictive analytics.

From a machine learning perspective, this is also referred to as su-
pervised learning. The historic data from which we build our models will
already have associated with it specific outcomes. For example, each ob-
servation of the weather dataset has associated with it a known outcome,
recorded as the target variable. The target variable is RainTomorrow

(whether it rained the following day), with the possible values of No and

Yes.
Classification models are used to predict the class of new observa-

tions. New observations are classified into the different target variable
categories or classes (for the weather dataset, this would be Yes and No).
Often we will be presented with just two classes, but it could be more.
A new observation might be today’s weather observation. We want to
classify the observation into the class Yes or the class No. Membership in
a particular class indicates whether there might be rain on the following
day or not, as the case may be.

Predictive Anal.ytics8.4
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Often, classification models are represented symbolically. That is,
they are often expressed as, for example, a series of tests (or conditions)
on different variables. Each test exhibits a piece of the knowledge that,
together with other tests, leads to the identified outcome.

Regression models, on the other hand, are generally models that pre-
dict a numeric outcome. For the weather dataset, this might be the
amount of rain expected on the following day rather than whether it will
or won’t rain. Regression models are often expressed as a mathematical
formula that captures the relationship between a collection of input vari-
ables and the numeric target variable. This formula can then be applied
to new observations to predict a numeric outcome.

Interestingly, regression comes from the word “regress,” which means
to move backwards. It was used by Galton (1885) in the context of
techniques for regressing (i.e., moving from) observations to the average.
The early research included investigations that separated people into
different classes based on their characteristics. The regression came from
modelling the heights of related people (Crano and Brewer, 2002).

8.5 Model Builders

Each of the following chapters describes a particular class of model
builders using specific algorithms. For each model builder, we identify
the structure of the language used to describe a model. The search al-
gorithm is described as well as any measures used to assist in the search
and to identify a good model.

Following the formal overview of each model builder, we then describe
how the algorithm is used in Rattle and R and provide illustrative exam-
ples. The aim is to provide insight into how the algorithm works and
some details related to it so that as a data miner we can make effective
use of the model builder.

The algorithms we present will generally be in the context of a two-
class classification task where appropriate. The aim of such tasks is to
distinguish between two classes of observations. Such problems abound.
The two classes might, for example, identify whether or not it is predicted
to rain tomorrow (No and Yes). Or they might distinguish between high-
risk and low-risk insurance clients, productive and unproductive taxation
audits, responsive and nonresponsive customers, successful and unsuc-
cessful security breaches, and so on. Many of the popular algorithms are
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covered in the following chapters. Algorithms not covered include neural
networks, linear and logistic regressions, and Bayesian approaches.

In demonstrating the tasks using Rattle (together with a guide to
the underlying R code), we note that Rattle presents a basic collection
of tuning parameters. Good default values for various options allow the
user to more simply build a model with little tuning. However, this may
not always be the right approach, and whilst it is certainly a good place
to start, experienced users will want to make much more use of the fuller
set of tuning parameters available directly through the R Console.





Chapter 9

Cluster Analysis

The clustering technique is one of the core
tools that is used by the data miner. Clus-
tering gives us the opportunity to group
observations in a generally unguided fash-
ion according to how similar they are.
This is done on the basis of a measure
of the distance between observations. For
example, we might have a dataset that
is made up of school children of various
heights, a range of weights, and different
ages. Depending on what is needed to solve the problem at hand, we
might wish to group the students into smaller, more definable groups and
then compare different variables common to all groupings. Each group
may have different ranges, minimums and maximums, and so on that rep-
resent that group. Clustering allows the data miner to break data into
more meaningful groups and then contrast the different clusters against
each other. Clusters can also be useful in grouping observations to help
make the smaller datasets easier to manage. The aim of clustering is
often to identify groups of observations that are close together but as a
group are quite separate from other groups.

Numerous algorithms have been developed for clustering. In this
chapter, we focus primarily on the k-means clustering algorithm. The
algorithm will identify a collection of k clusters using a heuristic search
starting with a selection of k randomly chosen clusters.
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9.1 Knowledge Representation

A model built using the k-means algorithm represents the clusters as a
collection of k means. The observations in the dataset are associated
with their closest “mean” and thus are partitioned into k clusters. The
mean of a particular numeric variable for a collection of observations is
the average value of that variable over those observations. The means
for the collection of observations that form one of the k clusters in any
particular clustering are then the collection of mean values for each of
the input variables over the observations within the clustering.

Consider, for example, a simple and small random subset of the
weather dataset. This can be generated as below, where we choose only
a small number of the available numeric variables:

> library(rattle)

> set.seed(42)

> obs1 <- sample(1:nrow(weather), 5)

> vars <- c("MinTemp", "MaxTemp",

"Rainfall", "Evaporation")

> cluster1 <- weather[obs1, vars]

We now obtain the means of each of the variables. The vector of means
then represents one of the clusters within our set of k clusters:

> mean(cluster1)

MinTemp MaxTemp Rainfall Evaporation

4.74 15.86 3.16 3.56

Another cluster will have a different mean:

> obs2 <- setdiff(sample(1:nrow(weather), 20), obs1)

> cluster2 <- weather[obs2, vars]

> mean(cluster2)

MinTemp MaxTemp Rainfall Evaporation

6.6474 19.7579 0.8421 4.4105

In comparing the two clusters, we might suggest that the second cluster
generally has warmer days with less rainfall. However, without having
actually built the clustering model, we can’t really make too many such
general observations without knowing the actual distribution of the ob-
servations.
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A particular sentence in our knowledge representation language for
k-means is then a collection of k sets of mean values for each of the
variables. Thus, if we were to simply partition the weather dataset into
ten sets (a common value for k), we would get ten sets of means for each
of the four variables. Together, these 10 by 4 means represent a single
sentence (or model) in the k-means “language.”

9.2 Search Heuristic

For a given dataset, there are a very large number of possible k-means
models that could be built. We might think to enumerate every possibil-
ity and then, using some measure that indicates how good the clustering
is, choose the one that gets the best score. In general, this process of
completely enumerating all possibilities would not be computationally
possible. It may take hours, days, or weeks of computer time to generate
and measure each possible set of clusters. Instead, the k-means algorithm
uses a search heuristic. It begins with a random collection of k clusters.
Each cluster is represented by a vector of the mean values for each of the
variables.

The next step in the process is to then measure the distance between
an observation and each of the k vectors of mean values. Each observation
is then associated with its closest cluster.

We then recalculate the mean values based on the observations that
are now associated with each cluster. This will provide us with a new
collection of k vectors of means. With this new set of k means, we once
again calculate the distance each observation is from each of the k means
and reassociate the observation with the closest of the k means. This
will often result in some observations moving from one group or cluster
to another.

Once again, we recalculate the mean values based on the observa-
tions that are now associated with each cluster. Again, we have k new
vectors of means. We repeat the process again. This iterative process is
repeated until no more observations move from one cluster to another.
The resulting clustering is then the model.
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9.3 Measures

The basic measure used in building the model is a measure of distance, or
conversely the measure of similarity between observations and the cluster
means.

Any distance measure that measures the distance between two obser-
vations a and b must satisfy the following requirements:

� d(a, b) ≥ 0 distance is nonnegative

� d(a, a) = 0 distance to itself is 0

� d(a, b) = d(b, a) distance is symmetric

� d(a, b) ≤ d(a, c) + d(c, b) triangular inequality

One common distance measure is known as the Minkowski distance.
This is formulated as

d(a, b) = q
√

(|a1 − b1|q + |a2 − b2|q + . . .+ |an − bn|q),

where a1 is the value of variable 1 for observation a, etc. The value of q
determines an actual distance formula. We can best picture the distance
calculation using just two variables, like MinTemp and MaxTemp, from two
observations. We plot the first two observations from the weather dataset
in Figure 9.1 as generated using the following call to plot(). We also
report the actual values being plotted.

> x <- round(weather$MinTemp[1:2])

> y <- round(weather$MaxTemp[1:2])

> plot(x, y, ylim=c(23, 29), pch=4, lwd=5,

xlab="MinTemp", ylab="MaxTemp",

bty="n")

> round(x)

[1] 8 14

> round(y)

[1] 24 27

When q = 1, d is known as the Manhattan distance:

d(a, b) = |a1 − b1|+ |a2 − b2|+ . . .+ |an − bn|.



9.3 Measures 183

8 9 10 11 12 13 14

23
24

25
26

27
28

29

MinTemp

M
ax

Te
m

p

Figure 9.1: Two observations of two variables from the weather dataset. What
are the possible ways of measuring the distance between these two points?

The Manhattan distance measure gets its name from one of the five
boroughs of New York City. Most of the streets of Manhattan are laid
out on a regular grid. Each block is essentially a rectangle. Figure 9.2
simplifies the grid structure but illustrates the point. Suppose we want
to calculate the distance to walk from one block corner, say West 31st
Street and 8th Avenue, to another, say West 17th Street and 6th Avenue.
We must travel along the street, and the distance is given by how far we
travel in each of just two directions, as is captured in the formula above.

For our weather dataset, we can add a grid() to the plot and limit
our walk to the lines on the grid, as in Figure 9.2. The distance travelled
will be d = 6 + 3 = 9, and one such path is shown as the horizontal and
then vertical line in Figure 9.2.

When q = 2, d is known as the more familiar, and most commonly
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Figure 9.2: Measuring the distance by travelling the streets of Manhattan (the
regular grid, with one path shown as the horizontal and then the vertical line),
rather than as a bird might fly (the direct line between the two points).

used, Euclidean distance:

d(a, b) =
√

(|a1 − b1|2 + |a2 − b2|2 + . . .+ |an − bn|2).

This is the straight-line distance between the two points shown in Fig-
ure 9.2. It is how a bird would fly direct from one point to another if
it was flying high enough in Manhattan. The distance in this case is
d =
√

62 + 32 = 6.32.
In terms of how we measure the quality of the actual clustering model,

there are very many possibilities. Most relate to measuring the distance
between all of the observations within a cluster and summing that up.
Then compare that with some measure of the distances between the
means or even the observations of each of the different clusters. We will
see and explain in a little more detail some of these measures in the next
section.
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9.4 Tutorial Example

The weather dataset is used to illustrate the building of a cluster model.
The Cluster tab in the Rattle window provides access to various clustering
algorithms, including k-means. kmeans() is provided directly through R
by the standard stats package.

Building a Model Using Rattle

After loading a dataset into Rattle, we select the Cluster tab to be pre-
sented with various clustering algorithms. We will also see a simple
collection of options available for use to fine-tune the model building.
The k-means algorithm is the default option, and by default ten clus-
ters will be built as the model. A random seed is provided. Changing
the seed will result in a randomly different collection of starting points
for our means. The heuristic search then begins the iterative process as
described in Section 9.2.

Load the weather dataset from the Data tab, and then simply clicking
the Execute button whilst on the Cluster tab will result in the k-means
clustering output shown in Figure 9.3.

Figure 9.3: Building a k-means clustering model.
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The text view contains a little information about the model that has
been built. We will work our way through its contents. It begins with
the cluster size, which is simply a count of the number of observations
within each cluster:

Cluster sizes:

[1] "23 17 22 22 17 36 23 34 22 32"

Mean (or average) values are the basic representational language for mod-
els when using k-means. The text view provides a summary of the mean
value of each variable over the whole dataset of observations (with the
output truncated here):

Data means:

MinTemp MaxTemp Rainfall Evaporation

7.146 20.372 1.377 4.544

Sunshine WindGustSpeed WindSpeed9am WindSpeed3pm

8.083 39.944 9.819 18.056

Humidity9am Humidity3pm Pressure9am Pressure3pm

71.472 43.859 1019.748 1016.979

Cluster Means

A model from a k-means clustering point of view consists of ten (because
ten clusters is the default) vectors of the mean values for each of the
variables. The main content of the text view is a list of these means. We
only show the first five variables and only eight of the ten clusters:

Cluster centers:

MinTemp MaxTemp Rainfall Evaporation Sunshine

1 8.5000 21.05 1.27826 6.330 10.496

2 11.6059 30.95 0.11765 7.647 11.276

3 13.4136 28.77 1.02727 6.200 9.464

4 9.1818 16.90 4.94545 3.800 2.191

5 7.7412 15.19 3.58824 3.306 5.659

6 2.7667 17.16 0.66111 2.656 7.689

7 -0.7913 13.71 0.03478 1.922 7.496

8 11.3088 26.37 0.50000 6.288 10.259

9 1.5045 17.55 0.23636 3.500 10.223

10 7.8625 17.60 2.21875 4.519 6.122
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Model Quality

The means are followed by a simple measure of the quality of the model:

Within cluster sum of squares:

[1] 14460 5469 8062 11734 11062 9583 7258 7806 6146

[10] 11529

The measure used is the sum of the squares of the differences between
the observations within each of the ten clusters.

Time Taken

Finally, we see how long the k-means algorithm took to build the ten
clusters. For such a small dataset, very little time is required. The time
taken is the amount of CPU time spent on the task:

Time taken: 0.00 secs

Tuning Options

The basic tuning option for building a k-means model in Rattle is simply
the Number of clusters that are to be generated. The default is 10, but
any positive integer greater than 1 is allowed.

Rattle also provides an option to iteratively build more clusters and
measure the quality of each resulting model as a guide to how many
clusters to build. This is chosen by enabling the Iterate Clusters option.
When active, a model with two clusters, then a model with three clusters,
and so on up to a model with ten (or as many as specified) clusters will
be built. A plot is generated and displayed to report the improvement
in the quality measure (the sum of the within cluster sum of squares).

As mentioned previously, the Seed option allows different starting
points to be used for the heuristic search. Each time a different seed is
used, the resulting model will usually be different.

For some datasets, differences between the models using different
seeds will often not be too large, though for others they might be quite
large. In the latter case, we are finding different, possibly less optimal or
perhaps equally optimal models each time. The Runs option will repeat
the model building the specified number of times and choose the model
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that provides the best performance against the measure of model quality.
For each different seed, we can check the list of cluster size to confirm
that we obtain a collection of clusters that are about the same sizes each
time, though the order in the listing changes.

Once a model has been built, the Stats, Data Plot, and Discriminant
Plot buttons become available. Clicking the Stats button will result in
quite a few additional cluster statistics being displayed in the text view.
These can all participate in determining the quality of the model and
comparing one k-means model against another. The Data Plot and the
Discriminant Plot buttons result in plots that display how the clusters
are distributed across the data. The discriminant coordinates plot is
generated by projecting the original data to display the key differences
between clusters, similar to principal components analysis. The plots are
probably only useful for smaller datasets (in the hundreds or thousands).

The Rattle user interface also provides access to the Clara, Hierarchical,
and BiCluster clustering algorithms. These are not covered here.

Building a Model Using R

The primary function used within R for k-means clustering is kmeans()

which comes standard with R. We can build a k-means cluster model
using the encapsulation idea presented in Section 2.9:

> weatherDS <- new.env()

From the weather dataset, we will select only two numeric variables on
which to cluster, and we also ignore the output variable RISK_MM:

> library(rattle)

> evalq({

data <- weather

nobs <- nrow(data)

}, weatherDS)

We now create a model container to store the results of the modelling
and build the actual model. The container also includes the weatherDS
dataset information.

> weatherKMEANS <- new.env(parent=weatherDS)

> evalq({

model <- kmeans(x=na.omit(data[, vars]), centers=10)

}, weatherKMEANS)
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We have used kmeans() and passed to it a dataset with any observations
having missing values omitted. The function otherwise complains if the
data contains missing values, as we might expect when using a distance
measure. The centers= option is used either to specify the number of
clusters or to list the starting points for the clustering.

9.5 Discussion

Number of Clusters

The primary tuning parameter for the k-means algorithm is the number
of clusters, k. Simply because the default is to identify ten clusters
does not mean that 10 is a good choice at all. Choosing the number
of clusters is often quite a tricky exercise. Sometimes it is a matter of
experimentation and other times we might have some other knowledge to
help us decide. We will soon note that the larger the number of clusters
relative to the size of the sample, the smaller our clusters will generally
be. However, a common observation is that often we might end up with a
small number of clusters containing most of the observations and a large
number of clusters containing only a few observations each.

We also note that different cluster algorithms (and even simply using
different random seeds to initiate the clustering) can result in different
(and sometimes very different) clusters. How much they differ is a mea-
sure of the stability of the clustering.

Rattle provides an Iterate Clusters option to assist with identifying a
good number of clusters. The approach is to iterate through different
values of k. For each k, we observe the sum of the within cluster sum
of squares. A plot is generated to show both the sum of squares and its
change in the sum of squares. A heuristic is to choose the number of
clusters where we see the largest drop in the sum of the within cluster
sum of squares.

Shape of Clusters

One of the characteristics to distinguish between clustering algorithms is
the shape of the resulting clusters. Essentially, the k-means algorithm, as
with any algorithm that uses the distance to a mean as the representation
of the clusters, produces convex clusters. Other clustering algorithms ex-
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ist that can produce differently shaped clusters that might better reflect
the data.

Other Cluster Algorithms

R supports a very large variety of clustering algorithms besides the k-
means algorithm we have described here. They are grouped into the
partitioning type of algorithms, of which k-means is one example, model-
based algorithms (see mclust (Fraley and Raftery, 2006), for example),
and hierarchical clustering (see hclust() from stats and agnes() for
agglomerative clustering, and diana() for divisive clustering from clus-
ter (Maechler et al., 2005)). Rattle supports the building of hierarchical
clusters using hclust(). Such an algorithm builds the clusters iteratively
and hierarchically.

For an agglomerative hierarchical approach, the two closest observa-
tions form the first cluster. Then the next two closest observations, but
now also including the mean of the first cluster as a “combined” obser-
vation, form the second cluster, and so on until we have formed a single
cluster. The resulting collection of potential clusters can be drawn using
a dendrogram, as shown in Figure 9.4.

An advantage of this approach is that we get a visual clue as to the
number of clusters that naturally appear in the data. In Figure 9.4 we
have drawn boxes to indicate perhaps three clusters. A disadvantage is
that this approach is really only useful for a small dataset.

Recent research has explored the issue of very high dimensional data,
or data with very many variables. For such data the k-means algorithm
performs rather poorly, as all observations essentially become equidis-
tant from each other. A successful approach has been developed (Jing
et al., 2007) using a weighted distance measure. The algorithm essen-
tially chooses only subsets of the variables on which to cluster. This has
been referred to as subspace clustering.

The siatlust (Williams et al., 2011) package, provides an implemen-
tation of this modification to the k-means algorithm. Entropy weighted
variable selection through ewkm() is used to improve the clustering per-
formance with high dimensional data.
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Figure 9.4: A sample dendrogram showing three clusters.

9.6 Command Summary

This chapter has referenced the following R packages, commands, func-
tions, and datasets:

agnes() function An agglomerative clustering algorithm.
cluster package A variety of tools for cluster analysis.
diana() function A divisive clustering algorithm.
ewkm() function Entropy weighted k-means.
evalq() function Access environment for storing data.
grid() command Add a grid to a plot.
hclust() function A hierarchical clustering algorithm.
kmeans() function The k-means clustering algorithm.
mean function Calculate the mean values.
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plot() command Draw a dendrogram for an hclust object.
round() function Round numbers to specific digits.
set.seed() command Reset random sequence for sampling.
siatclust package Weighted and subspace k-means.
stats package Base package providing k-means.
weather dataset Sample dataset from rattle.



Chapter 10

Association Analysis

and
⇓

Many years ago, a number of new Inter-
net businesses were created to sell books
on-line. Over time, they collected infor-
mation about the books that each of their
customers were buying. Using associa-
tion analysis, they were able to identify
groups of books that customers with sim-
ilar interests seem to have been buying.
Using this information, they were able to
develop recommendation systems that in-
formed their customers that other cus-
tomers who purchased some book of in-
terest also purchased other related books.
The customer would often find such recommendations quite useful.

Association analysis identifies relationships or correlations between
observations and/or between variables in our datasets. These relation-
ships are then expressed as a collection of so-called association rules. The
approach has been particularly successful in mining very large transac-
tional databases, like shopping baskets and on-line customer purchases.
Association analysis is one of the core techniques of data mining.

For the on-line bookselling example, historic data is used to identify,
for example, that customers who purchased two particular books also
tended to purchase another particular book. The historic data might
indicate that the first two books are purchased by only 0.5% of all cus-
tomers. But 70% of these then also purchase the third book. This is an
interesting group of customers. As a business, we will take advantage
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of this observation by targeting advertising of the third book to those
customers who have purchased both of the other books.

The usual type of input data for association analysis consists of trans-
actional data, such as the items in a shopping basket at a supermarket,
books and videos purchased by a single client, or medical treatments
and tests received by patients. We are interested in the items whose
co-occurrence within a transaction is of interest.

This short chapter introduces the basic concepts of association anal-
ysis and how to perform it in both Rattle and R.

10.1 Knowledge Representation

A representation of association rules is required to identify relationships
between items within transactions. Suppose each transaction is thought
of as a basket of items (which we might represent as {A,B,C,D,E, F}).
The aim is to identify collections of items that appear together in multiple
baskets (e.g., perhaps the items {A,C, F} appear together in quite a few
shopping baskets). From these so called itemsets (i.e., sets of items) we
identify rules like A,F ⇒ C that tell us that when A and F appear in a
transaction (e.g., a shopping basket) then typically so does C.

A collection of association rules then represents a model as the out-
come of association analysis. The general format of an association rule
is

A → C.

Both A (the left hand side or antecedent) and C (the right side or conse-
quent) are sets of items. Generally we think of items as being particular
books, for example, or particular grocery items. Examples might be:

milk → bread,

beer & nuts→ potato crisps,

Shrek1→ Shrek2 & Shrek3.

The concept of an item can be generalised to a specific variable/value
combination as the item. The concept of association analysis can then
be applied to many different datasets. Using our weather dataset, for
example, this representation will lead to association rules like

WindDir3pm = NNW → RainToday = No.
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10.2 Search Heuristic

The basis of an association analysis algorithm is the generation of fre-
quent itemsets. A frequent itemset is a set of items that occur together
frequently enough to be considered as a candidate for generating associ-
ation rules.

The obvious approaches to identifying itemsets that appear frequently
enough in the data are quite expensive computationally, even with mod-
erately sized datasets. The apriori algorithm takes advantage of the
simple observation that all subsets of a frequent itemset must also be
frequent. That is, if {milk, bread, cheese} is a frequent itemset then
so must each of the smaller itemsets, {milk, bread}, {milk, cheese},
{bread, cheese}, {milk}, {bread}, and {cheese}. This observation al-
lows the algorithm to consider a significantly reduced search space by
starting with frequent individual items. This first step eliminates very
rare items. We then combine the remaining single items into itemsets
containing just two items and retain only those that are frequent enough
and similarly for itemsets containing three items and so on.

The concept of frequent enough is a parameter of the algorithm used
to control the number of association rules discovered. This is called the
support and specifies how frequently the items must appear in the whole
dataset before they can be considered as a candidate association rule.
For example, the user may choose to consider only sets of items that
occur in at least 5% of all transactions.

The second phase of the algorithm considers each of the frequent
itemsets and for each generates all possible combinations of association
rules. Thus, for an itemset containing three items {milk, bread, cheese},
the following are among the possible association rules that will be con-
sidered:

bread & milk → cheese,

milk → bread & cheese,

cheese & milk → bread,

and so on.
The actual association rules that we retain are those that meet a

criterion called confidence. The confidence calculates the proportion of
transactions containing A that also contain C. The confidence specifies a
minimal probability for the association rule. For example, the user may
choose to generate only rules that are true at least 90% of the time (that



196 10 Association Analysis

is, when A appears in the basket, C also appears in the same basket at
least 90% of the time).

The apriori algorithm is a breadth-first or generate-and-test type of
search algorithm. Only after exploring all of the possibilities of associ-
ations containing k items does it then consider those containing k + 1
items. For each k, all candidates are tested to determine whether they
have enough support.

In summary, the algorithm uses a simple two-phase generate-and-
merge process. In phase 1, we generate frequent itemsets of size k (it-
erating from 1 until we have no frequent k-itemsets) and then combine
them to generate candidate frequent itemsets of size k + 1. In phase 2,
we build candidate association rules.

10.3 Measures

The two primary measures used in association analysis are the support
and the confidence. The minimum support is expressed as a percentage
of the total number of transactions in the dataset. Informally, it is simply
how often the items appear together from amongst all of the transactions.
Formally, we define support for a collection of items I as the proportion
of all transactions in which all items in I appear and express the support
for an association rule as

support(A → C) = P (A ∪ C).

Typically, we use small values for the support, since overall the items
that appear together “frequently” enough that are of interest generally
won’t be the obvious ones that regularly appear together.

The minimum confidence is also expressed as the proportion of the
total number of transactions in the dataset. Informally, it is a mea-
sure of how often the items C appear whenever the items A appear in a
transaction. Formally, it is a conditional probability:

confidence(A → C) = P (C|A) = P (A ∪ C)/P (A).

It can also be expressed in terms of the support :

confidence(A → C) = support(A → C)/support(A).
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Typically, this measure will have larger values since we are looking
for the association rules that are quite strong, so that if we find the items
in A in a transaction then there is quite a good chance of also finding C
in the transaction.

There are a collection of other measures that are used with association
rule analysis. One that is used in R and hence Rattle is the lift. The lift
is the increased likelihood of C being in a transaction if A is included in
the transaction. It is calculated as

lift(A → C) = confidence(A → C)/support(C).

Another measure is the leverage, which captures the fact that a
higher frequency of A and C with a lower lift may be interesting:

leverage(A → C) = support(A → C)− support(A) ∗ support(C).

10.4 Tutorial Example

Two types of association rules were identified above, corresponding to
the type of data made available. The simplest case, known as market
basket analysis, is when we have a transaction dataset that records just
a transaction identifier. The identifier might identify a single shopping
basket containing multiple items from shopping or a particular customer
or patient and their associated purchases or medical treatments over time.
A simple example of a market basket dataset might record the purchases
of DVDs by customers (three customers in this case):

ID,Item

1,Sixth Sense

1,LOTR1

1,Harry Potter1

1,Green Mile

1,LOTR2

2,Gladiator

2,Patriot

2,Braveheart

3,LOTR1

3,LOTR2
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The resulting model will then be a collection of association rules that
might include

LOTR1→ LOTR2.

The second form of association rule uses a dataset that we are more
familiar with. This approach treats each observation as a transaction
and the variables as the items in the “shopping basket.” Considering the
weather dataset, we might obtain models that include rules of the form

Humidity3pm = High & Pressure3pm = Low → RainToday = Y es.

Both forms are supported in Rattle and R.

Building a Model Using Rattle

Rattle builds association rule models through the Associate tab. The
two types of association rules are supported and the appropriate type
is chosen using the Baskets check button. If the button is checked then
Rattle will use the Ident and Target variables for the analysis, performing
a market basket analysis. If the button is not checked, then Rattle will
use the Input variables for a rules analysis.

For a basket analysis, the data is thought of as representing shopping
baskets (or any other type of collection of items, such as a basket of
medical tests, a basket of medicines prescribed to a patient, a basket
of stocks held by an investor, and so on). Each basket has a unique
identifier, and the variable specified as an Ident variable on the Data
tab is taken as the identifier of a shopping basket. The contents of the
basket are then the items contained in the column of data identified as
the Target variable. For market basket analysis, these are the only two
variables used.

To illustrate market basket analysis with Rattle, we can use a very
simple and trivial dataset consisting of the DVD movies purchased by
customers. The data is available as a CSV file (named dvdtrans.csv)
from the Rattle package. The simplest way to load this dataset into Rattle
is to first load the default sample weather dataset from the weather.csv

file into Rattle. We do this by clicking the Execute button on start-
ing Rattle. Then click the Filename button (which will now be showing
weather.csv) to list the contents of Rattle’s sample CSV folder. Choose
dvdtrans.csv and click Open and then Execute. The ID variable will
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automatically be chosen as the Ident, but we will need to change the role
of Item to be Target, as in Figure 10.1.

Figure 10.1: Choose the dvdtrans.csv file and load it into Rattle with a
click of the Execute button. Then set the role for Item to be Target and click
Execute for the new role to be noted.

On the Associate tab, ensure that the Baskets button is checked. Click
the Execute button to build a model that will consist of a collection of
association rules. Figure 10.2 shows the resulting text view, which we
now review.

The first few lines of the text view list the number of association rules
that make up the model. In our example, there are 127 rules:

Summary of the Apriori Association Rules:

Number of Rules: 127

The next code block reports on the distribution of the three measures as
found for the 127 rules of the model:

Summary of the Measures of Interestingness:

support confidence lift

Min. :0.100 Min. :0.100 Min. : 0.714

1st Qu.:0.100 1st Qu.:0.500 1st Qu.: 1.429

Median :0.100 Median :1.000 Median : 2.500

Mean :0.145 Mean :0.759 Mean : 3.015

3rd Qu.:0.100 3rd Qu.:1.000 3rd Qu.: 5.000

Max. :0.700 Max. :1.000 Max. :10.000
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Figure 10.2: Building an association rules model.

The 127 association rules met the criteria of having a minimum support
of 0.1 and a minimum confidence of 0.1. Across the rules the support
ranges from 0.1 up to 0.4. Confidence ranges from 0.1 up to 1.0 and lift
from 0.83 up to 10.0.

This section is followed by a summary of the process of building the
model. It begins with a review of the options supplied or the default val-
ues for the various parameters. We can see confidence= and support=

listed:

Summary of the Execution of the Apriori Command:

parameter specification:

confidence minval smax arem aval originalSupport

0.1 0.1 1 none FALSE TRUE

support minlen maxlen target ext

0.1 1 10 rules FALSE
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These options are tunable through the Rattle interface. Others can be
tuned directly through R. A set of parameters that control how the al-
gorithm itself operates is then displayed:

algorithmic control:

filter tree heap memopt load sort verbose

0.1 TRUE TRUE FALSE TRUE 2 TRUE

The final section includes detailed information about the algorithm and
the model that has been built:

apriori - find association rules with the apriori algorithm

version 4.21 (2004.05.09) (c) 1996-2004 Christian Borgelt

set item appearances ...[0 item(s)] done [0.00s].

set transactions ...[10 item(s), 10 trans] done [0.00s].

sorting and recoding items ... [10 item(s)] done [0.00s].

creating transaction tree ... done [0.00s].

checking subsets of size 1 2 3 4 5 done [0.00s].

writing ... [127 rule(s)] done [0.00s].

creating S4 object ... done [0.00s].

The Show Rules button will show all of the association rules for the model
in the text view window, sorted by the level of confidence in the rule.
The top five rules will be:

lhs rhs supp conf lift

1 {Harry Potter2} => {Harry Potter1} 0.1 1 5.000

2 {Braveheart} => {Patriot} 0.1 1 1.667

3 {Braveheart} => {Gladiator} 0.1 1 1.429

4 {LOTR} => {Green Mile} 0.1 1 5.000

5 {LOTR} => {Sixth Sense} 0.1 1 1.667

These rules have only a single item on each side of the arrow, and all
have a support of 0.1 and a confidence of 1. We can see that for either
of the first two movies there is quite a large lift obtained.

Building a Model Using R

Arules (Hahsler et al., 2011) provides apriori() for R. The package
provides an interface to the widely used, and freely available, apriori
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software from Christian Borgelt. This software was, for example, com-
mercially licensed for use in the Clementine1 data mining package and is
a well-developed and respected implementation.

When loading a dataset to process with apriori(), it needs to be
converted into a transaction data structure. Consider a dataset with two
columns, one being the identifier of the “basket” and the other being an
item contained in the basket, as is the case for the dvdtrans.csv data.
We can load that data into R:

> library(arules)

> library(rattle)

> dvdtrans <- read.csv(system.file("csv", "dvdtrans.csv",

package="rattle"))

> dvdDS <- new.env()

> dvdDS$data <- as(split(dvdtrans$Item, dvdtrans$ID),

"transactions")

> dvdDS$data

transactions in sparse format with

10 transactions (rows) and

10 items (columns)

We can then build the model using this transformed dataset:

> dvdAPRIORI <- new.env(parent=dvdDS)

> evalq({

model <- apriori(data, parameter=list(support=0.2,

confidence=0.1))

}, dvdAPRIORI)

The rules can be extracted and ordered by confidence using inspect().
In the following code block we also use [1:5] to limit the display to
just the first five association rules. We notice that the first two are
symmetric, which is expected since everyone who purchases one of these
movies always also purchases the other.

1Clementine became an SPSS product and was then purchased by IBM to become
IBM SPSS Modeler.
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> inspect(sort(dvdAPRIORI$model, by="confidence")[1:5])

lhs rhs support confidence lift

1 {LOTR1} => {LOTR2} 0.2 1 5.000

2 {LOTR2} => {LOTR1} 0.2 1 5.000

3 {Green Mile} => {Sixth Sense} 0.2 1 1.667

4 {Patriot} => {Gladiator} 0.6 1 1.429

5 {Patriot,

Sixth Sense} => {Gladiator} 0.4 1 1.429

10.5 Command Summary

This chapter has referenced the following R packages, commands, func-
tions, and datasets:

apriori() function Build an association rule model.
arules package Support for association rules.
inspect() function Display results of model building.
weather dataset Sample dataset from rattle.





Chapter 11

Decision Trees

Decision trees (also referred to as
classification and regression trees)
are the traditional building blocks
of data mining and the classic ma-
chine learning algorithm. Since
their development in the 1980s,
decision trees have been the most
widely deployed machine-learning
based data mining model builder.
Their attraction lies in the simplicity of the resulting model, where a
decision tree (at least one that is not too large) is quite easy to view, un-
derstand, and, importantly, explain. Decision trees do not always deliver
the best performance, and represent a trade-off between performance and
simplicity of explanation. The decision tree structure can represent both
classification and regression models.

We introduce the decision tree as a knowledge representation lan-
guage in Section 11.1. A search algorithm for finding a good decision
tree is presented in Section 11.2. The measures used to identify a good
tree are discussed in Section 11.3. Section 11.4 then illustrates the build-
ing of a decision tree in Rattle and directly through R. The options for
building a decision tree are covered in Section 11.5.
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11.1 Knowledge Representation

The tree structure is used in many different fields, such as medicine,
logic, problem solving, and management science. It is also a traditional
computer science structure for organising data. We generally present the
tree upside down, with the root at the top and the leaves at the bottom.
Starting from the root, the tree splits from the single trunk into two or
more branches. Each branch itself might further split into two or more
branches. This continues until we reach a leaf, which is a node that is
not further split. We refer to the split of a branch as a node of the tree.
The root and leaves are also referred to as nodes.

A decision tree uses this tra-
ditional structure. It starts with
a single root node that splits into
multiple branches, leading to fur-
ther nodes, each of which may fur-
ther split or else terminate as a
leaf node. Associated with each
nonleaf node will be a test or ques-
tion that determines which branch to follow. The leaf nodes contain the
“decisions.”

Consider the decision tree drawn on page 205 (which is the same tree
as Figure 2.5 on page 30). This represents knowledge about observing
weather conditions one day and the observation of rain on the following
day. The No and Yes values at the leaves of the decision tree represent
the decisions.

The root node of the example decision tree tests the mean sea level
pressure at 3 pm (Pressure3pm). When this variable, for an observation,
has a value greater than or equal to 1012 hPa, then we will continue down
the left side of the tree. The next test down this left side of the tree is
on the amount of cloud cover observed at 3 pm (Cloud3pm). If this
is less than 8 oktas (i.e., anything but a fully overcast sky), then it is
observed that on the following day it generally does not rain (No). If
we observe that it is overcast today at 3 pm (i.e., Cloud3pm is 8 oktas,
the maximum value of this variable—see Section 5.2.9, page 127) then
generally we observe that it rains the following day (Yes). Thus we would
be inclined to think that it might rain tomorrow if we observe these same
conditions today.

Resuming our interpretation of the model from the root node of the



11.1 Knowledge Representation 207

tree, if Pressure3pm is less than 1012 hPa and Sunshine is greater than
or equal to 9 (i.e., we observe at least 9 hours of sunshine during the
day), then we do not expect to observe rain tomorrow. If we record 9 or
less hours of sunshine, then we expect it to rain tomorrow.

The decision tree is a very convenient and efficient representation of
knowledge. Generally, models expressed in one language can be trans-
lated to another language—and so it is with a decision tree. One simple
and useful translation is into a rule set. The decision tree above trans-
lates to the following rules, where each rule corresponds to one pathway
through the decision tree, starting at the root node and terminating at
a leaf node:

Rule number: 7 [RainTomorrow=Yes cover=27 (11%) prob=0.74]

Pressure3pm< 1012

Sunshine< 8.85

Rule number: 5 [RainTomorrow=Yes cover=9 (4%) prob=0.67]

Pressure3pm>=1012

Cloud3pm>=7.5

Rule number: 6 [RainTomorrow=No cover=25 (10%) prob=0.20]

Pressure3pm< 1012

Sunshine>=8.85

Rule number: 4 [RainTomorrow=No cover=195 (76%) prob=0.05]

Pressure3pm>=1012

Cloud3pm< 7.5

A rule representation has its advantages. In reviewing the knowl-
edge that has been captured, we can consider each rule separately rather
than being distracted by the more complex structure of a large decision
tree. It is also easy to see how each rule could be translated into a pro-
gramming language statement like R, Python, C, VisualBasic, or SQL.
The structure is as simple, and clear, as an If-Then statement. We now
explain the information provided for each rule.

In building a decision tree, often a larger tree is built and then cut
back (or pruned) so that it is not so complex and also to improve its
accuracy. As a consequence, we will often see node numbers (and rule
numbers) that are not sequential. The node numbers do not have any
specific meaning other than as a reference.
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Although it is not shown in the tree representation at the beginning
of the chapter, we see in the rules above the probabilities that are typi-
cally recorded for each leaf node of the decision tree. The probabilities
can be used to provide an indication of the strength of the decision we
derive from the model. Thus, rule number 7 indicates that for 74% of
the observations (prob=0.74), when the observed pressure at 3 pm is
less than 1012 hPa and the hours of sunshine are less than 8.85 hours,
there is rainfall recorded on the following day (RainTomorrow=Yes). The
other information provided with the rule is that 27 observations from
the training dataset (i.e., 11% of the training dataset observations) are
covered by this rule—they satisfy the two conditions.

There exist variations to the basic decision tree structure we have
presented here for representing knowledge. Some approaches, as here,
limit trees to two splits at any one node to generate a binary decision
tree. For categoric data this might involve partitioning the values (levels)
of the variable into two groups. Another approach is to have a branch
corresponding to each of the levels of a categoric variable. From a repre-
sentation point of view, what can be represented using a multiway tree
can also be represented as a binary tree and vice versa. Other variations,
for example, allow multiple variables to be tested at a node. We generally
stay with the simpler representation, though, sometimes at the cost of
the resulting model being a little more complex than if we used a more
complex decision tree structure.

11.2 Algorithm

Identifying Alternative Models

The decision tree structure, as described above, is the “language” we use
to express our knowledge. A sentence (or model) in this language is a
particular decision tree. For any dataset, there will be very many, or
even infinite, possible decision trees (sentences).

Consider the simple decision tree discussed above. Instead of the
variable Pressure3pm being tested against the value 1012, it could have
been tested against the value 1011, or 1013, or 1020, etc. Each would,
when the rest of the tree has been built, represent a different sentence in
the language, representing a slightly different capture of the knowledge.
There are very many possible values to choose from for just this one
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variable, even before we begin to consider values for the other variables
that appear in the decision tree.

Alternatively, we might choose to test the value of a different variable
at the root node (or any other node). Perhaps we could test the value
of Humidity3pm instead of Pressure3pm. This again introduces a large
collection of alternative sentences that we might generate within the con-
straints of the language we have defined. Each sentence is a candidate
for the capture of knowledge that is consistent with the observations
represented in our training dataset.

As we saw in Section 8.2, this wealth of possible sentences presents
a challenge—which is the best sentence or equivalently which is the best
model that fits the data? Our task is to identify the sentence (or perhaps
sentences) that best captures the knowledge that can be obtained from
the observations that we have available to us.

We generally have an infinite collection of possible sentences to choose
from. Enumerating every possible sentence, and testing whether it is a
good model, will generally be too computationally expensive. This could
well involve days, weeks, months, or even more of our computer time. Our
task is to use the observations (the training dataset) to narrow down this
search task so that we can find a good model in a reasonable amount of
time.

Partitioning the Dataset

The algorithm that has been developed for decision tree induction is
referred to as the top-down induction of decision trees, using a divide-
and-conquer, or recursive partitioning, approach. We will describe the
algorithm intuitively.

We continue here with the weather dataset to describe the algorithm.
The distribution of the observations, with respect to the target variable
RainTomorrow, is of particular interest. There are 66 observations that
have the target as Yes (18%) and 300 observations with No (82%).

We want to find any input variable that can be used to split the
dataset into two smaller datasets. The goal is to increase the homogeneity
of each of the two datasets with respect to the target variable. That is,
for one of the datasets, we would be looking for it to have an increased
proportion of observations with Yes and so the other dataset would have
an increased proportion of observations with No.
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We might, for example, de-
cide to construct a partition of the
original dataset using the variable
Sunshine with a split value of 9.
Every observation that has a value
of Sunshine less than 9 goes into
one subset and those remaining (with Sunshine equal to 9) into a sec-
ond subset. These new datasets will have 201 and 162 observations,
respectively (noting that three observations have missing values for this
variable).

Now we consider the proportions of Yes and No observations within
the two new datasets. For the subset of observations with Sunshine less
than 9, the proportions are 28% Yes and 72% No. For the subset of
observations with Sunshine greater than or equal to 9 the proportions
are 5% Yes and 95% No.

By splitting on this variable, we have made an improvement in the
homogeneity of the target variable values. In particular, the right dataset
(Sunshine ≥ 9) results in a collection of observations that are very much
in favour of no rain on the following day (95% No). This is what we are
aiming to do. It allows us to observe that when the amount of sunshine
on any day is quite high (i.e., at least 9 hours), then there is very little
chance of rain on the following day (only a 5% chance based on our
observations from the particular weather station).

The story for the other dataset is not quite so clear. The proportions
have certainly changed, with a higher proportion of Yes observations
than the original dataset, but the No observations still outnumber the Yes
observations. Nonetheless, we can say that when we observe Sunshine <
9 there is an increased likelihood of rain the following day based on our
historic observations. There is a 28% chance of rain compared with an
18% over all observations.

Choosing the value 9 for the variable Sunshine is just one possibil-
ity from amongst very many choices. If we had chosen the value 5 for
the variable Sunshine we would have two new datasets with the Yes/No
proportions 41%/59% and 12%/88%. Choosing a different variable alto-
gether (Cloud3pm) with a split of 6, we would have two new datasets with
the Yes/No proportions 8%/92% and 34%/66%. Another choice might
be Pressure3pm with a split of 1012. This gives the Yes/No proportions
as 47%/53% and 10%/90%.

We now have a collection of choices for how we might partition our
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training dataset: which of these is the best split? We come back to
answer that question formally in Section 11.3. For now, we assume we
choose one of them. With whichever choice we make, the result is that
we now have two new smaller datasets.

Recursive Partitioning

The process is now repeated again separately for the two new datasets.
That is, for the left dataset above (observations having Sunshine < 9),
we consider all possible variables and splits to partition that dataset into
two smaller datasets. Independently, for the right dataset (observations
having Sunshine ≥ 9) we consider all possible variables and splits to
partition that dataset into two smaller datasets as well.

Now we have four even smaller
datasets—and the process contin-
ues. For each of the four datasets,
we again consider all possible vari-
ables and splits, choosing the
“best” at each stage, partitioning
the data, and so on, repeating the
process until we decide that we
should stop. In general, we might stop when we run out of variables,
run out of data, or when partitioning the dataset does not improve the
proportions or the outcome.

We can see now why this process is called divide-and-conquer or re-
cursive partitioning. At each step, we have identified a question, that we
use to partition the data. The resulting two datasets then correspond
to the two branches of the tree emanating from that node. For each
branch, we identify a new question and partition appropriately, building
our representation of the knowledge we are discovering from the data. We
continually divide the dataset and conquer each of the smaller datasets
more easily. We are also repeatedly partitioning the dataset and applying
the same process, independently, to each of the smaller datasets; thus it
is recursive partitioning.

At each stage of the process, we make a decision as to the best variable
and split to partition the data. That decision may not be the best to
make in the overall context of building this decision tree, but once we
make that decision, we stay with it for the rest of the tree. This is
generally referred to as a greedy approach.
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A greedy algorithm is generally quite efficient, whilst possibly sacri-
ficing our opportunity to find the very best decision tree. There remains
quite a bit of searching for the one variable and split point for each of
the datasets we produce. However, this heuristic approach reduces our
search space considerably by fixing the variable/split once it has been
chosen.

11.3 Measures

In describing the basic algorithm above, it was indicated that we need to
measure how good a particular partition of the dataset is. Such a measure
will allow us to choose from amongst a collection of possibilities. We now
consider how to measure the different splits of the dataset.

Information Gain

Rattle uses an information gain measure for deciding between alternative
splits. The concept comes from information theory and uses a formu-
lation of the concept of entropy from physics (i.e., the concept of the
amount of disorder in a system). We discuss the concepts here in terms
of a binary target variable, but the concept generalises to multiple classes
and even to numeric target variables for regression tasks.

For our purposes, the concept of disorder relates to how “mixed” our
dataset is with respect to the values of the target variable. If the dataset
contains only observations that all have the same value for the target
variable (e.g., it contains only observations where it rains the following
day), then there is no disorder—i.e., no entropy or zero entropy. If the
two values of the target variable are equally distributed across the obser-
vations (i.e., 50% of the dataset are observations where it rains tomorrow
and the other 50% are observations where it does not rain tomorrow),
then the dataset contains the maximum amount of disorder. We identify
the maximum amount of entropy as 1. Datasets containing different mix-
tures of the values of the target variable will have a measure of entropy
between 0 and 1.

From an information theory perspective, we interpret a measure of 0
(i.e., an entropy of 0) as indicating that we need no further information
in order to classify a specific observation within the dataset—all obser-
vations belong to the same class. Conversely, a measure of 1 suggests we
need the maximal amount of extra information in order to classify our
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observations into one of the two available classes. If the split between
the observations where it rains tomorrow and where it does not rain to-
morrow is not 50%/50% but perhaps 75%/25%, then we need less extra
information in order to classify our observations—the dataset already
contains some information about which way the classification is going to
go. Like entropy, our measure of “required information” is thus between
0 and 1.

In both cases, we will use the mathematical logarithm function for
base 2 (log2) to transform our proportions (the proportions being 0.5,
0.75, 1.00, etc.). Base 2 is chosen since we use binary digits (bits) to
encode information. However, we can use any base since in the end it is
the relative measure rather than the exact measure, that we are interested
in and the logarithm functions have identical behaviour in this respect.
The default R implementation (as we will see in Section 11.4) uses the
natural logarithm, for example.

The formula we use to capture the entropy of a dataset, or equiva-
lently the information needed to classify an observation, is

info(D) = −p log2(p)− n log2(n)

We now delve into the nature of this formula to understand why this
is a useful measure. We can easily plot this function, as in Figure 11.1,
with the x-axis showing the possible values of p and the y-axis showing
the values of info.

From the plot, we can see that the maximum value of the measure is
1. This occurs when there is the most amount of disorder in the data or
when the most amount of additional information is required to classify an
observation. This occurs when the observations are equally distributed
across the values of the target variable. For a binary target, as here, this
occurs when p = 0.5 and n = 0.5.

Likewise, the minimum value of the measure is 0. This occurs at the
extremes, where p = 1 (i.e., all observations are positive —RainTomorrow

has the value Yes for each) or p = 0 (i.e., all observations are negative
—RainTomorrow has the value No for each). This is interpreted as either
no entropy or as requiring no further information in order to classify the
observations.

This then provides a mechanism for measuring some aspect of the
training dataset, capturing something about the knowledge content. As
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Figure 11.1: Plotting the relationship between the proportion of positive ob-
servations in the data and the measure of information/entropy.

we now see, we use this formulation to help choose the “best” split from
among the very many possible splits we identified in Section 11.2.

Each choice of a split results in a binary partition of the training
dataset. We will call these D1 and D2, noting that D = D1 ∪ D2. The
information measure can be applied to each of these subsets to give I1
and I2. If we add these together, weighted by the sizes of the two subsets,
we get a measure of the combined information, or entropy:

info(D,S) =
|D1|
|D|
I1 +

|D2|
|D|
I2

Comparing this with the original information, or entropy, we get a
measure of the gain in “knowledge” obtained by using the particular split
point:

gain(D,S) = info(D)− info(D,S)
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This can then be calculated for each of the possible splits. The split
that provides the greatest gain in information (and equivalently the great-
est reduction in entropy) is the split we choose.

Other Measures

A variety of measures can be used as alternatives to the information mea-
sure. The most common alternative is the Gini index of diversity. This
was introduced into decision tree building through the original CART
(classification and regression tree) algorithm (Breiman et al., 1984). The
plot of the function is very similar to the p ∗ log2(p) curve and typically
will give the same split points.

11.4 Tutorial Example

The weather dataset is used to illustrate the building of a decision tree.
We saw our first decision tree in Chapter 2. We can build a decision
tree using Rattle’s Tree option, found on the Model tab or directly in R
through rpart() of rpart (Therneau and Atkinson, 2011).

Building a Model Using Rattle

We build a decision tree using Rattle’s Model tab’s Tree option. After
loading our dataset and identifying the Input variables and the Target
variable, an Execute of the Model tab will result in a decision tree. We
can see the result for the weather dataset in Figure 11.2, which shows
the resulting tree in the text view and also highlights the key interface
widgets that we need to deal with to build a tree.

The text view includes much information, and we will work our way
through its contents. However, before doing so, we can get a quick view
of the resulting decision tree by using the Draw button of the interface.
A window will pop up, displaying the tree, as we saw in Figure 2.5 on
page 30.

Working our way through the textual summary of the decision tree,
we start with a report of the number of observations that were used to
build the tree (i.e., 256):

Summary of the Decision Tree model for Classification ...

n= 256
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Figure 11.2: Building a decision tree predictive model using the weather
dataset.

Tree Structure

We now look at the structure of the tree as it is presented in the text
view. A legend is provided to assist in reading the tree structure:

node), split, n, loss, yval, (yprob)

* denotes terminal node

The legend indicates that a node number will be provided, followed by a
split (which will usually be in the form of a variable operation value),
the number of entities n at that node, the number of entities that are
incorrectly classified (the loss), the default classification for the node
(the yval), and then the distribution of classes in that node (the yprobs).
The distribution is ordered by class and the order is the same for all
nodes. The next line indicates that a “*” denotes a terminal node of the
tree (i.e., a leaf node—the tree is not split any further at that node).

The first node of any tree is always the root node. We work our way
into the tree itself through the root node. The root node is numbered as
node number 1:

1) root 256 41 No (0.83984 0.16016)

The root node represents all observations. By itself the node represents
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a model that simply classifies every observation into the class that is
associated with the majority from the training dataset. The information
provided tells us that the majority class for the root node (the yval) is
No. The 41 tells us how many of the 256 observations will be incorrectly
classified as Yes. This is technically called the loss.

The yprob component then reports on the distribution of the classes
across the observations. We know the classes to be No, and Yes. Thus,
84% (i.e., 0.83984375 as a proportion) of the observations have the target
variable RainTomorrow as No, and 16% of the observations have it as Yes.

If the root node itself were treated as a model, it would always decide
that it won’t rain tomorrow. Based on the training dataset, the model
would be 84% correct. That is quite a good level of accuracy, but the
model is not particularly useful since we are really interested in whether
it is going to rain tomorrow.

The root node is split into two subnodes. The split is based on the
variable Pressure3pm with a split value of 1011.9. Node 2 has the split
expressed as Pressure3pm>=1011.9. That is, there are 204 observations
with a 3 pm pressure reading of more than 1011.9 hPa:.

2) Pressure3pm>=1012 204 16 No (0.92157 0.07843)

Only 16 of these 204 observations are misclassified, with the classification
associated with this node being No. This represents an accuracy of 92%
in predicting that it does not rain tomorrow.

Node 3 contains the remaining 52 observations which have a 3 pm
pressure of less than 1011.9. Whilst the decision is No, it is pretty close
to a 50/50 split in this partition:

3) Pressure3pm< 1012 52 25 No (0.51923 0.48077)

We’ve skipped ahead a little to jump to node 3, so we now have a look
again at node 2 and its split into subnodes. The algorithm has chosen
Cloud3pm for the next split, with a split value of 7.5. Node 4 has 195
observations. These are the 195 observations for which the 3 pm pressure
is greater than or equal to 1011.9 and the cloud coverage at 3 pm is less
than 7.5. Under these circumstances, there is no rain the following day
95% of the time.

2) Pressure3pm>=1012 204 16 No (0.92157 0.07843)

4) Cloud3pm< 7.5 195 10 No (0.94872 0.05128) *

5) Cloud3pm>=7.5 9 3 Yes (0.33333 0.66667) *
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Node 5, at last, predicts that it will rain on the following day—at
least based on the available historic observations. There are only nine
observations here, and the frequency of observing rain on the following
day is 67%. Thus we say there is a 67% probability of rain when the
pressure at 3 pm is at least 1011.9 and the cloud cover at 3 pm is at least
7.5. Both node 4 and node 5 are marked with an asterisk (*), indicating
that they are terminal nodes—they are not further split. The remaining
nodes, 6 and 7, split node 3 using the variable Sunshine and a split point
of 8.85:

3) Pressure3pm< 1012 52 25 No (0.51923 0.48077)

6) Sunshine>=8.85 25 5 No (0.80000 0.20000) *

7) Sunshine< 8.85 27 7 Yes (0.25926 0.74074) *

Node 3 has almost equal numbers of No and Yes observations (52% and
48%, respectively). However, splitting on the number of hours of sunshine
has quite nicely partitioned the observations into two groups that are
quite a bit more homogeneous with respect to the target variable. Node
6 represents only a 20% chance of rain tomorrow, whilst node 7 represents
a 74% chance of rain tomorrow.

That then is the model that has been built. It is a relatively simple
decision tree with just seven nodes and four leaf nodes, with a maximum
depth of 2 (in fact, each leaf node is at a depth of exactly 2).

Function Call

The next segment lists the underlying R command line that is used to
build the decision tree. This was automatically generated based on the
information provided through the interface. We could have directly en-
tered this at the prompt in the R Console:

Classification tree:

rpart(formula=RainTomorrow ~ .,data=crs$dataset[crs$train,

c(crs$input,crs$target)],method="class",

parms=list(split="information"),

control=rpart.control(usesurrogate=0,maxsurrogate=0))

The formula notes that we want to build a model to predict the value of
the variable RainTomorrow based on the remainder of the variables in the
dataset supplied (notated as the “~ .”). The dataset supplied consists
of the crs$dataset data frame indexed to include the rows listed in the
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variable crs$train. This is the training dataset. The columns from 3
to 22, and then column 24, are included in the dataset from which the
model is built.

Following the specification of the formula and dataset are the tun-
ing parameters for the algorithm. These are explained in detail in Sec-
tion 11.5, but we briefly summarise them here. The method used is based
on classification. The method for choosing the best split uses the infor-
mation measure. Surrogates (for dealing with missing values) are not
used by default in Rattle.

Variables Used

In general, only a subset of the available variables will be used in the
resulting decision tree model. The next segment lists those variables
that do appear in the tree. Of the 20 input variables, only three are used
in the final model.

Variables actually used in tree construction:

[1] Cloud3pm Pressure3pm Sunshine

Performance Evaluation

The next segment summarises the process of building the tree, and in
particular the iterations and associated change in the accuracy of the
model as new levels are added to the tree. The complexity table is
discussed in more detail in Section 11.5.

Briefly, though, we are most likely interested in the cross-validated
error (refer to Section 15.1 for a discussion of cross-validation), which is
the xerror column of the table. The error over the whole dataset (i.e., if
we were to classify every observation as No) is 0.16, or 16%. Treating this
as the baseline error (i.e., 1.00), the table shows the relative reduction in
the error (and cross-validation-based error) as we build the tree.

From line 2, we see that after the first split of the dataset, we have
reduced the cross-validation based error to 80% of the original amount
(i.e., 0.1289, or 13%). Notice that the cross-validation is being reduced
more slowly than the error on the training dataset (error). This is
typical.

The CP value (the complexity parameter) is explained further in Sec-
tion 11.5, but for now we note that as the tree splits into more nodes,
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the complexity parameter is reduced. But we also note that the cross-
validation error starts to increase as we further split the decision tree.
This tells the algorithm to stop partitioning, as the error rate (at least
the unbiased estimate of it—refer to Section 15.1) is not improving:

Root node error: 41/256 = 0.16

n= 256

CP nsplit rel error xerror xstd

1 0.159 0 1.00 1.00 0.14

2 0.073 2 0.68 0.80 0.13

3 0.010 3 0.61 0.95 0.14

Time Taken

Finally, we see how long it took to build the tree. Decision trees are
generally very quick to build.

Time taken: 0.03 secs

Tuning Options

The Rattle interface provides a choice of Algorithm for building the deci-
sion tree. The Traditional option is chosen by default, and that is what
we have presented here. The Conditional option uses a more recent con-
ditional inference tree algorithm, which is explained in more detail in
Section 11.6. A variety of other tuning options are also provided, and
they are discussed in some detail in Section 11.5.

Displaying Trees

The Rules and Draw buttons provide alternative views of the decision
tree. Clicking on the Rules button will translate the decision tree into a
set of rules and list those rules at the bottom of the text view. We need
to scroll down the text view in order to see the rules. The rules in this
form can be more easily extracted and used to generate code in other
languages. A common example is to generate a query in SQL to extract
the corresponding observations from a database.
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The Draw button will pop up a separate window to display a more
visually appealing representation of the decision tree. We have seen the
pictorial representation of a decision tree a number of times now, and
they were generated from this button, as was Figure 11.3.

Figure 11.3: Typical Rattle decision tree.

Scoring

We can now use the model to predict the outcome for new observations—
something we often call scoring. The Evaluate tab provides the Score
option and the choice to Enter some data manually and have that data
scored by the model. Executing this setup will result in a popup window
in which to enter the data, and, on closing the window, the data is passed
on to the model and the predictions are displayed in the Textview.

Building a Model using R

Underneath Rattle’s GUI, we are relying on a collection of R commands
and functions. The Log tab will expose them, and it is instructive to
review the Log tab regularly to gain insight and understanding that will
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be helpful in using R itself. We effectively lift the bonnet on the hood
here so that we can directly build decision trees using R.

To use the traditional decision-tree-building algorithm, we use rpart,
This provides rpart() which is an implementation of the standard clas-
sification and regression tree algorithms. The implementation is very
robust and reliable.

> library(rpart)

As we saw in Section 2.9, we will create the variable weatherDS (us-
ing new.env()—new environment) to act as a container for the weather
dataset and related information. We will access data within this con-
tainer through the use of evalq() below.

> weatherDS <- new.env()

The weather dataset from rattle will be used for the modelling.
Three columns from the dataset are ignored in our analyses, as they
play no role in the model building. The three variables are the two that
serve to identify the observations (Date and Location) and the risk vari-
able (RISK_MM—the amount of rain recorded on the next day). Below
we identify the index of these variables and record the negative index in
vars, which is stored within the container:

> library(rattle)

> evalq({

data <- weather

nobs <- nrow(data)

vars <- -grep('^(Date|Locat|RISK)', names(weather))

}, weatherDS)

A random subset of 70% of the observations is chosen and will be used
to identify a training dataset. The random number seed is set, using
set.seed(), so that we will always obtain the same random sample
for illustrative purposes and repeatability. Choosing different random
sample seeds is also useful, providing empirically an indication of how
stable the models are.

> evalq({

set.seed(42)

train <- sample(nobs, 0.7*nobs)

}, weatherDS)
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We add to the weatherDS container the formula to describe the model
that is to be built based on this dataset:

> evalq({

form <- formula(RainTomorrow ~ .)

}, weatherDS)

We now create a model container for the information relevant to the deci-
sion tree model that we will build. The container includes the weatherDS
container (identifying it as parent= in the call to new.env()):

> weatherRPART <- new.env(parent=weatherDS)

The command to build a model is then straight forward. The variables
data, train, and vars are obtained from the weatherDS container, and
the result will be stored as the variable model within the weatherRPART

container. We explain rpart() in detail below.

> evalq({

model <- rpart(formula=form, data=data[train, vars])

}, weatherRPART)

Here we use rpart(), passing to it a formula and the data. We don’t
need to include the formula= and the data= in the formal arguments to
the function, as they will also be determined from their position in the
argument list. It doesn’t hurt to include them either to provide more
clarity for others reading the code.

The formula= argument identifies the model that is to be built.
In this case, we pass to the function the variable form that we pre-
viously defined. The target variable (to the left of the tilde in form)
is RainTomorrow, and the input variables consist of all of the remaining
variables in the dataset (denoted by the period to the right of the tilde in
form). We are requesting a model that predicts a value for RainTomorrow
based on today’s observations.

The data= argument identifies the training dataset. Once again, we
pass to the function the variable data that we previously defined. The
training dataset subset consists of the observation numbers listed in the
variable train. The variables of the dataset that we wish to include are
specified by vars, which in this case actually lists as negative integers the
variables to ignore. Together, train and vars identify the observations
and variables to include in the training of the model.
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The result of building the model is assigned into the variable model

inside the environment weatherRPART and so can be independently re-
ferred to as weatherRPART$model.

Exploring the Model

Towards the end of Section 11.4, we explained the textual presentation
of the results of building a decision tree model. The output we saw there
can be reproduced in R using print() and printcp(). The output from
print() is:

> print(weatherRPART$model)

n= 256

node), split, n, loss, yval, (yprob)

* denotes terminal node

1) root 256 41 No (0.83984 0.16016)

2) Pressure3pm>=1012 204 16 No (0.92157 0.07843)

4) Cloud3pm< 7.5 195 10 No (0.94872 0.05128) *

5) Cloud3pm>=7.5 9 3 Yes (0.33333 0.66667) *

3) Pressure3pm< 1012 52 25 No (0.51923 0.48077)

6) Sunshine>=8.85 25 5 No (0.80000 0.20000) *

7) Sunshine< 8.85 27 7 Yes (0.25926 0.74074) *

We briefly discussed the output of this and the printcp() below in the
previous section. We mentioned there how the CP (complexity parame-
ter) is used to guide how large a decision tree to build. We might choose
to stop when the cross-validated error (xerror) begins to increase. This
is displayed in the output of printcp(). We can also obtain a useful
graphical representation of the complexity parameter using plotcp()

instead.
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> printcp(weatherRPART$model)

Classification tree:

rpart(formula = form, data = data[train, vars])

Variables actually used in tree construction:

[1] Cloud3pm Pressure3pm Sunshine

Root node error: 41/256 = 0.16

n= 256

CP nsplit rel error xerror xstd

1 0.159 0 1.00 1.00 0.14

2 0.073 2 0.68 0.83 0.13

3 0.010 3 0.61 0.80 0.13

Another command useful for providing information about the result-
ing model is summary():

> summary(weatherRPART$model)

This command provides quite a bit more information about the model
building process, beginning with the function call and data size. This is
followed by the same complexity table we saw above:

Call:

rpart(formula=form, data=data[train, vars])

n= 256

CP nsplit rel error xerror xstd

1 0.15854 0 1.0000 1.0000 0.1431

2 0.07317 2 0.6829 0.8293 0.1324

3 0.01000 3 0.6098 0.8049 0.1308

The summary goes on to provide information related to each node of
the decision. Node number 1 is the root node of the decision tree. Its
information appears first (note that the text here is modified to fit the
page):
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Node number 1: 256 observations, complexity param=0.1585

predicted class=No expected loss=0.1602

class counts: 215 41

probabilities: 0.840 0.160

left son=2 (204 obs) right son=3 (52 obs)

Primary splits:

Pressure3pm < 1012 right, improve=13.420, (0 missing)

Cloud3pm < 7.5 left, improve= 9.492, (0 missing)

Pressure9am < 1016 right, improve= 9.143, (0 missing)

Sunshine < 6.45 right, improve= 8.990, (2 missing)

WindGustSpeed < 64 left, improve= 7.339, (2 missing)

Surrogate splits:

Pressure9am < 1013 right, agree=0.938, adj=0.692,...

MinTemp < 16.15 left, agree=0.824, adj=0.135,...

Temp9am < 20.35 left, agree=0.816, adj=0.096,...

WindGustSpeed < 64 left, agree=0.812, adj=0.077,...

WindSpeed3pm < 34 left, agree=0.812, adj=0.077,...

We see that node number 1 has 256 observations to work with. It has a
complexity parameter of 0.1585366, which is discussed in Section 11.5.

The next line identifies the default class for this node (No in this case)
which corresponds to the class that occurs most frequently in the training
dataset. With this class as the decision associated with this node, the
error rate (or expected loss) is 16% (or 0.1601562).

The table that follows then reports the frequency of observations by
the target variable. There are 215 observations with No for RainTomorrow
(84%) and 41 with Yes (16%).

The remainder of the information relates to deciding how to split the
node into two subsets. The resulting split has a left branch (labelled as
node number 2) with 204 observations. The right branch (labelled as
node number 3) has 52 observations.

The actual variable used to split the dataset into these two subsets is
Pressure3pm, with the test being on the value 1011.9. Any observation
with Pressure3pm < 1011.9 goes to the right branch, and so ≥ 1011.9
goes to the left. The measure (the improvement) associated with this
split of the dataset is 13.42.

We then see a collection of alternative splits and their associated
measures. Clearly, Pressure3pm offers the best improvement, with the
nearest competitor offering an improvement of 9.49.
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The surrogate splits that are then presented relate to the handling of
missing values in the data. Consider the situation where we apply the
model to new data but have an observation with Pressure3pm missing.
We could instead use Pressure9am. The information here indicates that
93.8% of the observations in the split based on Pressure9am < 1013.3
are the same as that based on Pressure3pm < 1011.9. The adj value is
an indication of what is gained by using this surrogate split over simply
giving up at this node and assigning the majority decision to the new
observation. Thus, in using Pressure9am we gain a 69% improvement
by using the surrogate.

The other nodes are then listed in the summary. They include the
same kind of information, and we see at the beginning of node number
2 here:

Node number 2: 204 observations, complexity param=0.07317

predicted class=No expected loss=0.07843

class counts: 188 16

probabilities: 0.922 0.078

left son=4 (195 obs) right son=5 (9 obs)

Primary splits:

Cloud3pm < 7.5 left, improve=6.516, (0 missing)

Sunshine < 6.4 right, improve=2.937, (2 missing)

Cloud9am < 7.5 left, improve=2.795, (0 missing)

Humidity3pm < 71 left, improve=1.465, (0 missing)

WindDir9am splits as RRRRR...LLLL, improve=1.391,...

...

Note how categoric variables are reported. WindDir9am has 16 levels:

> levels(weather$WindDir9am)

[1] "N" "NNE" "NE" "ENE" "E" "ESE" "SE" "SSE" "S"

[10] "SSW" "SW" "WSW" "W" "WNW" "NW" "NNW"

All possible binary combinations of levels will have been considered and
the one reported above offers the best improvement. Here the first five
levels (N to E) correspond to the right (R) branch and the remainder to
the left (L) branch.

The leaf nodes of the decision tree (nodes 4, 5, 6, and 7) will have just
the relevant information—thus no information on splits or surrogates. An
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example is node 7. The following text again comes from the output of
summary():

...

Node number 7: 27 observations

predicted class=Yes expected loss=0.2593

class counts: 7 20

probabilities: 0.259 0.741

Node 7 is a leaf node that predicts Yes as the outcome. The error/loss
is 7 out of 27, or 0.2593 or 26%, and the probability of Yes is 74%.

Miscellaneous Functions

We have covered above the main functions and commands in R for build-
ing and displaying a decision tree. Rpart and rattle also provide a
collection of utility functions for exploring the model.

First, the where= component of the decision tree object records the
leaf node of the decision tree in which each observation in the training
dataset ends up:

> head(weatherRPART$model$where, 12)

335 343 105 302 233 188 266 49 236 252 163 256

3 3 7 3 3 3 3 4 3 3 3 3

The plot() command and the related text() command will display a
decision tree labelled appropriately:

> opar <- par(xpd=TRUE)

> plot(weatherRPART$model)

> text(weatherRPART$model)

> par(opar)

We notice that the default plot (Figure 11.4) looks different from the
plot we obtain through Rattle. Rattle provides drawTreeNodes() as a
variation of plot() based on draw.tree() from maptree (White, 2010).
The plot here is a basic plot. The length of each line within the tree
branches gives a visual indication of the error down that branch of the
tree. The plot and text can be further tuned through addition arguments
to the two commands. There are very many tuning options available,
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|
Pressure3pm>=1012

Cloud3pm< 7.5 Sunshine>=8.85

No Yes

No Yes

Figure 11.4: Typical R decision tree.

and they are listed in the manuals for the commands (?plot.rpart and
?text.rpart). The path.rpart() command is then a useful adjunct to
plot():

> path.rpart(weatherRPART$model)

Running this command allows us to use the left mouse button to click on
a node on the plot to list the path to that node. For example, clicking
the left mouse button on the bottom right node results in:

node number: 7

root

Pressure3pm< 1012

Sunshine< 8.85

Click on the middle or right mouse button to finish interacting with the
plot.
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11.5 Tuning Parameters

Any implementation of the decision tree algorithm provides a collection
of parameters for tuning how the tree is built. The defaults in Rattle
(based on rpart’s defaults) often provide a basically good tree. They
are certainly a very good starting point and may be a satisfactory end
point, too. However, tuning will be necessary where, for example, the
target variable has very few examples of the particular class of interest
or we would like to explore a number of alternative trees.

Whilst many tuning parameters are introduced here in some level
of detail, the R documentation provides much more information. Use
?rpart to start exploring further. The rpart() function has two argu-
ments for tuning the algorithm, each being a structure containing other
options. They are control= and parms=. We use these as in the following
example:

> evalq({

control <- rpart.control(minsplit=10,

minbucket=5,

maxdepth=20,

usesurrogate=0,

maxsurrogate=0)

model <- rpart(formula=form,

data=data[train, vars],

method="class",

parms=list(split="information"),

control=control)

}, weatherRPART)

We have already discussed the formula= and data= arguments. The
remaining arguments are now discussed.

Modelling Method (method=)

The method= argument indicates the type of model to be built and is
dependent on the target variable. For categoric targets, we generally
build classification models, and so we use method="class". If the target
is a numeric variable, then the argument would be method="anova" for
an “analysis of variance,” building a regression tree.
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Splitting Function (split=)

The split= argument is used to choose between different splitting func-
tions (measures). The argument appears within the parms argument of
rpart(), which is built up as a named list. The split="information"

directs rpart to use the information gain measure we introduced above.
The default choice of split="gini" (in R, though Rattle’s default is
"information") uses the Gini index of diversity. The choice makes no
difference in this case, as we can verify by reviewing the output of the
following two commands (though here we show just the one set of out-
put):

> evalq({

rpart(formula=form,

data=data[train, vars],

parms=list(split="information"))

}, weatherRPART)

n= 256

node), split, n, loss, yval, (yprob)

* denotes terminal node

1) root 256 41 No (0.83984 0.16016)

2) Pressure3pm>=1012 204 16 No (0.92157 0.07843)

4) Cloud3pm< 7.5 195 10 No (0.94872 0.05128) *

5) Cloud3pm>=7.5 9 3 Yes (0.33333 0.66667) *

3) Pressure3pm< 1012 52 25 No (0.51923 0.48077)

6) Sunshine>=8.85 25 5 No (0.80000 0.20000) *

7) Sunshine< 8.85 27 7 Yes (0.25926 0.74074) *

> evalq({

rpart(formula=form,

data=data[train, vars],

parms=list(split="gini"))

}, weatherRPART)
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Minimum Split (minsplit=)

The minsplit= argument specifies the minimum number of observations
that must exist at a node in the tree before it is considered for splitting.
A node is not considered for splitting if it has fewer than minsplit

observations. The minsplit= argument appears within the control=

argument of rpart(). The default value of minsplit= is 20.
In the following example, we illustrate the boundary between splitting

and not splitting the root node of our decision tree. This is often an issue
in building a decision tree, and an inconvenience when all we obtain is
a root node. Here the example shows that with a minsplit= of 53 the
tree building will not proceed past the root node:

> evalq({

rpart(formula=form,

data=data[train, vars],

control=rpart.control(minsplit=53))

}, weatherRPART)

n= 256

node), split, n, loss, yval, (yprob)

* denotes terminal node

1) root 256 41 No (0.8398 0.1602) *

Setting minsplit= to 52 results in a split on Pressure3pm (and further
splitting) being considered and chosen, as we see in the code block below.
Splitting on Pressure3pm splits the dataset into two datasets, one with
204 observations and the other with 52 observations. We can then see
why, with minsplit= set to of 53, the tree building does not proceed
past the root node.

Changing the value of minsplit= allows us to eliminate some com-
putation, as nodes with a small number of observations will generally
play less of a role in our models. Leaf nodes can still be constructed that
have fewer observations than the minsplit=, as that is controlled by the
minbucket= argument.
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> evalq({

rpart(formula=form,

data=data[train, vars],

control=rpart.control(minsplit=52))

}, weatherRPART)

n= 256

node), split, n, loss, yval, (yprob)

* denotes terminal node

1) root 256 41 No (0.83984 0.16016)

2) Pressure3pm>=1012 204 16 No (0.92157 0.07843) *

3) Pressure3pm< 1012 52 25 No (0.51923 0.48077)

6) Sunshine>=8.85 25 5 No (0.80000 0.20000) *

7) Sunshine< 8.85 27 7 Yes (0.25926 0.74074) *

Minimum Bucket Size (minbucket=)

The minbucket= argument is the minimum number of observations in
any leaf node. The default value is 7, or about one-third of the default
value of minsplit=. If either of these two arguments is specified but
not the other, then the default of the unspecified one is taken to be a
value such that this relationship holds (i.e., minbucket= is one-third of
minsplit=)

Once again we will see two examples of using minbucket=. The first
example limits the minimum bucket size to be 10, resulting in the same
model we obtained above. The second example reduces the limit down
to just 5 observations in the bucket. The result will generally be a larger
decision tree, since we are allowing leaf nodes with a smaller number of
observations to be considered, and hence the option to split a node into
smaller nodes will often be exercised by the tree building algorithm.
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> ops <- options(digits=2)

> evalq({

rpart(formula=form,

data=data[train, vars],

control=rpart.control(minbucket=10))

}, weatherRPART)

n= 256

node), split, n, loss, yval, (yprob)

* denotes terminal node

1) root 256 41 No (0.840 0.160)

2) Pressure3pm>=1e+03 204 16 No (0.922 0.078) *

3) Pressure3pm< 1e+03 52 25 No (0.519 0.481)

6) Sunshine>=8.9 25 5 No (0.800 0.200) *

7) Sunshine< 8.9 27 7 Yes (0.259 0.741) *

> evalq({

rpart(formula=form,

data=data[train, vars],

control=rpart.control(minbucket=5))

}, weatherRPART)

n= 256

node), split, n, loss, yval, (yprob)

* denotes terminal node

1) root 256 41 No (0.840 0.160)

2) Pressure3pm>=1e+03 204 16 No (0.922 0.078)

4) Cloud3pm< 7.5 195 10 No (0.949 0.051) *

5) Cloud3pm>=7.5 9 3 Yes (0.333 0.667) *

3) Pressure3pm< 1e+03 52 25 No (0.519 0.481)

6) Sunshine>=8.9 25 5 No (0.800 0.200) *

7) Sunshine< 8.9 27 7 Yes (0.259 0.741)

14) Evaporation< 5.5 15 7 Yes (0.467 0.533)

28) WindGustSpeed< 58 10 3 No (0.700 0.300) *

29) WindGustSpeed>=58 5 0 Yes (0.000 1.000) *

15) Evaporation>=5.5 12 0 Yes (0.000 1.000) *

> options(ops)
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Note that changing the value of minbucket= can have an impact on
the choice of variable for the split. This will occur when one choice with a
higher improvement results in a node with too few observations, leading
to another choice being taken to meet the minimum requirements for the
number of observations in a split.

Whilst the default is to set minbucket= to be one-third of minsplit=,
there is no requirement for minbucket= to be less than minsplit=. A
node will always have at least minbucket= entities, and it will be con-
sidered for splitting if it has at least minsplit= observations and if on
splitting each of its children has at least minbucket= observations.

Complexity Parameter (cp=)

The complexity parameter is used to control the size of the decision tree
and to select an optimal tree size. The complexity parameter controls
the process of pruning a decision tree. As we will discuss in Chapter 15,
without pruning, a decision tree model can overfit the training data and
then not perform very well on new data. In general, the more complex
a model, the more likely it is to match the data on which it has been
trained and the less likely it is to match new, previously unseen data.

On the other hand, decision tree models are very interpretable, and
thus building a more complex tree (i.e., having many branches) is some-
times tempting (and useful). It can provide insights that we can then
test statistically.

Using cp= governs the minimum “benefit” that must be gained at
each split of the decision tree in order to make a split worthwhile. This
therefore saves on computing time by eliminating splits that appear to
add little value to the model. The default is 0.01. A value of 0 will build
a “complete” decision tree to maximum depth depending on the values
of minplit= and minbucket=. This is useful if we want to look at the
values for CP for various tree sizes. We look for the number of splits
where the sum of the xerror (cross-validation error relative to the root
node error) and xstd is minimum (as discussed in Section 11.4). This is
usually early in the list.

The plotcp() command is useful in visualising the progression of the
CP values. In the following example,1 we build a full decision tree with

1Note that the cptable may vary slightly between different deployments of R,
particularly between 64 bit R, as here, and 32 bit R.
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both cp= and minbucket= set to zero. We also show the CP table. The
corresponding plot is shown in Figure 11.5.

> set.seed(41)

> evalq({

control <- rpart.control(cp=0, minbucket=0)

model <- rpart(formula=form,

data=data[train, vars],

control=control)

}, weatherRPART)

> print(weatherRPART$model$cptable)

CP nsplit rel error xerror xstd

1 0.15854 0 1.00000 1.0000 0.1431

2 0.07317 2 0.68293 0.9024 0.1372

3 0.04878 3 0.60976 0.9024 0.1372

4 0.03659 7 0.41463 0.8780 0.1357

5 0.02439 10 0.29268 0.8780 0.1357

6 0.01829 13 0.21951 1.0488 0.1459

7 0.01220 21 0.02439 1.1463 0.1511

8 0.00000 23 0.00000 1.2439 0.1559

> plotcp(weatherRPART$model)

> grid()

The figure illustrates a typical behaviour of model building. As we
proceed to build a complex model, the error rate (the y-axis) initially
decreases. It then flattens out and, as the model becomes more complex,
the error rate begins to again increase. We will want to choose a model
where it has flattened out. Based on the principle of favouring simpler
models, we might choose the first of the similarly performing bottom
points and thus we might set cp= 0.1, for example.

As a script, we could automate the selection with the following:

> xerr <- weatherRPART$model$cptable[,"xerror"]

> minxerr <- which.min(xerr)

> mincp <- weatherRPART$model$cptable[minxerr, "CP"]

> weatherRPART$model.prune <- prune(weatherRPART$model,

cp=mincp)
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Figure 11.5: Error rate versus complexity/tree size.

Priors (prior=)

Sometimes the proportions of classes in a training set do not reflect
their true proportions in the population. We can inform Rattle and
R of the population proportions, and the resulting model will reflect
them. All probabilities will be modified to reflect the prior probabilities
of the classes rather than the actual proportions exhibited in the training
dataset.

The priors can also be used to “boost” a particularly important class,
by giving it a higher prior probability, although this might best be done
through the loss matrix (Section 11.5).

In Rattle, the priors are expressed as a list of numbers that sum to
1. The list must be of the same length as the number of unique classes
in the training dataset. An example for binary classification is 0.6,0.4.
This translates into prior=c(0.6,0.4) for the call to rpart().

The following example illustrates how we might use the priors to
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favour a particular target class that was otherwise not being predicted
by the resulting model (because the resulting model turns out to be only
a root node always predicting No). We begin by creating the dataset
object, consisting of the larger Australian weather dataset, weatherAUS :

> wausDS <- new.env()

> evalq({

data <- weatherAUS

nobs <- nrow(data)

form <- formula(RainTomorrow ~ RainToday)

target <- all.vars(form)[1]

set.seed(42)

train <- sample(nobs, 0.5*nobs)

}, wausDS)

A decision tree model is then built and displayed:

> wausRPART <- new.env(parent=wausDS)

> evalq({

model <- rpart(formula=form, data=data[train,])

model

}, wausRPART)

n=19509 (489 observations deleted due to missingness)

node), split, n, loss, yval, (yprob)

* denotes terminal node

1) root 19509 4491 No (0.7698 0.2302) *

A table shows the proportion of observations assigned to each class in
the training dataset.

> evalq({

freq <- table(data[train, target])

round(100*freq/length(train), 2)

}, wausRPART)

No Yes

75.66 22.74

Now we build a decision tree model but with different prior probabilities:
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> evalq({

model <- rpart(formula=form,

data=data[train,],

parm=list(prior=c(0.5, 0.5)))

model

}, wausRPART)

n=19509 (489 observations deleted due to missingness)

node), split, n, loss, yval, (yprob)

* denotes terminal node

1) root 19509 9754 Yes (0.5000 0.5000)

2) RainToday=No 15042 5098 No (0.6180 0.3820) *

3) RainToday=Yes 4467 1509 Yes (0.2447 0.7553) *

The default priors when using raprt() without the prior= option are
set to be the class proportions as found in the training dataset supplied.

Loss Matrix (loss=)

The loss matrix is used to weight different kinds of errors (or loss) dif-
ferently. This refers to what are commonly known as false positives (or
type I errors) and false negatives (or type II errors) when we talk about
a two-class problem.

Often, one type of error is more significant than another type of error.
In fraud, for example, a model that identifies too many false positives
is probably better than a model that identifies too many false negatives
(because we then miss too many real frauds). In medicine, a false positive
means that we diagnose a healthy patient with a disease, whilst a false
negative means that we diagnose an ill patient as being healthy.

The default loss for each of the true/false positives/negatives is 1—
they are all of equal impact or loss. In the case of a rare, and under-
represented class (like fraud) we might consider false negatives to be four
or even ten times worse than a false positive. Thus, we communicate this
to the algorithm so that it will work harder to build a model to find all
of the positive cases.

The loss matrix records these relative weights for the two class case
only. The following table illustrates the terminology (showing predicted
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versus observed):
Pr v Ob 0 1

0 TN FN
1 FP TP

Noting that we do not specify any weights in the loss matrix for the true
positives (TP) and the true negatives (TN), we supply weights of 0 for
them in the matrix. To specify the matrix in the Rattle interface, we
supply a list of the form: 0, FN, FP, 0.

In general, the loss matrix must have the same dimensions as the
number of classes (i.e., the number of levels of the target variable) in the
training dataset. For binary classification, we must supply four numbers
with the diagonals as zeros.

An example is the string of numbers 0, 10, 1, 0, which might be inter-
preted as saying that an actual 1 predicted as 0 (i.e., a false negative)
is ten times more unwelcome than a false positive. This is used to con-
struct, row-wise, the loss matrix which is passed through to rpart() as
loss=loss=matrix(c(0,10,1,0), byrow=TRUE, nrow=2).

The loss matrix is used to alter the priors, which will affect the choice
of variable on which to split the dataset on at each node, giving more
weight where appropriate.

Using the loss matrix is often indicated when we build a decision tree
that ends up being just a single root node (often because the positive
class represents less than 5% of the population—and so the most accurate
model would predict everyone to be a negative).

Other Options

The rpart() function provides many other tuning parameters that are
not exposed through the Rattle GUI. These include maxdepth= to limit
the depth of a tree and maxcompete= to limit the number of competing
alternative splits for each node that is retained in the resulting model.

A number of options relate to the handling of surrogates. As indi-
cated above, surrogates in the model allow for the handling of missing
values. The surrogatestyle= argument indicates how surrogates are
given preference. The default is to prefer variables with fewer missing
values in the training dataset, with the alternative being to sort them by
the percentage correct over the number of nonmissing values.

The usesurrogate= argument controls how surrogates are made use
of in the model. The default for the usesurrogate= argument is 2.
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This is also set when Rattle’s Include Missing check button is active. The
behaviour here is to try each of the surrogates whenever the main variable
has a missing value, but if all surrogates are also missing, then follow
the path with the majority of cases. If usesurrogate= is set to 1, the
behaviour is to try each of the surrogates whenever the main variable has
a missing value, but if all surrogates are also missing, then go no further.
When the argument is set to 0 (the case when Rattle’s Include Missing
check button is not active), the observation with a missing value for the
main variable is not used any further in the tree building.

The maxsurrogate= argument simply limits the number of surrogates
considered for each node.

11.6 Discussion

Decision trees have been around for a long time. They present a mech-
anism for structuring a series of questions. The next question to ask, at
any time, is based on the answer to a previous question.

In data mining, we commonly identify decision trees as the knowledge
representation scheme targeted by the family of techniques originating
from ID3 within the machine learning community (Quinlan, 1986) and
from CART within the statistics community. The original ID3 algorithm
was extended to become the commercially available C4.5 software. This
was made available together with a book by Quinlan (1993) that served
as a guide to using the code.

Traditional decision tree algorithms can suffer from overfitting and
can exhibit a bias towards selecting variables with many possible splits
(i.e., categoric variables). The algorithms do not use any statistical signif-
icance concepts and thus, as noted by Mingers (1989), cannot distinguish
between significant and insignificant improvements in the information
measure. The use of a cross-validated relative error measure, as in the
implementation in rpart() does guard against overfitting.

Hothorn et al. (2006) introduced an improvement to the approach pre-
sented here for building a decision tree, called conditional inference trees.
Rattle offers the choice of traditional and conditional algorithms. Condi-
tional inference trees address overfitting and variable selection biases by
using a conditional distribution to measure the association between the
output and the input variables. They take into account distributional
properties.
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Conditional inference trees can be built using ctree() from party
(Hothorn et al., 2006). Within Rattle, we can choose the Conditional
option to build a conditional inference tree. From the command line, we
would use the following call to ctree():

> library(party)

> weatherCTREE <- new.env(parent=weatherDS)

> evalq({

model <- ctree(formula=form, data=data[train, vars])

}, weatherCTREE)

We can review just lines 8 to 17 of the resulting output, which is the tree
itself:

> cat(paste(capture.output(weatherCTREE$model)[8:17],

collapse="\n"))

1) Pressure3pm <= 1012; criterion = 1, statistic = 39.281

2) Sunshine <= 8.8; criterion = 0.99, statistic = 12.099

3)* weights = 27

2) Sunshine > 8.8

4)* weights = 25

1) Pressure3pm > 1012

5) Cloud3pm <= 7; criterion = 1, statistic = 20.825

6)* weights = 195

5) Cloud3pm > 7

7)* weights = 9

A plot of the tree is presented in Figure 11.6. The plot is quite
informative and primarily self-explanatory. Node 3, for example, predicts
rain relatively accurately, whilst node 6 describes conditions under which
there is almost never any rain on the following day.

11.7 Summary

Decision tree algorithms handle mixed types of variables and missing
values, and are robust to outliers and monotonic transformations of the
input and to irrelevant inputs. The predictive power of decision trees
tends to be poorer than for other techniques that we will introduce.
However, the algorithm is generally straightforward, and the resulting
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Figure 11.6: A conditional inference tree.

models are generally easily interpretable. This last characteristic has
made decision tree induction very popular for over 30 years.

This chapter has introduced the basic concept of representing knowl-
edge as a decision tree and presented a measure for choosing a good
decision tree and an algorithm for building one.

11.8 Command Summary

This chapter has referenced the following R packages, commands, func-
tions, and datasets:
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ctree() function Build a conditional inference tree.
draw.tree() command Enhanced graphic decision tree.
maptree package Provides draw.tree().
party package Conditional inference trees.
path.rpart() function Identify paths through decision tree.
plot() command Graphic display of the tree.
plotcp() command Plot complexity parameter.
print() command Textual version of the decision tree.
printcp() command Complexity parameter table.
rattle package The weather dataset and GUI.
rpart() function Build a decision tree predictive model.
rpart package Provides decision tree functions.
rpart.control function Organise rpart control arguments.
set.seed() function Initiate random seed number sequence.
summary() command Summary of the tree building process.
text() command Add labels to decision tree graphic.
weather dataset Sample dataset from rattle.



Chapter 12

Random Forests

Building a single decision tree provides a
simple model of the world, but it is of-
ten too simple or too specific. Over many
years of experience in data mining, it has
become clear that many models working
together are better than one model doing
it all. We have now become familiar with the idea of combining multiple
models (like decision trees) into a single ensemble of models (to build a
forest of trees).

Compare this to how we might bring together panels of experts to
ponder an issue and to then come up with a consensus decision. Gov-
ernments, industry, and universities all manage their business processes
in this way. It can often result in better decisions compared to simply
relying on the expertise of a single authority on a topic.

The idea of building multiple trees arose early on with the develop-
ment of the multiple inductive learning (MIL) algorithm (Williams, 1987,
1988). In building a single decision tree, it was noted that often there
was very little difference in choosing between alternative variables. For
example, two or more variables might not be distinguishable in terms of
their ability to partition the data into more homogeneous datasets. The
MIL algorithm builds all “equally” good models and then combines them
into one model, resulting in a better overall model.

Today we see a number of algorithms generating ensembles, including
boosting, bagging, and random forests. In this chapter, we introduce the
random forest algorithm, which builds hundreds of decision trees and
combines them into a single model.

     ,
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12.1 Overview

The random forest algorithm tends to produce quite accurate models
because the ensemble reduces the instability that we can observe when
we build single decision trees. This can often be illustrated simply by
removing a very small number of observations from the training dataset,
to see quite a change in the resulting decision tree.

The random forest algorithm (and other ensemble algorithms) tends
to be much more robust to changes in the data. Hence,it is very robust
to noise (i.e., variables that have little relationship to the target vari-
able). Being robust to noise means that small changes in the training
dataset will have little, if any, impact on the final decisions made by the
resulting model. Random forest models are generally very competitive
with nonlinear classifiers such as artificial neural nets and support vector
machines.

Random forests handle underrepresented classification tasks quite
well. This is where, in the binary classification task, one class has very
few (e.g., 5% or fewer) observations compared with the other class.

By building each decision tree to its maximal depth, as the random
forest algorithm does (by not pruning the individual decision trees), we
can end up with a model that is less biased. Each individual tree will
overfit the data, but this is outweighed by the multiple trees using dif-
ferent variables and (over) fitting the data differently.

The randomness used by a random forest algorithm is in the selection
of both observations and variables. It is this randomness that delivers
considerable robustness to noise, outliers, and overfitting, when com-
pared with a single-tree classifier.

The randomness also delivers substantial computational efficiencies.
In building a single decision tree, the model builder may select a random
subset of the observations available in the training dataset. Also, at each
node in the process of building the decision tree, only a small fraction
of all of the available variables are considered when determining how to
best partition the dataset. This substantially reduces the computational
requirement.

In the area of genetic marker selection and microarray data within
bioinformatics, for example, random forests have been found to be par-
ticularly well suited. They perform well even when many of the input
variables have little bearing on the target variable (i.e., they are noise
variables). Random forests are also suitable when there are very many
input variables and not so many observations.
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In summary, a random forest model is a good choice for model build-
ing for a number of reasons. Often, very little preprocessing of the data
needs to be performed, as the data does not need to be normalised and
the approach is resilient to outliers. The need for variable selection is
avoided because the algorithm effectively does its own. Because many
trees are built using two levels of randomness (observations and vari-
ables), each tree is effectively an independent model and the resulting
model tends not to overfit to the training dataset.

12.2 Knowledge Representation

The random forest algorithm is commonly presented in terms of deci-
sion trees as the primary form for representing knowledge. However, the
random forest algorithm can be thought of as a meta-algorithm. It de-
scribes an approach to building models where the actual model builder
could be a decision tree algorithm, a regression algorithm, or any one of
many other kinds of model building algorithms. The general concepts
apply to any of these approaches. We will stay with decision trees as the
underlying model builder for our purposes here.

In any ensemble approach, the key extension to the knowledge rep-
resentation is in the way that we combine the decisions that are made
by the individual “experts” or models. Various approaches have been
considered over the years. Many come from the knowledge-based and
expert systems communities, which often need to consider the issue of
combining expert knowledge from multiple experts. Approaches to ag-
gregating decisions into one final decision include simple majority rules
and a weighted score where the weights correspond to the quality of the
expertise (e.g., the measured accuracy of the individual tree).

The random forest algorithms will often build from 100 to 500 trees.
In deploying the model, the decisions made by each of the trees are com-
bined by treating all trees as equals. The final decision of the ensemble
will be the decision of the majority of the constituent trees. If 80 out
of 100 trees in the random forest say that it will rain tomorrow, then
we will go with that decision and take the appropriate action for rain.
Even if 51 of the 100 trees say that it will rain, we might go with that,
although perhaps with less certainty. In the context of regression rather
than classification, the result is the average value over the ensemble of
regression trees.



248 12 Random Forests

12.3 Algorithm

Chapter 11 covered the building of an individual tree, and the same
algorithm can be used for building one or 500 trees. It is how the training
set is selected and how the variables to use in the modelling are chosen
that differs between the trees built for a random forest.

Sampling the Dataset

The random forest algorithm builds multiple decision trees, using a con-
cept called bagging, to introduce random sampling into the whole process.
Bagging is the idea of collecting a random sample of observations into a
bag (though the term itself is an abbreviation of bootstrap aggregation).
Multiple bags are made up of randomly selected observations obtained
from the original observations from the training dataset.

The selection in bagging is made with replacement, meaning that
a single observation has a chance of appearing multiple times within a
single bag. The sample size is often the same as for the full dataset, and so
in general about two-thirds of the observations will be included in the bag
(with repeats) and one-third will be left out. Each bag of observations is
then used as the training dataset for building a decision tree (and those
left out can be used as an independent sample for performance evaluation
purposes).

Sampling the Variables

A second key element of randomness relates to the choice of variables for
partitioning the dataset. At each step in building a single decision node
(i.e., at each split point of the tree), a random, and usually small, set of
variables is chosen. Only these variables are considered when choosing a
split point. For each node in building a decision tree, a different random
set of variables is considered.

Randomness

By randomly sampling both the data and the variables, we introduce
decision trees that purposefully have different performance behaviours
for different subsets of the data. It is this variation that allows us to
consider an ensemble of such trees as representing a team of experts with
differing expertise working together to deliver a “better” answer.
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Sampling also offers another significant advantage—computational
efficiency. By considering only a small fraction of the total number of
variables available, whilst considering split points, the amount of com-
putation required is significantly reduced.

In building each decision tree, the random forest algorithm generally
will not perform any pruning of the decision tree. When building a single
decision tree, it was noted in Chapter 11 that pruning was necessary to
avoid overfitting the data. Overfitted models tend not to perform well
on new data. However, a random forest of overfitted trees can deliver a
very good model that performs well on new data.

Ensemble Scoring

In deploying the multiple decision trees as a single model, each tree has
equal weight in the final decision-making process. A simple majority
might dictate the outcome. Thus, if 300 of 500 decision trees all predict
that it will rain tomorrow, then we might be inclined to expect there to
be rain tomorrow. If only 100 trees of the 500 predict rain tomorrow,
then we might not expect rain.

12.4 Tutorial Example

Our task is again to predict the likelihood of rain tomorrow given to-
day’s weather conditions. We illustrate this using Rattle and directly
through R. In both cases, randomForest (Liaw and Wiener, 2002) is
used. This package provides direct access to the original implementation
of the random forest algorithm by its authors.

Building a Model using Rattle

Rattle’s Model tab provides the Forest option to build a forest of decision
trees. Figure 12.1 displays the graphical interface to the options for
building a random forest with the default values and also shows the top
part of the results from building the random forest shown in the Textview
area.

We now step through the output of the text view line by line. The
first few lines note the number of observations used to build the model
and then an indication that missing values in the training dataset are
being imputed. If missing value imputation is not enabled, then the
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Figure 12.1: Building a random forest predictive model.

number of observations may be less than the number available, as the
default is to drop observations containing missing values.

Summary of the Random Forest model:

Number of observations used to build the model: 256

Missing value imputation is active.

The next few lines record the actual function command line call that
Rattle generated and passed onto R to be evaluated:

Call:

randomForest(formula = RainTomorrow ~ .,

data = crs$dataset[crs$sample,

c(crs$input, crs$target)],

ntree = 500, mtry = 4, importance = TRUE,

replace = FALSE, na.action = na.roughfix)

A more detailed dissection of the function call is presented later, but
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in brief, 500 trees were asked for (ntree=) and just four variables were
considered for the split point for each node (mtry=). An indication of the
importance of variables is maintained (importance=), and any observa-
tions with missing values will have those values imputed (na.action=).

The next few lines summarise some of the same information in a
more accessible form. Note that, due to numerical differences, specific
results may vary slightly between 32 bit and 64 bit deployments of R.
The following was performed on a 64 bit deployment of R:

Type of random forest: classification

Number of trees: 500

No. of variables tried at each split: 4

Performance Evaluation

Next comes an indication of the performance of the resulting model.
The out-of-bag (OOB) estimate of the error rate is calculated using the
observations that are not included in the “bag”—the “bag” is the subset
of the training dataset used for building the decision tree, hence the
“out-of-bag” terminology.

This “unbiased” estimate of error suggests that when the resulting
model is applied to new observations, the answers will be in error 14.06%
of the time. That is, it is 85.94% accurate, which is a reasonably good
model.

OOB estimate of error rate: 14.06%

This overall measure of accuracy is then followed by a confusion ma-
trix that records the disagreement between the final model’s predictions
and the actual outcomes of the training observations. The actual obser-
vations are the rows of this table, whilst the columns correspond to what
the model predicts for an observation and the cells count the number of
observations in each category. That is, the model predicts Yes and the
observation was No for 26 observations.

Confusion matrix:

No Yes class.error

No 205 10 0.04651

Yes 26 15 0.63415
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We see that the model and the training dataset agree that it won’t
rain for 205 of the observations. They agree that it will rain for 15
of the observations. However, there are 26 days for which the model
predicts that it does not rain the following day and yet it does rain.
Similarly, the model predicts that it will rain the following day for ten of
the observations when in fact it does not rain.

The overall class errors, also calculated from the out-of-bag data, are
included in the table. The model is wrong in predicting rain when there
is none in only 63.41% of the observations when there is no rain. This
is contrasted with the 4.65% error rate in predicting that it does rain
tomorrow.

Underrepresented Classes

The acceptability of such errors (false positives versus false negatives)
depends on many factors. Predicting that it will rain tomorrow and
getting it wrong (false positive) might be an inconvenience in terms of
carrying an umbrella around for the day. However, predicting that it
won’t rain and not being prepared for it (false negative) could result in
a soggy dash for cover. The 63.41% error rate in predicting that it does
not rain might be a concern.

One approach with random forests in addressing the “seriousness”
associated with the false negatives might be to adjust the balance between
the underrepresented class (66 observations have RainTomorrow as Yes)
and the overrepresented class (300 observations have RainTomorrow as
No). In the training dataset the observations are 41 and 215, respectively
(after removing any observations with missing values).

We can use the Sample Size option to encourage the algorithm to be
more aggressive in predicting that it will rain tomorrow. We will balance
up the sampling so that equal numbers of observations with Yes and No

are chosen. Specifying a value of 35,35 for the sample size will do this.
The confusion matrix for the resulting random forest is:

OOB estimate of error rate: 28.52%

Confusion matrix:

No Yes class.error

No 147 68 0.3163

Yes 5 36 0.1220
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The error rate for when it does rain tomorrow is now 12.2%, and now
we’ll get wet 5 days out of 41 when it does rain, which is better than 26
days out of 41 days on which we’ll end up getting wet.

The price we pay for this increased accuracy in predicting when it
rains, is that we now have more days predicted as raining when in fact
it does not rain. The “business problem” here indicates that carrying an
umbrella with us unnecessarily is less of a burden than getting wet when
it rains and we don’t have our umbrella. We are also assuming that we
don’t want to carry our umbrella all the time.

Variable Importance

One of the problems with a random forest, compared with a single de-
cision tree, is that it becomes quite a bit more difficult to readily un-
derstand the discovered knowledge—there are 500 trees here to try to
understand. One way to get an idea of the knowledge being discovered
is to consider the importance of the variables, as emerges from their use
in the building of the 500 decision trees.

A variable importance table is the next piece of information that
appears in the text view (we reformat it here to fit the limits of the
page):

Variable Importance

No Yes Accu Gini

Pressure3pm 1.24 2.51 1.33 4.71

Sunshine 1.24 1.72 1.23 3.82

Cloud3pm 1.13 1.90 1.16 3.19

WindGustSpeed 0.99 0.97 0.91 2.58

Pressure9am 1.03 -0.11 0.87 2.89

Temp3pm 0.83 -0.50 0.71 1.50

Humidity3pm 0.79 0.04 0.65 2.27

MaxTemp 0.61 -0.10 0.55 1.73

Temp9am 0.52 0.20 0.50 1.50

WindSpeed9am 0.56 -0.12 0.46 1.39

The table lists each input variable and then four measures of importance
for each variable. Higher values indicate that the variable is relatively
more important. The table is sorted by the Accuracy measure of impor-
tance.
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A näive approach to measuring variable importance is to count the
number of times the variable appears in the ensemble of decision trees.
This is a rather blunt measure as, for example, variables can appear at
different levels within a tree and thus have different levels of importance.
Most measures thus incorporate some measure of the improvement made
to the tree by each variable.

The third importance measure is a scaled average of the prediction
accuracy of each variable. The calculation is based on a process of ran-
domly permuting the values of a variable across the observations and
measuring the impact on the predictive accuracy of the resulting tree.
The larger the impact then the more important the variable is. Thus
this measure reports the mean decrease in the accuracy of the model.
The actual magnitude of the measure is not so relevant as the relative
positioning of variables by the measure.

The final measure of importance is the total decrease in a decision tree
node’s impurity (the splitting criterion) when splitting on a variable. The
splitting criterion used is the Gini index. This is measured for a variable
over all trees giving a measure of the mean decrease in the Gini index of
diversity relating to the variable.

The Importance button displays a visual plot of the accuracy and
the Gini importance measures, as shown in Figure 12.2, and is more
effective in illustrating the relative importance of the variables. Clearly,
Pressure3pm is the most important variable, and then Sunshine. The
accuracy measure then lists Cloud3pm and the next most important. This
is consistent with the decision tree we built in Chapter 11. What we did
not learn in building the decision tree is that Pressure9am is also quite
important, and that the remainder are less so, at least according to the
accuracy measure.

We also notice that the categoric variables (like the wind direction
variables WindGustDir, WindDir9am, and WindDir3pm) have a higher im-
portance according to the Gini measure than with the accuracy measure.
This bias towards categoric variables with many categories, exhibited in
the Gini measure, is discussed further in Section 12.6. It is noteworthy
that this bias will mislead us about the importance of these categoric
variables.
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Figure 12.2: Two measures of variable importance as calculated by the random
forest algorithm.

Time Taken

The tail of the textview provides information on how long it took to build
the random forest of 500 trees. Note that even though we are building
so many decision trees, the time taken is still less than 1 second.

Tuning Options

The Rattle interface provides a choice of Algorithm for building the ran-
dom forest. The Traditional option is chosen by default, and that is what
we have presented here. The Conditional option uses a more recent con-
ditional inference tree algorithm for building the decision trees. This is
explained in more detail in Section 12.6. A small number of other tun-
ing options are also provided, and they are discussed in some detail in
Section 12.5.

Error Plots

A useful diagnostic tool is the error plot, obtained with a click of the
Error button. Figure 12.3 shows the resulting error plot for our random
forest model.

The plot reports the accuracy of the forest of trees (in terms of error
rate on the y-axis) against the number of trees that have been included
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Figure 12.3: The error rate of the overall model gnerally decreases as each new
tree is added to the ensemble.

in the forest (the x-axis). The key point we take from this plot is that
after some number of trees there is actually very little that changes by
adding further trees to the forest. From Figure 12.3 it would appear that
going beyond about 20 trees in the forest adds very little value, when
considering the out-of-bag (OOB) error rate.

The two other plots show the changes in error rate associated with
the predictions of the model (here we have two classes predicted and so
two additional lines). We also take these into account when deciding how
many trees to add to the forest.

Conversion to Rules

Another button available with the Forest option is the Rules button,
with an associated text entry box. Clicking this button will convert the
specified tree into a set of rules. If the tree specified is 0 (rather than,
for example, the default 1), then all trees will be converted to rules. Be
careful, though, as that could take a very long time for 500 trees and 20
or more rules per tree (10,000 rules). The first two rules from tree 1 of
the random forest are shown in the following code block.
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Random Forest Model 1

Tree 1 Rule 1 Node 28 Decision No

1: Sunshine <= 6.45

2: Cloud9am <= 7.5

3: WindGustSpeed <= 43.5

4: Humidity3pm <= 36.5

5: MaxTemp <= 22.45

Tree 1 Rule 2 Node 29 Decision Yes

1: Sunshine <= 6.45

2: Cloud9am <= 7.5

3: WindGustSpeed <= 43.5

4: Humidity3pm <= 36.5

5: MaxTemp > 22.45

Building a Model Using R

As usual, we will create a container into which we place the relevant
information for the modelling. We set up some useful variables within the
container (using evalq()) as well as constructing the training and test
datasets based on a random sample of 70% of the observations, including
only those columns (i.e., dataset variables) that are not identified as
being ignored (which is a list of negative indices, and thus indicates
which columns not to include).

> library(rattle)

> weatherDS <- new.env()

> evalq({

data <- na.omit(weather)

nobs <- nrow(data)

form <- formula(RainTomorrow ~ .)

target <- all.vars(form)[1]

vars <- -grep('^(Date|Location|RISK_)', names(data))

set.seed(42)

train <- sample(nobs, 0.7*nobs)

}, weatherDS)
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Considering the formula, the variable RainTomorrow is the target,
with all remaining variables (~ .) from the provided dataset as the input
variables.

Next we build the random forest. We first generate our training
dataset as a random sample of 70% of the supplied dataset, noting that
we reset the random number generator’s seed back to a known number
for repeatability. The data itself consists of the observations contained
in the training dataset.

> library(randomForest)

> weatherRF <- new.env(parent=weatherDS)

> evalq({

model <- randomForest(formula=form,

data=data[train, vars],

ntree=500, mtry=4,

importance=TRUE,

localImp=TRUE,

na.action=na.roughfix,

replace=FALSE)

}, weatherRF)

The remaining arguments to the function are explained in Section 12.5.

Exploring the Model

The model object itself contains quite a lot of information about the
model that has been built. The str() command gives the definitive list
of all the components available within the object. An explanation is also
available through the help page for randomForest():

> str(weatherRF$model)

> ?randomForest

We consider some of the information stored within the object here.
The predicted component contains the values predicted for each

observation in the training dataset based on the out-of-bag samples. If
an observation is never in an out-of-bag sample then the prediction will
be reported as NA. Here we show just the first ten predictions:
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> head(weatherRF$model$predicted, 10)

336 342 94 304 227 173 265 44 230 245

No No No No No No No No No No

Levels: No Yes

The importance component records the information related to measures
of variable importance as discussed in detail in Section 12.4, page 253.
The information is reported for four measures (columns).

> head(weatherRF$model$importance)

No Yes MeanDecreaseAccuracy

MinTemp 0.0031712 0.0056410 0.0036905

MaxTemp 0.0092405 0.0003834 0.0077143

Rainfall 0.0014129 -0.0033066 0.0005476

Evaporation 0.0006489 -0.0040790 -0.0002857

Sunshine 0.0211487 0.0445901 0.0251667

WindGustDir 0.0020603 0.0028510 0.0021905

MeanDecreaseGini

MinTemp 2.2542

MaxTemp 1.8281

Rainfall 0.7377

Evaporation 1.3721

Sunshine 3.9320

WindGustDir 1.2739

The importance of each variable in predicting the outcome for each
observation in the training dataset can also be available in the model
object. This is accessible through the localImp component:

> head(weatherRF$model$localImp)[,1:4]

336 342 94 304

MinTemp 0.011834 0.016575 0.021053 0.00000

MaxTemp 0.000000 0.005525 0.010526 -0.07143

Rainfall 0.005917 -0.005525 0.005263 0.00000

Evaporation 0.000000 0.000000 0.000000 -0.02976

Sunshine 0.035503 0.038674 -0.010526 0.03571

WindGustDir 0.005917 -0.005525 0.005263 0.04762

The error rate data is stored as the err.rate component. This can
be accessed from the model object as we see in the following code block:
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> weatherRF$model$err.rate

In Rattle, we saw an error plot that showed the change in error rate as
more trees are added to the forest. We can obtain the actual data behind
the plot quite easily:

> round(head(weatherRF$model$err.rate, 15), 4)

OOB No Yes

[1,] 0.2738 0.2143 0.5714

[2,] 0.2701 0.2261 0.5000

[3,] 0.2560 0.2340 0.3704

[4,] 0.2273 0.1728 0.4722

[5,] 0.2067 0.1361 0.5128

[6,] 0.1872 0.1061 0.5500

[7,] 0.1570 0.0984 0.4250

[8,] 0.1689 0.1081 0.4500

[9,] 0.1404 0.0691 0.4750

[10,] 0.1223 0.0529 0.4500

[11,] 0.1223 0.0582 0.4250

[12,] 0.1048 0.0317 0.4500

[13,] 0.1310 0.0582 0.4750

[14,] 0.1354 0.0529 0.5250

[15,] 0.1223 0.0476 0.4750

Here we see that the OOB estimate decreases quickly and then starts
to flatten out. We can find the minimum quite simply, together with a
list of the indexes where each minimum occurs:

> evalq({

min.err <- min(data.frame(model$err.rate)["OOB"])

min.err.idx <- which(data.frame(model$err.rate)["OOB"]

== min.err)

}, weatherRF)

The actual minimum value together with the indexes can be listed:

> weatherRF$min.err

[1] 0.1048

> weatherRF$min.err.idx

[1] 12 45 49 50 51
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We can then list the actual models where the minimum occurs:

> weatherRF$model$err.rate[weatherRF$min.err.idx,]

OOB No Yes

[1,] 0.1048 0.03175 0.450

[2,] 0.1048 0.02116 0.500

[3,] 0.1048 0.01587 0.525

[4,] 0.1048 0.01587 0.525

[5,] 0.1048 0.01587 0.525

We might thus decide that 12 (the first instance of the minimum OOB
estimate) is a good number of trees to have in the forest.

Another interesting component is votes, which records the number
of trees that vote No and Yes within the ensemble for a particular obser-
vation.

> head(weatherRF$model$votes)

No Yes

336 0.9467 0.053254

342 0.9779 0.022099

94 0.8263 0.173684

304 0.8690 0.130952

227 0.9943 0.005682

173 0.9950 0.005025

The numbers are reported as proportions and so add up to 1 for each
observation, as we can confirm:

> head(apply(weatherRF$model$votes, 1, sum))

336 342 94 304 227 173

1 1 1 1 1 1

12.5 Tuning Parameters

Rattle provides access to just a few basic tuning options (Figure 12.1)
for the random forest algorithm. The user interface allows the number
of trees, the number of variables, and the sample size to be specified. As
is generally the case with Rattle, the defaults are a good starting point!
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These result in 500 trees being built, choosing from the square root of
the number of variables available for each node, and no sampling of the
training dataset to balance the classes.

In Figure 12.1, we see that the number of variables has automatically
been set to 4 for the weather dataset, which has 20 input variables.
The user interface options correspond to the function arguments ntree=,
ntry=, and sampsize=. Rattle also sets importance= to TRUE, replace=
to FALSE, and na.action= to na.roughfix().

A call to randomForest() including all arguments covered here will
look like:

> evalq({

model <- randomForest(formula=form,

data=data[train, vars],

ntree=500,

mtry=4,

replace=FALSE,

sampsize=.632*nobs,

importance=TRUE,

localImp=FALSE,

na.action=na.roughfix)

}, weatherRF)

Number of Trees ntree=

This specifies how many trees are to be built to populate the random
forest. The default value is 500, and a common recommendation is that a
minimum of 100 trees be built. The performance of the resulting random
forest model tends not to degrade as the number of trees increases, though
computationally it will take longer and will be more complex to use when
scoring, and often there is little to gain from adding too many trees to a
forest. The error matrix and error plot provide a guide to a good number
of trees to include in a forest. See Section 12.4 for examples.

Number of Variables ntry=

The number of variables to consider for splitting at every node is specified
by ntry=. This many variables will be randomly selected from all of
those available each time we look to partition a dataset in the process of
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building the decision tree. The general default value is the square root
of the total number of variables available, for classification tasks and
one-third of the number of available variables for regression.

If there are many noise variables (i.e., variables that play little or
no role in predicting the outcome), then we might consider increasing
the number of variables considered at each node to ensure we have some
relevant variables to choose from.

Sample Size sampsize=

The sample size argument can be used to force the algorithm to select
a smaller sample size than the default or to sample the observations
differently based on the output variable values (for classification tasks).
For example, if our training dataset contains 5,000 observations for which
it does not rain tomorrow and only 500 for which it does rain tomorrow,
we can specify the sample size as 400,400, for example, to have equal
weight on both outcomes. This provides a mechanism for effectively
setting the prior probabilities. See Section 12.4 for an example of doing
this in Rattle.

Variable Importance importance=

The importance argument allows us to review the importance of each
variable in determining the outcome. Two importance measures are cal-
culated in addition to importance of the variable in relation to each out-
come in a classification task. These have been described in Section 12.4,
and issues with the measures are discussed in Section 12.6.

Sampling with Replacement replace=

By default, the sampling is performed when the training observations
are sampled for building a particular tree within the forest samples with
replacement. This means that any particular observation might appear
multiple times within the sample, and thus some observations get over-
represented in some datasets. This is a feature of the approach. The
replace= argument set to FALSE will perform sampling without replace-
ment.
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Handling Missing Values na.action=

The implementation of the randomForest() algorithm does not directly
handle missing values. A common approach on finding missing values
is simply to ignore the observation with missing values by specifying
na.omit as the value of na.action=. For some data, this could actually
end up removing all observations from the training dataset. Another
quick option is to replace missing values with the median (for numeric
data) or the most frequent value (for categoric data) using na.roughfix.

12.6 Discussion

Brief History and Alternative Approaches

The concept of an ensemble of experts was something that the knowledge
based and expert systems research communities were exploring in the
1980’s. Some early work on building and combining multiple decision
trees was undertaken at that time (Williams, 1988). Multiple decision
trees were built by choosing different variables at nodes where the choice
of variable was not clear. The resulting ensemble was found to produce
a better predictive model.

Ho (1995, 1998) then developed the concept of randomly sampling
variables to build the ensemble of decision trees. Half of the available
variables were randomly chosen for building each of the decision tree.
She noted that as more trees were added to the ensemble, the predictive
performance increased, mostly monotonically.

Breiman (2001) built on the idea of randomly sampling variables by
introducing random sampling of variables at each node as the decision
tree is built. He also added the concept of bagging (Breiman, 1996) where
different random samples of the dataset are chosen as the training dataset
for each tree. His algorithm is in common use today, and his actual
implementation can be accessed within R through randomForest.

In some situations we will have available a huge number of variables
to choose from. Often only a small proportion of the available variables
will have some influence on the target variable. By randomly selecting
a small proportion of the available variables we will often miss the more
relevant variables in building our trees.

An approach to address this situation introduces a weighted variable
selection scheme to implement an enriched random forest (Amaratunga
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et al., 2008). Weights can be based on the q-value, derived from the
p-value for a two-sample t-test. We test for a group mean effect of a
variable, testing how well the variable can separate the values of the
binary target variable. The resulting weights then bias the random se-
lection of variables toward those that have more influence on the target
variable.

An extension to this method allows it to work when the target vari-
able has more than two values. In that case we can use a chi-square
or information gain measure. The approach can be shown to produce
considerably more accuracte models, by ensuring each decision tree has
a high degree of independence from the other trees and by weighting the
sampling of the variables to ensure important variables are selected for
each tree.

Using Other Random Forests

The randomForest() function can also be applied to regression tasks,
survival analysis, and unsupervised clustering (Shi and Horvath, 2006).

Limitation on Categories

An issue with the implementation of random forests in R is that it can
not handle categoric data with more than 32 categoric values. Statistical
concerns also suggest that categoric variables with more than 32 cate-
gories don’t make a lot of sense, and thus little effort has been made in
the R package to rectify the issue.

Importance Measures

We introduced the idea of measures of variable importance in building a
model in Section 12.4. There we looked at the mean decrease in accuracy
and the mean decrease in the Gini index as two measures calculated
whilst the trees of the random forest are being built.

These variable importance measures provided by randomForest()

have been found to be unreliable under certain conditions. The issue
particularly arises where there is a mix of numeric and categoric vari-
ables or the numeric variables have quite different scales (e.g., Age versus
Income), or then categoric variables have very different numbers of cat-
egories (Strobl et al., 2007). Less important variables can end up having
too high an importance according to the measures used, and thus we will
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be misled into believing the measures provided. Indeed, the Gini mea-
sure can be quite biased, so that categorics with many categories obtain
a higher importance.

The cforest() function of party (Hothorn et al., 2006) provides
an improved importance measure. This newer measure can be applied
to any dataset, using subsampling without replacement, to give a more
reliable measure of variable importance. A key aspect is that rather
than sampling the data with replacement to obtain a same size sample,
a random subsample is used.

Underneath, cforest() builds conditional decision trees by using the
ctree() function discussed in Chapter 11. In the following code block
we first load party into the library and we create a new data structure
to store our forest object, attaching the weather dataset to the object.

> library(party)

> weatherCFOREST <- new.env(parent=weatherDS)

Now we can build the model itself with a call to cforest():

> evalq({

model <- cforest(form,

data=data[vars],

controls=cforest_unbiased(ntree=50,

mtry=4))

}, weatherCFOREST)

We could now explore the resulting forest, but here we will simply list
the top few most important variables, according to the measure used by
party:

> evalq({

varimp <- as.data.frame(sort(varimp(model),

decreasing=TRUE))

names(varimp) <- "Importance"

head(round(varimp, 4), 3)

}, weatherCFOREST)

Importance

Pressure3pm 0.0212

Sunshine 0.0163

Cloud3pm 0.0150
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12.7 Summary

A random forest is an ensemble (i.e., a collection) of unpruned decision
trees. Random forests are often used when we have very large training
datasets and a very large number of input variables (hundreds or even
thousands of input variables). A random forest model is typically made
up of tens or hundreds of decision trees.

The generalisation error rate from random forests tends to compare
favourably with boosting approaches (see Chapter 13), yet the approach
tends to be more robust to noise in the training dataset and so tends
to be a very stable model builder, as it does not suffer the sensitivity to
noise in a dataset that single-decision-tree induction does. The general
observation is that the random forest model builder is very competitive
with nonlinear classifiers such as artificial neural nets and support vec-
tor machines. However, performance is often dataset-dependent, so it
remains useful to try a suite of approaches.

Each decision tree is built from a random subset of the training
dataset, using what is called replacement (thus it is doing what is known
as bagging) in performing this sampling. That is, some observations will
be included more than once in the sample, and others won’t appear at
all. Generally, about two-thirds of the observations will be included in
the subset of the training dataset and one-third will be left out.

In building each decision tree model based on a different random
subset of the training dataset a random subset of the available variables
is used to choose how best to partition the dataset at each node. Each
decision tree is built to its maximum size, with no pruning performed.
Together, the resulting decision tree models of the forest represent the
final ensemble model, where each decision tree votes for the result, and
the majority wins. (For a regression model, the result is the average
value over the ensemble of regression trees.)

In building the random forest model, we have options to choose the
number of trees, the training dataset sample size for building each deci-
sion tree, and the number of variables to randomly select when consid-
ering how to partition the training dataset at each node. The random
forest model builder can also report on the input variables that are ac-
tually most important in determining the values of the output variable.

By building each decision tree to its maximal depth (i.e., by not prun-
ing the decision tree), we can end up with a model that is less biased. The
randomness introduced by the random forest model builder in selecting
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the dataset and the variable delivers considerable robustness to noise,
outliers, and overfitting when compared with a single tree classifier.

The randomness also delivers substantial computational efficiencies.
In building a single decision tree, the model builder may select a random
subset of the training dataset. Also, at each node in the process of build-
ing the decision tree, only a small fraction of all of the available variables
are considered when determining how best to partition the dataset. This
substantially reduces the computational requirement.

In summary, a random forest model is a good choice for model build-
ing for a number of reasons. First, just like decision trees, very little, if
any, preprocessing of the data needs to be performed. The data does not
need to be normalised and the approach is resilient to outliers. Second,
if we have many input variables, we generally do not need to do any vari-
able selection before we begin model building. The random forest model
builder is able to target the most useful variables. Third, because many
trees are built and there are two levels of randomness, and each tree is
effectively an independent model, the model builder tends not to overfit
to the training dataset. A key factor about a random forest being a col-
lection of many decision trees is that each decision tree is not influenced
by the other decision trees when constructed.

12.8 Command Summary

This chapter has referenced the following R packages, commands, func-
tions, and datasets:

cforest() function Build a conditional random forest.
ctree() function Build a conditional inference tree.
evalq() function Access environment for storing data.
na.roughfix() function Impute missing values.
party package Conditional inference trees.
randomForest() function Implementation of random forests.
randomForest package Build ensemble of decision trees.
str() function Show the structure of an object.
weather dataset Sample dataset from rattle.



Chapter 13

Boosting

Yes/No

Training Data/Classification Data

{−1,1}{−1,1}

Weighted Sum = {−1,1}

M1

{−1,1}

M2

Mn

The Boosting meta-algorithm is
an efficient, simple, and easy-to-
use approach to building models.
The popular variant called Ad-
aBoost (an abbreviation for adap-
tive boosting) has been described
as the “best off-the-shelf classifier
in the world” (attributed to Leo
Breiman by Hastie et al. (2001,
p. 302)).

Boosting algorithms build multiple models from a dataset by us-
ing some other learning algorithm that need not be a particularly good
learner. Boosting associates weights with observations in the dataset
and increases (boosts) the weights for those observations that are hard
to model accurately. A sequence of models is constructed, and after each
model is constructed the weights are modified to give more weight to
those observations that are harder to classify. In fact, the weights of
such observations generally oscillate up and down from one model to the
next. The final model is then an additive model constructed from the
sequence of models, each model’s output being weighted by some score.
There is little tuning required and little is assumed about the learner
used, except that it should be a weak learner! We note that boosting
can fail to perform if there is insufficient data or if the weak models are
overly complex. Boosting is also susceptible to noise.

Boosting algorithms are therefore similar to random forests in that an
ensemble of models is built and then combined to deliver a better model
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than any of the constituent models. The basic distinguishing charac-
teristic of the boosting approach is that the trees are built one after
another, with refinement being based on the previously built models.
The concept is that after building one model any observations that are
incorrectly classified by that model are boosted. A boosted observation
is essentially given more prominence in the dataset, making the single
observation overrepresented. This has the effect that the next model
is more likely to correctly classify that observation. If not, then that
observation will again be boosted.

In common with random forests, the boosting algorithms tend to be
meta-algorithms. Any type of modelling approach might be used as the
learning algorithm, but the decision tree algorithm is the usual approach.

13.1 Knowledge Representation

The boosting algorithm is commonly presented in terms of decision trees
as their primary form for the representation of knowledge. The key ex-
tension to the knowledge representation is in the way that we combine
the decisions that are made by the individual “experts” or models. For
boosting, a weighted score is used, with each of the models in the ensem-
ble having a weight corresponding to the quality of its expertise (e.g.,
the measured accuracy of the individual tree).

13.2 Algorithm

As a meta-learner, boosting employs any simple learning algorithm to
build multiple models. Boosting often relies on the use of a weak learning
algorithm—essentially any weak learner can be used. An ensemble of
weak learners can lead to a strong model.

A weak learning algorithm is one that is only slightly better than
random guessing in terms of error rates (i.e., the model gets the decision
wrong just less than 50% of the time). An early example was a decision
tree of depth 1 (having a single split point and thus often referred to as
a decision stump). Each weak model is slightly better than random but
as an ensemble delivers considerable accuracy.

The algorithm begins quite simply by building a “weak” initial model
from the training dataset. Then, any observations in the training data
that the model incorrectly classifies will have their importance within the
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algorithm boosted. This is done by assigning all observations a weight—
all observations might start, for example, with a weight of 1. Weights
are boosted through a formula so that those that are wrongly classified
by the model will have a weight greater than 1 for the building of the
next decision stump.

A new model is built with these boosted observations. We can think
of them as the problematic observations. The algorithm needs to take
into account the weights of the observations in building a model. Con-
sequently, the model builder effectively tries harder each iteration to
correctly classify these “difficult” observations.

The process of building a model and then boosting observations in-
correctly classified is repeated until a newly generated model performs
no better than random. The result is then an ensemble of models to
be used to make a decision on new data. The decision is arrived at by
combining the “expertises” of each model in such a way that the more
accurate models carry more weight.

We can illustrate the process abstractly with a simple example. Sup-
pose we have ten observations. Each observation will get an initial weight
of, let’s say, 1

10 , or 0.1. We build a decision tree that incorrectly classifies
four observations (e.g., observations 7, 8, 9, and 10). We can calculate
the sum of the weights of the misclassified observations as 0.4 (and gen-
erally we denote this as ε). This is a measure of the accuracy (actually
the inaccuracy) of the model.

The ε is transformed into a measure used to update the weights and to
provide a weight for the model when it forms part of the ensemble. This
transformed value is α and is often something like 0.5∗log(1−εε ). The new
weights for the misclassified observations can then be recalculated as eα

times the old weight. In our example, α = 0.2027 (i.e., (0.5 ∗ log(1−0.40.4 ))
and so the new weights for observations 7, 8, 9, and 10 become 0.1 ∗ eα,
or 0.1225.

The tree builder is called upon again, noting that some observations
are effectively multiplied to have more representation in the algorithm.
Thus a different tree is likely to be built that is more likely to correctly
classify the observations that have higher weights (i.e., have more repre-
sentation in the training dataset).

This new model will again have errors. Suppose this time that the
model incorrectly classifies observations 1 and 8. Their current weights
are 0.1 and 0.1225, respectively. Thus, the new ε is 0.1 + 0.1225, or
0.2225. The new α is then 0.6257. This is the weight that we give to
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this model when included in the ensemble. It is again used to modify
the weights of the incorrectly classified observations, so that observation
1 gets a weight of 0.1 ∗ eα, or 0.1869 and observation 8’s weight becomes
0.1225 ∗ eα, or 0.229. So we can see that observation 8 has the highest
weight now since it seems to be quite a problematic observation. The
process continues until the individual tree that is built has an error rate
of greater than 50%.

To deploy the individual models as an ensemble, each tree is used to
classify a new observation. Each tree will provide a probability that it
will rain tomorrow (a number between 0 and 1). For each tree, this is
multiplied by the weight (α) associated with that tree. The final result
is then calculated as the average of these predictions.

Actual implementations of the boosting algorithm use variations to
the simple approach we have presented here. Variations are found in
the formulas for updating the weights and for weighting the individual
models. However, the overall concept remains the same.

13.3 Tutorial Example

Building a Model Using Rattle

The Boost option of the Model tab will build an ensemble of decision trees
using the approach of boosting misclassified observations. The individual
decision trees are built using rpart. The results of building the model
are shown in the Textview area. Using the weather dataset (loaded by
default in Rattle if we click Execute on starting up Rattle) we will see the
Textview populated as in Figure 13.1.

The Textview begins with the usual summary of the underlying func-
tion call to build the model:

Summary of the Ada Boost model:

Call:

ada(RainTomorrow ~ .,

data = crs$dataset[crs$train, c(crs$input,

crs$target)], control = rpart.control(maxdepth = 30,,

minsplit = 20, xval = 10),

iter = 50)
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Figure 13.1: Building an AdaBoost predictive model.

The model is to predict RainTomorrow based on the remainder of the
variables. The data consists of the dataset loaded into Rattle, retaining
only the observations whose index is contained in the training list and
including all but columns 1, 2, and 23. The control= argument is passed
directly to rpart() and has the same meaning as for rpart() (see Chap-
ter 11). The number of trees to build is specified by the iter= argument.
The next line of information reports on some of the parameters used for
building the model.

We won’t go into the details of the Loss and Method. Briefly, though,
the Loss is exponential, indicating that the algorithm is minimising a
so called exponential loss function, and the Method used in the algorithm
is discrete rather than gentle or real. The Iteration: item simply
indicates the number of trees that were asked to be built.

Performance Evaluation

A confusion matrix presents the performance of the model over the train-
ing data, and the following line in the Textview reports the training
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dataset error.

Final Confusion Matrix for Data:

Final Prediction

True value No Yes

No 213 2

Yes 15 26

The out-of-bag error and the associated iteration are then reported. This
is followed by suggestions of the number of iterations based on the train-
ing error and an error measure based on the Kappa statistic. The Kappa
statistic adjusts for the situation where there are very different numbers
of observations for each value of the target variable. Using these error
estimates, the best number of iterations is suggested:

Out-Of-Bag Error: 0.094 iteration= 41

Additional Estimates of number of iterations:

train.err1 train.kap1

47 47

The actual training and Kappa (adjusted) error rates are then recorded:

train.err train.kap

0.07 0.28

Time Taken

The ada() implementation takes longer than randomForest() because
it is relying on using the inbuilt rpart() rather than specially written
Fortran code as is the case for randomForest().

Time taken: 1.62 secs

Error Plot

Once a boosted model has been built, the Error button will display a plot
of the decreasing error rate as more trees are added to the model. The
plot annotates the curve with a series of five 1s simply to identify the
curve. (Extended plots can include curves for test datasets.)
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Figure 13.2: The error rate as more trees are added to the ensemble.

Figure 13.2 shows the decreasing error as more trees are added. The
plot is typical of ensembles where the error rate drops off quite quickly
early on and then flattens out as we proceed. We might decide, from the
plot, a point at which we stop building further trees. Perhaps that is
around 40 trees for our data.

Variable Importance

A measure of the importance of variables is also provided by ada (Culp
et al., 2010). Figure 13.3 shows the plot. The measure is a relative
measure so that the order and distance between the scores are more
relevant than the actual scores.

The measure calculates, for each tree, the improvement in accuracy
that the variable chosen to split the dataset offers the model. This is
then averaged over all trees in the ensemble.

Of the five most important variables, we notice that there are two
categoric variables (WindDir9am and WindDir3pm). Because of the nature
of how variables are chosen for a decision tree algorithm, there may well
be a bias here in favour of categoric variables, so we might discount their
importance. See Chapter 12, page 265 for a discussion of the issue.
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Figure 13.3: The variable importance plot for a boosted model.

Tuning Options

A few basic tuning options for boosting are provided by the Rattle inter-
face. The first option is the Number of Trees to build, which is set to 50
by default. The Max Depth, Min Split, and Complexity are as provided
by the decision tree algorithm and are discussed in Section 13.4.

Adding Trees

The Continue button allows further trees to be added to the model. This
allows us to easily explore whether the addition of further trees will offer
much improvement in the performance of the model, without starting
the modelling over again.

To add further trees, increase the value specified in the Number of
Trees text box and click the Continue button. This will pick up the
model building from where it left off and build as many more trees as is
needed to get up to the specified number of trees.

R

The package ada provides ada(), which implements the boosting algo-
rithm deployed by Rattle. The ada() function itself uses rpart() from
rpart to build the decision trees. With the default settings, a very rea-
sonable model can be built.
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We will step through the simple process of building a boosted model.
First, we create the dataset object, as usual. This will encapsulate the
weather dataset from rattle, together with a collection of other useful
data about the weather dataset. A training sample is also identified/

> library(rattle)

> weatherDS <- new.env()

> evalq({

data <- weather

nobs <- nrow(weather)

vars <- -grep('^(Date|Location|RISK_)', names(data))

form <- formula(RainTomorrow ~ .)

target <- all.vars(form)[1]

set.seed(42)

train <- sample(nobs, 0.7*nobs)

}, weatherDS)

We can now build the boosted model based on this dataset. Once again
we create a container for the model, and include the above container for
the dataset within this container.

> library(ada)

> weatherADA <- new.env(parent=weatherDS)

Within this new container we now build our model.

> evalq({

control <- rpart.control(maxdepth=30,

cp=0.010000,

minsplit=20,

xval=10)

model <- ada(formula=form,

data=data[train, vars],

control=control,

iter=50)

}, weatherADA)

We can obtain a basic overview of the model simply by printing its value,
as we do in the following code block (note that the results here may vary
slightly between 32 bit and 64 bit implementations of R).
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> weatherADA$model

Call:

ada(form, data = data[train, vars],

control = control, iter = 50)

Loss: exponential Method: discrete Iteration: 50

Final Confusion Matrix for Data:

Final Prediction

True value No Yes

No 213 2

Yes 16 25

Train Error: 0.07

Out-Of-Bag Error: 0.105 iteration= 38

Additional Estimates of number of iterations:

train.err1 train.kap1

41 41

The summary() command provides a little more detail.

> summary(weatherADA$model)

Call:

ada(form, data = data[train, vars],

control = control, iter = 50)

Loss: exponential Method: discrete Iteration: 50

Training Results

Accuracy: 0.93 Kappa: 0.697

Replicating AdaBoost Directly using rpart()

We can replicate the boosting process directly using rpart(). We will
illustrate this as an example of a little more sophistication in R coding.
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We will first load the weather dataset and extract the input variables (x)
and the output variable (y). To simplify some of the mathematics we
will map the predictions to −1/1 rather than 0/1 (since then a model
that predicts a value greater than 0 is a positive example and one below
zero is a negative example). The data is encapsulated within a container
called weatherBRP.

> library(rpart)

> weatherBRP <- new.env()

> evalq({

data <- weather

vars <- -grep('^(Date|Location|RISK_)', names(data))

target <- "RainTomorrow"

N <- nrow(data)

M <- ncol(data) - length(vars)

data$Target <- rep(-1, N)

data$Target[data[target] == "Yes"] <- 1

vars <- c(vars, -(ncol(data)-1)) # Remove old target

form <- formula(Target ~ .)

target <- all.vars(form)[1]

}, weatherBRP)

The first few observations show the mapping from the original target,
which has the values No and Yes, to the new numeric values −1 and 1.

> head(weatherBRP$data[c("RainTomorrow", "Target")])

RainTomorrow Target

1 Yes 1

2 Yes 1

3 Yes 1

4 Yes 1

5 No -1

6 No -1
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We can check the list of variables available (only checking the first
few here), and note that we exclude four from our analysis:

> head(names(weatherBRP$data))

[1] "Date" "Location" "MinTemp"

[4] "MaxTemp" "Rainfall" "Evaporation"

> weatherBRP$vars

[1] -1 -2 -23 -24

Now we can initialise the observation weights, which to start with are all
the same (1/N):

> evalq({

w <- rep(1/N, N)

}, weatherBRP)

> round(head(weatherBRP$w), 4)

[1] 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027

Next we build the first model. The rpart() function, conveniently, has
a weights argument, and we simply pass to it the calculated weights
store in w. We also set up rpart.control() for building a decision tree
stump. The control simply includes maxdepth=, setting it to 1 so that a
single-level tree is built:

> evalq({

control <- rpart.control(maxdepth=1)

M1 <- rpart(formula=form,

data=data[vars],

weights=w/mean(w),

control=control,

method="class")

}, weatherBRP)
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We can then display the first model:

> weatherBRP$M1

n= 366

node), split, n, loss, yval, (yprob)

* denotes terminal node

1) root 366 66 -1 (0.8197 0.1803)

2) Humidity3pm< 71.5 339 46 -1 (0.8643 0.1357) *

3) Humidity3pm>=71.5 27 7 1 (0.2593 0.7407) *

We see that the decision tree algorithm has chosen Humidity3pm on which
to split the data, at a split point of 71.5. For Humidity3pm < 71.5 the
decision is –1 with probability 0.86, and for Humidity3pm ≥ 71.5 the
decision is 1 with probability 0.75.

We now need to find those observations that are incorrectly classified
by the model. The R code here calls predict() to apply the model M1 to
the dataset from which it was built. From this result, we get the second
column. This is the list of probabilities of each observation being in class
1. If this probability is above 0.5, then the result is 1, otherwise it is −1
(multiplying the logical value by 2 and then subtracting 1 achieves this
since TRUE is regarded as 1 and FALSE as 0). The resulting class is
then compared with the target, and which() returns the index of those
observations for which the prediction differs from the actual class:

> evalq({

ms <- which(((predict(M1)[,2]>0.5)*2)-1 !=

data[target])

names(ms) <- NULL

}, weatherBRP)
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The indexes of the first few of the 53 misclassified can be listed:

> evalq({

cat(paste(length(ms),

"observations incorrectly classified:\n"))

head(ms)

}, weatherBRP)

53 observations incorrectly classified:

[1] 1 2 3 4 9 17

We now calculate the model weight (based on the weighted error rate of
this deicison tree) dividing by the total sum of weights to get a normalised
value (so that sum(w) remains 1):

> evalq({e1 <- sum(w[ms])/sum(w); e1}, weatherBRP)

[1] 0.1448

The adjustment is then calculated:

> evalq({a1 <- log((1-e1)/e1); a1}, weatherBRP)

[1] 1.776

We then update the observation weights:

> round(head(weatherBRP$w[weatherBRP$ms]), 4)

[1] 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027

> evalq({w[ms] <- w[ms]*exp(a1)}, weatherBRP)

> round(head(weatherBRP$w[weatherBRP$ms]), 4)

[1] 0.0161 0.0161 0.0161 0.0161 0.0161 0.0161

A second model can now be built:

> evalq({

M2 <- rpart(formula=form,

data=data[vars],

weights=w/mean(w),

control=control,

method="class")

}, weatherBRP)
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This results in a simple decision tree involving the variable Pressure3pm:

> weatherBRP$M2

n= 366

node), split, n, loss, yval, (yprob)

* denotes terminal node

1) root 366 170.50 -1 (0.5341 0.4659)

2) Pressure3pm>=1016 206 29.96 -1 (0.8065 0.1935) *

3) Pressure3pm< 1016 160 70.58 1 (0.3343 0.6657) *

Once again we identify the misclassified observations

> evalq({

ms <- which(((predict(M2)[,2]>0.5)*2)-1 !=

data[target])

names(ms) <- NULL

}, weatherBRP)

There are 118 of them:

> evalq({length(ms)}, weatherBRP)

[1] 118

The indexes of the first few can also be listed:

> evalq({head(ms)}, weatherBRP)

[1] 9 14 15 16 18 19

We again boost the misclassified observations, first calculating the
weighted error rate of the decision tree:

> evalq({e2 <- sum(w[ms])/sum(w); e2}, weatherBRP)

[1] 0.2747

The adjustment is calculated:

> evalq({a2 <- log((1-e2)/e2); a2}, weatherBRP)

[1] 0.9709
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The adjustments are then made to the weights of the individual obser-
vations that were misclassified:

> round(head(weatherBRP$w[weatherBRP$ms]), 4)

[1] 0.0161 0.0027 0.0027 0.0027 0.0027 0.0027

> evalq({w[ms] <- w[ms]*exp(a2)}, weatherBRP)

> round(head(weatherBRP$w[weatherBRP$ms]), 4)

[1] 0.0426 0.0072 0.0072 0.0072 0.0072 0.0072

A third (and for our purposes the last) model can then be built:

> evalq({

M3 <- rpart(formula=form,

data=data[vars],

weights=w/mean(w),

control=control,

method="class")

ms <- which(((predict(M3)[,2]>0.5)*2)-1 !=

data[target])

names(ms) <- NULL

}, weatherBRP)

Again we identify the misclassified observations:

> evalq({length(ms)}, weatherBRP)

[1] 145

Calculate the error rate:

> evalq({e3 <- sum(w[ms])/sum(w); e3}, weatherBRP)

[1] 0.3341

Calculate the adjustment:

> evalq({a3 <- log((1-e3)/e3); a3}, weatherBRP)

[1] 0.6896
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We can then finally adjust the weights (in case we decide to continue
building further decision trees):

> round(head(weatherBRP$w[weatherBRP$ms]), 4)

[1] 0.0161 0.0161 0.0027 0.0027 0.0027 0.0027

> evalq({w[ms] <- w[ms]*exp(a3)}, weatherBRP)

> round(head(weatherBRP$w[weatherBRP$ms]), 4)

[1] 0.0322 0.0322 0.0054 0.0054 0.0054 0.0054

The final (combined or ensemble) model, if we choose to stop here, is
then

M(x) = 1.7759 ∗M1(x) + 0.9709 ∗M2(x) + 0.6896 ∗M3(x).

13.4 Tuning Parameters

A number of options are given by Rattle for boosting a decision tree
model. We briefly review them here.

Number of Trees iter=50

The number of trees to build is specified by the iter= argument. The
default is to build 50 trees.

Bagging bag.frac=0.5

Bagging is used to randomly sample the supplied dataset. The default
is to select a random sample from the population of 50%.

13.5 Discussion

References

Boosting originated with Freund and Schapire (1995). Building a col-
lection of models into an ensemble can reduce misclassification error,
bias, and variance (Bauer and Kohavi, 1999; Schapire et al., 1997). The
original formulation of the algorithm adjusts all weights each iteration—
weights are increased if the corresponding record is misclassified or de-
creased if it is correctly classified. The weights are then further nor-
malised each iteration to ensure they continue to represent a distribution

13.5 Discussion
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(so that
∑n

j=1wj = 1). This can be simplified, as by Hastie et al. (2001),
to increase only the weights of the misclassified observations.

A number of R packages implement boosting. We have covered ada
here, and this is the package presently used by Rattle. caTools (Tuszyn-
ski, 2009) provides LogitBoost(), which is simple to use and an effi-
cient implementation for very large datasets, using a carefully crafted
implementation of decision stumps as the weak learners. gbm (Ridge-
way, 2010) implements generalised boosted regression, providing a more
widely applicable boosting algorithm. mboost (Hothorn et al., 2011) is
another alternative offering model-based boosting. The variable impor-
tance measure implemented for ada() is described by Hastie et al. (2001,
pp. 331–332).

Alternating Decision Trees—Using Weka

An alternating decision tree (Freund and Mason, 1997), combines the
simplicity of a single decision tree with the effectiveness of boosting.
The knowledge representation combines tree stumps, a common model
deployed in boosting, into a decision tree type structure.

A key characteristic of the tree representation is that the different
branches are no longer mutually exclusive. The root node is a prediction
node and has just a numeric score. The next layer of nodes are decision
nodes and are essentially a collection of decision tree stumps. The next
layer then consists of prediction nodes, and so on, alternating between
prediction nodes and decision nodes.

A model is deployed by identifying the possibly multiple paths from
the root node to the leaves, through the alternating decision tree, that
correspond to the values for the variables of an observation to be classi-
fied. The observation’s classification score (or measure of confidence) is
the sum of the prediction values along the corresponding paths.

The alternating decision tree algorithm is implemented in the Weka
data mining suite. Weka is available directly from R through RWeka
(Hornik et al., 2009), which provides its comprehensive collection of data
mining tools within the R framework. A simple example will illustrate
the incredible power that this offers—using R as a unifying interface to
an extensive collection of data mining tools.

We can build an alternating decision tree in R using RWeka after
installing the appropriate Weka package:
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> library(RWeka)

> WPM("refresh-cache")

> WPM("install-package", "alternatingDecisionTrees")

We use make_Weka_classifier() to turn a Weka object into an R
function:

> WPM("load-package", "alternatingDecisionTrees")

> cpath <- "weka/classifiers/trees/ADTree"

> ADT <- make_Weka_classifier(cpath)

We can obtain some background information about the resulting function
by printing the value of the resulting variable:

> ADT

An R interface to Weka class

'weka.classifiers.trees.ADTree', which has

information

Class for generating an alternating decision

tree. The basic algorithm is based on:

[...]

Argument list:

(formula, data, subset, na.action, control =

Weka_control(),

options = NULL)

Returns objects inheriting from classes:

Weka_classifier
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The function WOW(), standing for “Weka option wizard”, will list the
command line arguments that become available with the generated func-
tion, as seen in the following code block:

> WOW(ADT)

-B Number of boosting iterations. (Default =

10)

Number of arguments: 1.

-E Expand nodes: -3(all), -2(weight),

-1(z_pure), >=0 seed for random walk

(Default = -3)

Number of arguments: 1.

-D Save the instance data with the model

Next we perform our usual model building. As always we first create a
container for the model, making available the appropriate dataset con-
tainer for use from within this new container:

> weatherADT <- new.env(parent=weatherDS)

The model is built as a simple call to ADT:

> evalq({

model <- ADT(formula=form, data=data[train, vars])

}, weatherADT)

The resulting alternating decision tree can then be displayed as we see
in the following code block.
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> weatherADT$model

Alternating decision tree:

: -0.794

| (1)Pressure3pm < 1011.9: 0.743

| (1)Pressure3pm >= 1011.9: -0.463

| | (3)Temp3pm < 14.75: -1.498

| | (3)Temp3pm >= 14.75: 0.165

| (2)Sunshine < 8.85: 0.405

| | (4)WindSpeed9am < 6.5: 0.656

| | (4)WindSpeed9am >= 6.5: -0.26

| | | (8)Sunshine < 6.55: 0.298

| | | | (9)Temp3pm < 18.75: -0.595

| | | | (9)Temp3pm >= 18.75: 0.771

| | | (8)Sunshine >= 6.55: -0.931

| (2)Sunshine >= 8.85: -0.76

| | (6)MaxTemp < 24.35: -1.214

| | (6)MaxTemp >= 24.35: 0.095

| | | (7)Sunshine < 10.9: 0.663

| | | (7)Sunshine >= 10.9: -0.723

| (5)Pressure3pm < 1016.1: 0.295

| (5)Pressure3pm >= 1016.1: -0.658

| | (10)MaxTemp < 19.55: 0.332

| | (10)MaxTemp >= 19.55: -1.099

Legend: -ve = No, +ve = Yes

Tree size (total number of nodes): 31

Leaves (number of predictor nodes): 21
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We can then explore how well the model performs:

> evalq({

predictions <- predict(model, data[-train, vars])

table(predictions, data[-train, target],

dnn=c("Predicted", "Actual"))

}, weatherADT)

Actual

Predicted No Yes

No 72 11

Yes 13 14

Compare this with the ada() generated model:

> evalq({

predictions <- predict(model, data[-train, vars])

table(predictions, data[-train, target],

dnn=c("Predicted", "Actual"))

}, weatherADA)

Actual

Predicted No Yes

No 78 10

Yes 7 15

In this example, the ada() model performs better than the ADT() model.

13.6 Summary

Boosting is an efficient, simple, and easy-to-understand model building
strategy that tends not to overfit our data, hence building good mod-
els. The popular variant called AdaBoost (an abbreviation for adaptive
boosting) has been described as the “best off-the-shelf classifier in the
world” (attributed to Leo Breiman by Hastie et al. (2001, p. 302)).

Boosting algorithms build multiple models from a dataset, using some
other model builders, such as a decision tree builder or neural network,
that need not be particularly good model builders. The basic idea of
boosting is to associate a weight with each observation in the dataset.
A series of models are built and the weights are increased (boosted) if a
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model incorrectly classifies the observation. The weights of such obser-
vations generally oscillate up and down from one model to the next. The
final model is then an additive model constructed from the sequence of
models, each model’s output weighted by some score. There is little tun-
ing required and little is assumed about the model builder used, except
that it should be relatively weak model. We note that boosting can fail
to perform if there is insufficient data or if the weak models are overly
complex. Boosting is also susceptible to noise.

13.7 Command Summary

This chapter has referenced the following R packages, commands, func-
tions, and datasets:

ada() function Implementation of AdaBoost.
ada package Builds AdaBoost models.
caTools package Provides LogitBoost().
gbm package Generalised boosted regression.
LogitBoost() function Alternative boosting algorithm.
predict() function Applies model to new dataset.
randomForest() function Implementation of random forests.
rattle package The weather dataset and GUI.
rpart() function Builds a decision tree model.
rpart.control() function Controls ada() passes to rpart().
rpart package Builds decision tree models.
RWeka package Interface Weka software.
summary() function Summarise an ada model.
which() function Elements of a vector that are TRUE.
WOW() function The Weka option wizard.
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Support Vector Machines
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A support vector machine (SVM)
searches for so-called support vec-
tors which are observations that
are found to lie at the edge of
an area in space which presents
a boundary between one of these
classes of observations (e.g., the
squares) and another class of ob-
servations (e.g., the circles). In
the terminology of SVM we talk
about the space between these two
regions as the margin between the classes. Each region contains obser-
vations with the same value for the target variable (i.e., the class). The
support vectors, and only the support vectors, are used to identify a hy-
perplane (a straight line in two dimensions) that separates the classes.
The maximum margin between the separable classes is sought. This then
represents the model.

It is usually quite rare that we can separate the data with a straight
line (or a hyperplane when we have more than two input variables). That
is, the data is not usually distributed in such a way that it is linearly sep-
arable. When this is the case, a technique is used to combine (or remap)
the data in different ways, creating new variables so that the classes are
then more likely to become linearly separable by a hyperplane (i.e., so
that with the new dimensional data there is a gap between observations
in the two classes). We can use the model we have built to score new ob-
servations by mapping the data in the same way as when the model was

     ,
      DOI 10.1007/978-1-4419-98 - _14, © Springer Science+Business Media, LLC 2011

G. Williams, Data Mining with Rattle and R: The Art of Excavating Data for Knowledge Discovery
Use R,

293
90 3



294 14 Support Vector Machines

built, and then decide on which side of the hyperplane the observation
lies and hence the decision associated with it.

Support vector machines have been found to perform well on prob-
lems that are nonlinear, sparse, and high-dimensional. A disadvantage
is that the algorithm is sensitive to the choice of tuning option (e.g., the
type of transformations to perform), making it harder to use and time-
consuming to identify the best model. Another disadvantage is that the
transformations performed can be computationally expensive and are
performed both whilst building the model and when scoring new data.

An advantage of the method is that the modelling only deals with
these support vectors rather than the whole training dataset, and so the
size of the training set is not usually an issue. Also, as a consequence of
only using the support vectors to build a model, the model is less affected
by outliers.

14.1 Knowledge Representation

The approach taken by a support vector machine model is to build a
linear model; that is, to identify a line (in two dimensions) or a flat plane
(in multiple dimensions) that separates observations with different values
of the target variable. If we can find such a line or plane, then we find one
that maximises the area between the two groups (when we are looking
at binary classification, as with the weather dataset).

Consider a simple case where we have just two input variables (i.e.,
two-dimensional space). We will choose Pressure3pm and Sunshine. We
will also purposefully select observations that will clearly demonstrate
a significant separation (margin) between the observations for which it
rains tomorrow and those for which it does not. The R code here illus-
trates our selection of the data and drawing of the plot. From the weather
dataset, we only select observations that meet a couple of conditions to
get two clumps of observations, one with No and the other with Yes for
RainTomorrow (see Figure 14.1):
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> library(rattle)

> obs <- with(weather, Pressure3pm+Sunshine > 1032 |

(Pressure3pm+Sunshine < 1020 &

RainTomorrow == "Yes"))

> ds <- weather[obs,]

> with(ds, plot(Pressure3pm, Sunshine,

pch=as.integer(RainTomorrow),

col=as.integer(RainTomorrow)+1))

> lines(c(1016.2, 1019.6), c(0, 12.7))

> lines(c(1032.8, 1001.5), c(0, 12.7))

> legend("topleft", c("Yes", "No"), pch=2:1, col=3:2)
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Figure 14.1: A simple and easily linearly separable collection of observations.

Two lines are shown in Figure 14.1 as two possible linear models.
Taking either line as a model, the observations to the left will be classified
as Yes and those to the right as No. However, there is an infinite collection
of possible lines that we could draw to separate the two regions.
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The support vector approach suggests that we find a line in the sepa-
rating region such that we can make the line as thick as possible to butt
up against the observations on the boundary. We choose the line that
fills up the maximum amount of space between the two regions, as in
Figure 14.2. The observations that butt up against this region are the
support vectors.
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Figure 14.2: A maximal region or margin between the two classes of observa-
tions.

This is the representation of the model that we build using the ap-
proach of identifying support vectors and a maximal region between the
classifications. The approach generalises to multiple dimensions (i.e.,
many input variables), where we search for hyperplanes that maximally
fill the space between classes in the same way.
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14.2 Algorithm

It is rarely the case that our observations are linearly separable. More
likely, the data will appear as it does in Figure 14.3, which was generated
directly from the data.

> ds <- weather

> with(ds, plot(Pressure3pm, Sunshine,

pch=as.integer(RainTomorrow),

col=as.integer(RainTomorrow)+1))

> legend("topleft", c("Yes", "No"), pch=2:1, col=3:2)
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Figure 14.3: A nonlinearly separable collection of observations.

This kind of situation is where the kernel functions play a role. The
idea is to introduce some other derived variables that are obtained from
the input variables but combined and mathematically changed in some
nonlinear way. Rather simple examples could be to add a new variable
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which squares the value of Pressure3pm and another new variable that
multiplies Pressure3pm by Sunshine. Adding such variables to the data
can enhance separation. Figure 14.4 illustrates the resulting location
of the observations, showing an improvement in separation (though to
artificially exaggerate the improvement, not all points are shown).
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Figure 14.4: Nonlinearly transformed observations showing Pressure3pm

squared (x-axis) against Pressure3pm multiplied by Sunshine, artificially en-
hanced.

A genuine benefit is likely to be seen when we add further variables
to our dataset. It becomes difficult to display such multi-dimensional
plots on the page, but tools like GGobican assist in visualising such data
and confirming improved separation.

The basic kernel functions that are often used are the radial basis
function, a linear function, and a polynomial function. The radial basis
function uses a formula somewhat of the form e−γ||x−x

′||2 for two observa-
tions x and x′ (without going into the details). The polynomial function
has the form (1+〈x, x′〉)d, for some integer d. For two input variables X1



14.3 Tutorial Example 299

and X2 and a power of 2, this becomes (1+x1x
′
1+x2x

′
2)

2. Again, we skip
the actual details of how such a formula is used. There are a variety of
kernel functions available, but the commonly preferred one, and a good
place to start, is the radial basis function.

Once the input variable space has been appropriately transformed,
we then proceed to build a linear model as described in Section 14.1.

14.3 Tutorial Example

Building a Model Using Rattle

Rattle supports the building of support vector machine (SVM) models
through kernlab (Karatzoglou et al., 2004). This package provides an
extensive collection of kernel functions that can be applied to the data.
This works by introducing new variables. Quite a variety of tuning op-
tions are provided by kernlab, but only a few are given through Rattle.

It is quite easy to experiment with different kernels using the weather
dataset provided. The default kernel (radial basis function) is a good
starting point. Such models can be quite accurate with no or little tuning.
Two parameters are available for the radial basis function. C= is a penalty
or cost parameter with a default value of 1. The Options widget can be
used to set different values (e.g., C=10).

We review here the information provided to summarise the model, as
displayed in Figure 14.5. The Textview begins with the summary of the
model, identifying it as an object of class (or type) ksvm (kernel support
vector machine):

Summary of the SVM model (built using ksvm):

Support Vector Machine object of class "ksvm"

The type of support vector machine is then identified. The C-svc in-
dicates that the standard regularised support vector classification (svc)
algorithm is used, with parameter C for tuning the algorithm. The value
used for C is also reported:

SV type: C-svc (classification)

parameter : cost C = 1
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Figure 14.5: Building a support vector machine classification model.

An automatic algorithm is used to estimate another parameter (sigma)
for the radial basis function kernel. The next two lines include an indi-
cation of the estimated value:

Gaussian Radial Basis kernel function.

Hyperparameter : sigma = 0.0394657153475283

The remaining lines report on the characteristics of the model, including
how many observations are on the boundary (i.e., the support vectors),
the value of the so-called objective function that the algorithm optimises,
and the error calculated on the training dataset:

Number of Support Vectors : 106

Objective Function Value : -59.25

Training error : 0.100877

Probability model included.
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Time Taken

The support vector machine is reasonably efficient:

Time taken: 0.16 secs

R

There is a wealth of functionality provided through kernlab and ksvm()

for building support vector machine models. We will cover the basic
functionality here. As usual, we begin with the dataset object from
which we will be building our model:

> library(rattle)

> weatherDS <- new.env()

> evalq({

data <- weather

nobs <- nrow(weather)

target <- "RainTomorrow"

vars <- -grep('^(Date|Location|RISK_)', names(data))

set.seed(42)

train <- sample(nobs, 0.7*nobs)

form <- formula(RainTomorrow ~ .)

}, weatherDS)

We can now build the boosted model based on this dataset:

> library(kernlab)

> weatherSVM <- new.env(parent=weatherDS)

> evalq({

model <- ksvm(form,

data=data[train, vars],

kernel="rbfdot",

prob.model=TRUE)

}, weatherSVM)

The kernel= argument indicates that we will use the radial basis function
as the kernel function. The prob.model= argument, set to TRUE, results
in a model that predicts the probability of the outcomes. We obtain the
usual overview of the model by simply printing its value:
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> weatherSVM$model

Support Vector Machine object of class "ksvm"

SV type: C-svc (classification)

parameter : cost C = 1

Gaussian Radial Basis kernel function.

Hyperparameter : sigma = 0.0394335857291656

Number of Support Vectors : 107

Objective Function Value : -59.23

Training error : 0.100877

Probability model included.

14.4 Tuning Parameters

We describe here a number of tuning parameters, but many other options
are available and are documented as part of kernlab.

Model Type type=

The ksvm() function can be used for a variety of modelling tasks, de-
pending on the type of target variable. We are generally interested in
classification tasks using the so-called C-svc formulation (support vector
classification with a C parameter for tuning). This is a standard formu-
lation for SVMs and is referred to as regularised support vector classifi-
cation. Other options here include nu-svc for automatically regularised
support vector classification, one-svc for novelty detection, eps-svr for
support vector regression that is robust to small (i.e., epsilon) errors,
and nu-svr for support vector regression that automatically minimises
epsilon. Other options are available.

Kernel Function kernel=

The kernel method is the mechanism used to map our observations into a
higher dimensional space. It is then within this higher dimensional space
that the algorithm looks for a hyperplane that partitions our observations
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to find the maximal margin between the different values of the target
variable.

The ksvm() function supports a number of kernel functions. A good
starting point is the radial basis function (using a Gaussian type of func-
tion). This is the rfdot option. The “dot” refers to the mathematical
dot function or inner product between two vectors. This is integral to
how support vector machines work, though not covered here. Other op-
tions include polydot for a polynomial kernel, vanilladot for a linear
kernel, and splinedot for a spline kernel, amongst others.

Class Probabilities prob.model=

If this is set to TRUE, then the resulting model will calculate class prob-
abilities.

Kernel Parameter: Cost of Constraints Violation C=

The cost parameter C= is by default 1. Larger values (e.g., 100 or 10,000)
will consider more the points near the decision boundary, whilst smaller
values relate to points further away from the decision boundary. De-
pending on the data, the choice of the cost argument may only play a
small role in the resulting model.

Kernel Parameter: Sigma sigma=

For a radial basis function kernel, the sigma value can be set. Rattle uses
automatic sigma estimation (using sigest()) for this kernel. This will
find a good sigma value based on the data.

To experiment with various sigma values we can use the R code from
Rattle’s Log tab and paste that into the R Console and then add in the
additional settings and run the model. This parameter tunes the kernel
function selected, and so is listed as the kparm= list.

Cross Validation cross=

We can specify an integer value here to indicate whether to perform
k-fold cross-validation.
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14.5 Command Summary

This chapter has referenced the following R packages, commands, func-
tions, and datasets:

kernlab package Kernel-based algorithms for machine learning.
ksvm() function Build an SVM model.
rattle package The weather dataset and GUI.
sigest() function Sigma estimation for kernel.
weather dataset Sample dataset from rattle.
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Delivering Performance





Chapter 15

Model Performance
Evaluation

If a model looks too good to be true, then generally it is.

The preceding chapters presented a number of algorithms for building
descriptive and predictive models. Before we can identify the best from
amongst the different models, we must evaluate the performance of the
model. This will allow us to understand what to expect when we use
the model to score new observations. It can also help identify whether
we have made any mistakes in our choice of input variables. A common
error is to include as an input variable a variable that directly relates
to the outcome (like the amount of rain tomorrow when we are predict-
ing whether it will rain tomorrow). Consequently, this input variable is
exceptionally good at predicting the target.

In this chapter, we consider the issue of evaluating the performance of
the models that we have built. Essentially, we consider predict(), pro-
vided by R and accessed through Rattle’s Evaluate tab, and the functions
that summarise and analyse the results of the predictions.

We will work through each of the approaches for evaluating model
performance. We start with a simple table, called a confusion matrix,
that compares predictions with actual answers. This also introduces the
concepts of true positives, false positives, true negatives, and false neg-
atives. We then explain a risk chart which graphically compares the
performance of the model against known outcomes and is used to iden-
tify a suitable trade-off between effort and outcomes. Traditional ROC
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curves are then introduced. We finish with a discussion of simply scoring
datasets and saving the results to a file.

In applying a model to a new dataset, the new dataset must contain
all of the same variables and have the same data types on which the
model was built. This is true even if any variables were not used in
the final model. If the variable is missing from the new dataset, then
generally an error is generated.

15.1 The Evaluate Tab: Evaluation Datasets

Rattle’s Evaluate tab provides access to a variety of options for evalu-
ating the performance of our models. We can see the options listed in
Figure 15.1. We briefly introduce the options here and expand on them
in this chapter.

Figure 15.1: The Evaluate tab options.

Types of Evaluations

The range of different Types of evaluations is presented as a series of
radio buttons running from Confusion Matrix to Score. Only one type of
evaluation is permitted to be chosen at any time. Each type of evaluation
is presented in the following sections of this chapter.

Models to Evaluate

Below the row of evaluation types is a row of check boxes to choose the
models we wish to evaluate. These check boxes are only available once a
model has been built. As models are built, the check boxes will become
available as options to check.
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As we move from the Model tab to this Evaluate tab, the most recently
built model will be automatically checked (and any previously checked
model choices will be unselected). This corresponds to a common pattern
of behaviour in that often we will build and tune a model, then want
to explore its performance by moving to this Evaluate tab. If the All
option has been chosen within the Model tab, then all models that were
successfully built will automatically be checked on the Evaluate tab. This
is the case here, where the six predictive models are checked.

Dataset Used for Evaluation

To evaluate a model, we need to identify a dataset on which to per-
form the evaluation. The next row of options within the Rattle interface
provides a collection of alternative sources of data.

The first four options for the Data correspond to the partitioning of
the dataset specified on the Data tab. The options are Training, Vali-
dation, Testing, and Full. The concept of a training/validation/testing
dataset partition was discussed in Section 3.1, and we discussed the con-
cept of sampling and associated biases in Section 4.7. We now discuss it
further in the context of evaluating the models.

The first option (but not the best option) is to evaluate our model
on the Training dataset. This is generally not a good idea, and an infor-
mation dialogue will be shown to reinforce this.

The problem with evaluating our model on the training dataset is
that we have built it on this training dataset. It is often the case that
the model will perform very well on that dataset. It should, because
we’ve tried hard to make sure it does. But this does not give us a very
good idea of how well the model will perform in general on previously
unseen data.

We need a better guide to how well the model will perform in general,
that is, how the model will perform on new and previously unseen data.
To answer that question, we need to apply the model to such data. In
doing so, we will obtain the overall error rate of the model. This is
simply the proportion of observations where the model and the actual
known outcomes differ. This error rate, and not the error rate from the
training dataset, will then be a better estimate of how well the model
will perform. It is a less biased estimate of the error.

We use the Validation dataset to test the performance of a model
whilst we are building and fine-tuning it. Thus, after building one deci-
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sion tree, we will check its performance against this validation dataset.
We might then change some of the tuning options for building a deci-
sion tree model. We compare the new model against the old one based
on its performance on the validation dataset. In this sense, the valida-
tion dataset is used during the modelling process to build the final model.
Consequently, we will still have a biased estimate of the final performance
of our model if we rely on the validation dataset for this measure.

The Testing dataset is then a “hold-out” dataset that has not been
used at all during the model building. Once we have identified our “best”
model based on using the validation dataset, the model’s performance
on the testing dataset is then assessed. This is then an estimate of the
expected performance on any new data.

The fourth option uses the Full dataset for evaluating the model (the
combined training, validation, and testing datasets). This might be seen
to be useful only as a curiosity rather than for accurate performance.

Another option available as a data source is provided through the
Enter choice. This is available when Score is chosen as the type of eval-
uation. In this case, a window will pop up to allow us to directly enter
some data and have that “scored” by the model.

The final two options for the data source are a CSV File and an R
Dataset. These allow data to be loaded into R from a CSV file, and the
model can be evaluated on that dataset. Alternatively, for a data frame
already available through R, the R Dataset will allow it to be chosen and
the model evaluated on that.

Risk Variable

The final row of options begins with an informative label that reports on
the name of the Risk Variable chosen in the Data tab. The risk variable is
used as a measure of how significant each observation is with respect to
the target variable. For example, it might record the dollar value of the
fraud or the amount of rain received “tomorrow.” The risk chart makes
use of this variable, if there is one, and it is included in the common area
of the Evaluate tab for information purposes only.

Scoring

The remaining options on the final row of options relate to scoring. Many
models can predict an outcome or a probability for a particular outcome.
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The Report option allows us to choose which we would like to see in the
output when scoring. The Include option indicates whether to include all
variables for each observation in the output or just the identifiers (those
variables marked as having an Ident role on the Data tab).

A Note on Cross-Validation

In Section 2.7, we introduced the concept of partitioning our dataset
into three samples: the training, validation, and testing datasets. This
concept was then further discussed in Section 3.1 and in the section
above. In considering each of the modelling algorithms, we also touched
on the evaluation of the models, using the validation dataset, as part of
the model building process. We have stressed that the testing dataset is
used as the final unbiased estimate of the performance of a model.

A related paradigm for evaluating the performance of our models is
through the use of cross-validation. Indeed, some of the algorithms im-
plemented in R will perform cross-validation for us and report a perfor-
mance measure based on it. The decision tree algorithm using rpart()

is an example.
Cross-validation is a simple concept. Given a dataset, we partition

it into, perhaps, ten random sample subsets. Then we build a model
using nine of those subsets, combined to form the training dataset. We
can then measure the performance of the resulting model on the hold-out
dataset . Then we can repeat this by selecting a different nine subsets to
use as a training dataset. Once again, the remaining dataset will serve
as a testing dataset. This can be repeated ten times to give us a measure
of the expected performance of the resulting model.

A related concept, and one that we often find in the context of en-
semble models, is the concept of out-of-bag, or OOB, measures of per-
formance. We saw this concept when building a random forest model in
Section 12.4. We might recall that in building a random forest we sample
a subset of the full dataset. The subset is used as the training dataset.
Thus, the remaining dataset can be used to test the performance of the
resulting model.

In those cases where the R implementation of an algorithm provides
its own performance measure, using cross-validation or out-of-bag es-
timates, we might choose not to create a validation dataset in Rattle.
Instead, we can rely on the measure supplied by the algorithm as we
build and fine-tune our models. The testing dataset remains useful then
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to provide an unbiased measure once we have built our best models.

15.2 Measure of Performance

Quite a collection of measures has been developed over many years to
gauge the performance of a model. The help page for performance()

of ROCR (Sing et al., 2009) in R collects most of them together with
a brief description, with 30 other measures listed. To review that list,
using the R Console, simply ask for help:

> library(ROCR)

> help(performance)

We will discuss performance in the context of a binary classification
model. This has been our focus with the weather dataset, predicting No

or Yes for the variable RainTomorrow. For binary classification, we also
often identify the predictions as positives or negatives. Thus, in terms
of predicting whether it will rain tomorrow, Yes is the positive class and
No is the negative class.

For an evaluation of a model, we apply the model to a dataset of
observations with known actual outcomes (classes). The model will be
used to predict the class for each observation. We then compare the
predicted class with the actual class.

Error Rate

The simplest measure of the performance of a model is the error rate.
This is calculated as the proportion of observations for which the model
incorrectly predicts the class with respect to the actual class. That is,
we simply divide the number of misclassifications by the total number of
observations.

True and False Positives and Negatives

If our weather model predicts Yes in agreement with the actual outcome,
then we refer to this as a true positive. Similarly, when they both agree
on the negative, we refer to it as a true negative. On the other hand,
when the model predicts No and the actual is Yes, then we have a false
negative. Predicting a Yes when it is actually a No results in a false
positive.
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Often it is useful to differentiate in this way between the types of
misclassification errors that a model makes. For example, in the context
of our weather dataset, it makes a difference whether we have a false
positive or a false negative. A false positive would predict that it will
rain tomorrow when in fact it does not. The consequence is that I might
take my umbrella with me but I won’t need to use it—only a minor
inconvenience.

However, a false negative predicts that it won’t rain tomorrow but
in fact it does rain. Relying on the model, I would not bother with an
umbrella. Consequently, I am caught in the rain and get uncomfortably
wet. The consequences of a false negative in this case are more significant
for me than they are for a false positive.

Whether false positives or false negatives are more of an issue depends
on the application. For medical applications, a false positive (e.g., falsely
diagnosed with cancer) may be less of an issue than a false negative (e.g.,
the diagnosis of cancer being missed). Different model builders can deal
with these situations in different ways. The decision tree algorithm, for
example, can accept a loss matrix that gives different weights to the
different outcomes. This will then bias the model building to avoid one
type of error or the other.

Often, we are interested in the ratio of the number of true positives to
the number of predicted positives. This is referred to as the true positive
rate and similarly for the false positive rate and so on.

Precision, Recall, Sensitivity, Specificity

The precision of a model is the ratio of the number of true positives
to the total number of predicted positives (the sum of the true positives
and the false positives). It is a measure of how accurate the positive
predictions are, or how precise the model is in predicting.

The recall of a model is just another name for the true positive
rate. It is a measure of how many of the actual positives the model can
identify, or how much the model can recall. The recall is also known as
the sensitivity of the model.

Another measure that often arises in the context of sensitivity is
specificity. This is simply another name for the true negative rate.
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Other Measures

We will use and refine the measure we have introduced here in describing
the various approaches to evaluating our models in the following sections.
As the help() for ROCR indicates, we have very many to choose from,
and which works best for the many different application areas is often
determined through trial and error and experience.

15.3 Confusion Matrix

A confusion matrix (also known as an error matrix) is appropriate when
predicting a categoric target (e.g., in binary classification models). We
saw a number of confusion matrices in Chapter 2.

In Rattle, the Confusion Matrix is the default on the Evaluate tab.
Clicking the Execute button will run the selected model(s) against the
chosen dataset to predict the outcomes for each of the observations in
that dataset. The predictions are compared with the actual observations,
and the true and false positives and negatives are calculated.

Figure 15.2 illustrates this for the decision tree model using the
weather dataset. We see in Figure 15.2 that six models have been built,
and the Textview will show the confusion matrix for each of the selected
models. A quick way to build each type of model is to choose the All
option on the Model tab.

The confusion matrix displays the predicted versus the actual results
in a table. The first table shows the actual counts, whilst the second table
shows the percentages. For the decision tree applied to the validation
dataset, there are 5 true positives and 39 true negatives, and so the
model is correct for 44 observations out of 54. That is, the overall error
rate is 10 out of 54, or 19%.

The false positives and false negatives have the same count. On five
days we will get wet and on another five we will carry an umbrella with
us unnecessarily.

If we scroll the text view window of the Evaluate tab, we can see
the confusion-matrix-based performance measure for other models. The
random forest appears to provide a slightly more accurate prediction, as
we see in Figure 15.3.1

1Note that the results vary slightly between different deployments of R, particularly
between 64 bit R, as here, and 32 bit R.
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Figure 15.2: The Evaluate tab showing a confusion matrix.

The overall error rate for the random forest is 12%, with 4 true pos-
itives and 40 true negatives. Compared with the decision tree, there is
one less day when we will get wet and three fewer days when we would
unnecessarily carry our umbrella. We might instead look for a model
that reduces the false negatives rather than the false positives. (Also re-
member that we should be careful when comparing such small numbers
of observations—the differences won’t be significant, though when using
very large training datasets, as would be typical for data mining, we are
in a better position to compare.)

15.4 Risk Charts

A risk chart, also known as a cumulative gain chart , provides another
perspective on the performance of a binary classification model. Such a
chart can be displayed by choosing the Risk option on the Evaluate tab.
We will explain risk charts here using the audit dataset. The use of risk
charts to evaluate models of fraud and noncompliance is more logical
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Figure 15.3: Confusion matrix for the random forest model.

than with the application to predicting rain.
The audit dataset (Section B.2) contains observations of taxpayers

who have been audited together with the outcome of the audit: No or Yes.
A positive outcome indicates that the taxpayer was required to update
the tax return because of inaccuracies in the figures reported. A negative
outcome indicates that the tax return required no adjustment. For each
adjustment we also record its dollar amount (as the risk variable).

We can build a random forest model using this dataset, but we first
need to load it into Rattle. To do so, go back to the Data tab and after
loading rattle’s weather dataset click on the Filename chooser. We can
then select the file audit.csv. Click on Execute to have the new dataset
loaded. Then, from Rattle’s Model tab, build a Forest and then request
a Risk Chart from the Evaluate tab. The resulting risk chart is shown in
Figure 15.4. To read the risk chart, we will pick a particular point and
consider a specific scenario. The scenario is that of auditing taxpayers.
Suppose we normally audit 100,000 taxpayers each year. Of those, only
24,000, let’s say, end up requiring an adjustment to their tax return. We
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call this the strike rate. That is, we strike 24,000 out of the 100,000 as
being of interest—a strike rate of 24%.

Figure 15.4: A risk chart for a random forest on the audit dataset.

Suppose our funding now allows us to audit only 50,000 taxpayers.
If we were to randomly select 50% from the 100,000 taxpayers, then
we would expect to identify just 50% of the actual taxpayers whose tax
returns required an adjustment. That is, we would identify only 12,000 of
the 24,000 tax returns requiring an adjustment from amongst the 50,000
taxpayers randomly selected. This random selection is represented by the
diagonal line in the plot. A random 50% caseload (i.e., 50,000 cases) will
deliver a 50% performance (i.e., only half of the known cases of interest
will be found). We can think of this as the baseline—this is what the
situation would be if we used random selection and no other model.

We now introduce our random forest model, which predicts the like-
lihood of a taxpayer’s tax return requiring an adjustment. For each
taxpayer, the model provides a score—the probability of the taxpayer’s
tax return requiring an adjustment. We can now prioritise our audits of
taxpayers based on these scores so that taxpayers with a higher score are
audited before taxpayers with a lower score. Once again, but now using
this priority, we choose to audit only 50,000 taxpayers, but we select the
50,000 that have the highest risk scores.
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The dashed green line of the plot indicates the performance achieved
when using the model to prioritise the audits. For a 50% caseload, the
performance is approximately 90%. That is, we expect to identify 90% of
the tax returns requiring an adjustment. So 21,600 of the 24,000 known
adjustments, from amongst the 50,000 taxpayers chosen, are expected to
be identified. That is a significant improvement over the 12,000 from the
50,000 selected randomly. Indeed, as the blue line in the plot indicates,
that provides a lift in performance of almost 2. That is, we are identifying
almost twice as many tax returns requiring adjustment than we would
expect if we were simply selecting taxpayers randomly.

In this light, the model provides quite a significant benefit. Note that
we are not particularly concentrating on error rates as such but on the
benefit we achieve in using the model to rank or prioritise our business
processes. Whilst a lot of attention is often paid to simplistic measures
of model performance, other factors usually come into play in deciding
which model performs best.

Note also from the plot in Figure 15.4 that after we have audited
about 85% of the cases (i.e., at a caseload of 85) the model achieves
100% performance. That is, the model has ensured that all tax returns
requiring adjustment have been identified by the time we have audited
85,000 taxpayers. A conservative use of the model would then ensure
nearly all required audits (i.e., 24,000) are performed, yet saving 15% of
the effort previously required to identify all of the required audits. We
also note that out of the 85,000 audits we are still unnecessarily auditing
61,000 taxpayers.

The solid red line of the risk chart often follows a path similar to that
of the green line. It provides an indication of the measure of the size
of the risk covered by the model. It is based on the variable identified
as having a role as a Risk variable on the Data tab. In our case, it
is the variable RISK_Adjustment and records the dollar amount of any
adjustment made to a tax return. In that sense, it is a measure of the
size of the risk.

The “risk” performance line is included for information. It has not
been used in the modelling at all (though it could have been). Empiri-
cally, we often note that it sits near or above the “target” performance
line. If it sits high above the target line, then the model is fortuitously
identifying higher-risk cases earlier in the process, which is a useful out-
come.
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A risk chart can be displayed for any binary classification model built
using Rattle. In comparing risk charts for different models, we are looking
for a larger area under the curve. This generally means that the curve
“closer” to the top left of the risk chart identifies a better-performing
model than a curve that is closer to the baseline (diagonal line). Fig-
ure 15.5 illustrates the output when multiple models are selected, so that
performances can be directly compared.

Figure 15.5: Four risk charts displayed to compare performances of multiple
model builders on the audit dataset.

The plots generated by Rattle include a measure of the area under
the curve in the legend of the plot. For Figure 15.4, the area under the
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target line is 77%. That is, the line splits the plot into two regions, with
77% of the region below the line and 23% of the region above the line.

15.5 ROC Charts

Another set of common performance charts used in data mining are the
ROC chart, sensitivity/specificity chart, lift chart, and precision/recall
chart. The ROC is probably the most popular, but each can provide
some different insights based essentially on the same performance data.
The ROC has a form and interpretation similar to the risk chart, though
it plots different measures on the axes. ROCR is used by Rattle to
generate these charts.

We can differentiate each chart by the measures used on the two axes.
An ROC chart plots the true positive rate against the false positive rate.
The sensitivity/specificity chart plots the true positive rate against the
true negative rate. The lift chart plots the relative increase in predictive
performance against the rate of positive predictions. The precision/recall
chart plots the proportion of true positives out of the positive predictions
against the true positive rate.

15.6 Other Charts

A variety of other charts are also supported by Rattle. Some are ex-
perimental and implemented directly within Rattle rather than being
available in other packages. This includes the Hand chart, which plots a
number of measures proposed by David Hand, a senior statistician with
a lot of credibility in the data mining community. Cost curves are an-
other measure with quite a long history but have not become particularly
popular.

The other performance chart, the Pr v Ob chart, is suitable for evalu-
ating the performance of regression models. Such models predict a con-
tinuous outcome, like the dollar amount of a risk, rather than whether
or not there is a risk. The Pr v Ob option produces a plot of the actual
or observed values on the x-axis with the model-predicted values on the
y-axis. A linear model is also fit to the predicted value, based on the
actual value, and is displayed in the plot generated by Rattle. A diagonal
line (predicted=observed) provides a benchmark as the perfect model
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(i.e., perfect correlation between the predicted values and the observed
values).

15.7 Scoring

The Evaluate tab also provides a Score option. Rather than running a
model over some observations and generating a performance measure,
the score option allows the predictions to be saved to a file so that we
can perform our own analyses of the model using any other tools. Also,
it allows us to effectively deploy the model so that we might score new
data, save it to a file, and forward the results to the appropriate teams.

Rattle’s Score option of the Evaluate tab, when Executed, will apply
the selected model(s) to the specified dataset (training/validation/test-
ing/full/CSV file/R dataset), saving the results to a CSV file. Once run,
the scores (either the class, probability, or predicted value), together with
any Ident variables (or optionally all variables), will be saved to a CSV
file for action or further processing with other tools, as desired. A win-
dow will pop up to indicate the location and name of the file to which
the scores have been saved.

The dataset that is scored must have exactly the same format as the
dataset loaded for training the model. Rattle assumes the columns will
be in the same order, and we might expect them to have the same names
(noting that R is case-sensitive).





Chapter 16

Deployment

Once a model is developed and evaluated, and we have determined it to
be suitable, we then need to deploy it. This is an often-overlooked issue
in many data mining projects. It also seems to receive little attention
when setting up a data mining capability within an organisation. Yet it
is an important issue, as we need to ensure we obtain the benefit from
the model.

In this chapter, we briefly consider a number of deployment options.
We begin with considering a deployment in R. We also consider the con-
version of our models into the Predictive Modelling Markup Language
(PMML). This allows us to export our model to other systems, which
includes systems that can convert the model into C code that can run as
a stand-alone module.

16.1 Deploying an R Model

A simple approach to deployment is to use predict() to apply the model
to a new dataset. We often refer to this as “scoring.” Rattle’s evaluation
tab supports scoring with the Score option of the Evaluate tab. There
are a number of options available. The first is whether to score the train-
ing dataset, the validation dataset, the testing dataset, or some dataset
loaded from a CSV file (which must contain the exact same variables).
Any number of models can be selected, and the results (either as pre-
dicted values or probabilities) are written to a CSV file.

Often, we will want to score a new dataset regularly as new observa-
tions become available. In this case, we will save the model for later use.
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The Rattle concept of a project, as discussed in Section 2.8, is useful in
such a circumstance. This will save the current state of Rattle (including
the actual data and models built during a session). At a later time, this
project can be loaded into a new instance of Rattle (running on the same
host or even a different host and operating system). A new dataset can
then be scored using the saved model. To do so, we do not need to start
up the Rattle GUI but simply access the relevant model (e.g., crs$rf)
and apply it to some new data using predict().

As we see in Rattle’s Log tab, below the surface, when we save and
load projects, we are simply using save() and load(). These create a
binary representation of the R objects, saving them to a file and then
loading them into R.

A Rattle project can get quite large, particularly with large datasets.
Larger files take longer to load, and for deploying a model it is often
not necessary to keep the original data. So as we get serious about
deployment, we might save just the model we wish to deploy. This is
done using save() to save the actual model.

After building a random forest model in Rattle using the weather
dataset, we might save the model to a file by using save() in the R
Console:

> myrf <- crs$rf

> save(myrf, file="model01_110501.RData")

A warning message may be shown just to suggest that when reloading
the binary file into a new instance of R, rattle might not have been
loaded, and it is perhaps a good idea to do so. This is to ensure the
objects that are saved are correctly interpreted by R.

We now want to simulate the application of the model to a new
dataset. To do so, we might simply save the current dataset to a CSV
file using write.csv():

> write.csv(crs$dataset, file="cases_110601.csv")

We can then load the model into a different instance of R at a later
time using load() and apply (i.e., use predict() on) the model (using
a script based on the commands shown in Rattle’s Log tab) to a new
dataset. In this case, we then also write the results to another CSV file
using write.csv():



16.2 Converting to PMML 325

> library(randomForest)

> (load("model01_110501.RData"))

[1] "myrf"

> dataset <- read.csv("cases_110601.csv")

> pr <- predict(myrf, dataset, type="prob")[,2]

> write.csv(cbind(dataset, pr),

file="scores_110601.csv",

row.names=FALSE)

> head(cbind(Actual=dataset$TARGET_Adjusted, Predicted=pr))

Predicted

1 0.688

2 0.712

3 0.916

4 0.164

5 0.052

6 0.016

We can see that the random forest model is doing okay on these few
observations.

In practise, once model deployment has been approved, the model is
deployed into a secure environment. We can then schedule the model to
be applied regularly to a new dataset using a script that is very similar
to that above. The dataset can be obtained from a data warehouse, for
example, and the results populated back into the data warehouse. Other
processes might then come into play to make use of the scores, perhaps to
identify clients who need to be audited or to communicate to the weather
forecaster the predicted likelihood of rain tomorrow.

16.2 Converting to PMML

An alternative approach to direct deployment within R is to export the
model in some form so that it might be imported into other software for
predictions on new data. Exporting a model to an open standard format
facilitates this process. A model represented using this open standard
representation can then be exported to a variety of other software or
languages.

The Predictive Model Markup Language (Guazzelli et al., 2010, 2009)
(PMML) provides such a standard language for representing data mining
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models. PMML is an XML-based standard that is supported, to some
extent, by the major commercial data mining vendors and many open
source data mining tools.

The pmml package for R is responsible for exporting models from
R to PMML. PMML models generated by Rattle using pmml() can be
imported into a number of other products. The Export button (whilst
displaying a model within the Model tab) will export a model as PMML.

We illustrate here the form that the PMML export takes. First, we
again create a dataset object:

> library(rattle)

> weatherDS <- new.env()

> evalq({

data <- weather

nobs <- nrow(data)

vars <- -grep('^(Date|Locat|RISK)', names(weather))

set.seed(42)

train <- sample(nobs, 0.7*nobs)

form <- formula(RainTomorrow ~ .)

}, weatherDS)

Next, we build the decision tree model:

> library(rpart)

> weatherRPART <- new.env(parent=weatherDS)

> evalq({

model <- rpart(formula=form, data=data[train, vars])

}, weatherRPART)

Now we can generate the PMML representation using pmml(). We
then print some rows from the PMML representation of the model:
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> library(pmml)

> p <- pmml(weatherRPART$model)

> r <- c(1:4, 7, 12, 35, 36, 69, 71, 137:139)

> cat(paste(strsplit(toString(p), "\n")[[1]][r],

collapse="\n"))

<PMML version="3.2" xmlns="http://www.dmg.org/PMML-3_2"

xmlns=...>

<Header copyright="Copyright (c) 2011 gjw"

description="RPart Decision Tree Model">

<Extension name="user" value="gjw" extender="Rattle"/>

<Application name="Rattle/PMML" version="1.2.27"/>

<DataDictionary numberOfFields="21">

<DataField name="MinTemp" optype="continuous" .../>

</DataDictionary>

<TreeModel modelName="RPart_Model" ...>

<Node id="2" score="No" recordCount="204" ...>

<SimplePredicate field="Pressure3pm"

operator="greaterOrEqual" value="1011.9"/>

</Node>

</TreeModel>

</PMML>

16.3 Command Summary

This chapter has referenced the following R packages, commands, func-
tions, and datasets:

load() command Load R objects from a file.
pmml() function Convert a model to PMML.
pmml package Supports conversion of many models.
predict() function Score a dataset using a model.
save() command Save R objects to a binary file.
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Appendix A

Installing Rattle

Rattle relies on an extensive collection of free and open source software.
Some preliminary steps need to be followed in installing it. The latest
installation instructions are maintained at http://rattle.togaware.

com. The instructions cover Rattle on GNU/Linux, Microsoft Windows
and MacOS/X.

Rattle is distributed as a freely available open source R package avail-
able from CRAN, the Comprehensive R Archive Network (http://cran.
r-project.org/). The source code for Rattle is available from Google
Code (http://code.google.com/p/rattle/). A discussion mailing list
is available from Google Groups (http://groups.google.com/group/
rattle-users).

If you are setting up a new data mining platform, the recommended
approach is to build it on top of the Ubuntu operating system (http:
//ubuntu.com). This delivers a free and open source environment for
data mining.

If you already have R installed and have installed the appropriate
GTK libraries for your operating system, then installing Rattle is as sim-
ple as:

> install.packages("rattle")
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Once installed, the function rattleInfo() provides version informa-
tion for rattle and dependencies and will also check for available updates
and generate the command that can be cut-and-pasted to update the
appropriate packages:

> rattleInfo()

Rattle: version 2.6.7 cran 2.6.6

R: version 2.13.0 (2011-04-13) (Revision 55427)

Sysname: Linux

Release: 2.6.35-28-generic

Version: #49-Ubuntu SMP Tue Mar 1 14:39:03 UTC 2011

Nodename: nyx

Machine: x86_64

Login: unknown

User: gjw

Installed Dependencies

RGtk2: version 2.20.12

pmml: version 1.2.27

bitops: version 1.0-4.1

colorspace: version 1.1-0

ada: version 2.0-2

amap: version 0.8-5

arules: version 1.0-6

biclust: version 1.0.1

cairoDevice: version 2.15

cba: version 0.2-6

descr: version 0.3.4

doBy: version 4.3.1 upgrade available 4.4.0

e1071: version 1.5-26

ellipse: version 0.3-5

fEcofin: version 290.76

fBasics: version 2110.79

foreign: version 0.8-44

fpc: version 2.0-3

gdata: version 2.8.2

gtools: version 2.6.2

gplots: version 2.8.0
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gWidgetsRGtk2: version 0.0-74

Hmisc: version 3.8-3

kernlab: version 0.9-12

latticist: version 0.9-43

Matrix: version 0.999375-50

mice: version 2.8

network: version 1.6

nnet: version 7.3-1

odfWeave: version 0.7.17

party: version 0.9-99992

playwith: version 0.9-53

psych: version 1.0-97 upgrade available 1.0-98

randomForest: version 4.6-2

RBGL: version 1.28.0

RColorBrewer: version 1.0-2

reshape: version 0.8.4

rggobi: version 2.1.17

RGtk2Extras: version 0.5.0

ROCR: version 1.0-4

RODBC: version 1.3-2

rpart: version 3.1-50

rpart.plot: version 1.2-2

RSvgDevice: version 0.6.4.1

survival: version 2.36-9

timeDate: version 2130.93

XML: version 3.4-0

Upgrade the packages with either:

> install.packages(c("doBy", "psych"))

> install.packages(rattleInfo())

Appendix A Installing Rattle





Appendix B

Sample Datasets

The following sections introduce the datasets that we use throughout
the book to demonstrate data mining. R provides quite a collection of
datasets. Each of the datasets we introduce here is available through R
packages and may also be available from other sources.

In addition to introducing the datasets themselves, we also illustrate
how they were derived. This entails presenting many new concepts from
the R language. We purposefully do so within a real context of ma-
nipulating data to generate data suitable for data mining. A detailed
understanding of many of these R programming constructs is not a ne-
cessity for understanding the material in this book. You are encouraged,
though, to work through these programming examples at some time, as
a data miner will need sophisticated tools for manipulating data.

Using the datasets supplied, as we do to demonstrate Rattle, over-
simplifies the situation. This data will generally already be in a form
suitable for mining, and in reality this is not what we find in a data min-
ing project. In practise the data we are confronted with will come from
a multitude of sources and will be in need of a variety of processing steps
to clean it up and merge it into a single dataset. We have a lot of work
in front of us in transforming a multitude of data into a form suitable for
data mining. As we have reinforced throughout this is a major task.

The sizes of the datasets that we use throughout this book (and
provided by rattle) are summarised below using dim(). The weather
dataset, for example, has 366 observations and 24 variables:
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> library(rattle)

> dim(weather)

[1] 366 24

> dim(weatherAUS)

[1] 39996 24

> dim(audit)

[1] 2000 13

B.1 Weather

We have seen the weather dataset in Chapter 2, where we identified it
as being obtained1 from the Australian Bureau of Meteorology’s Web
site. This is quite a small dataset, allowing the concepts we cover to be
presented concisely. On the surface, it is not too complex, and most of
us can relate to the issue of whether it might rain tomorrow! Keep in
mind that real-world datasets tend not to be so small, and large datasets
present many of the challenges we face in data mining.

The data used here (i.e., the actual weather dataset from rattle)
comes from a weather monitoring station located in Canberra, Australia.
The Bureau makes available 13 months of daily weather observations
from many locations across Australia. The data is available as CSV
(comma-separated value) files. The full list is available from http://

www.bom.gov.au/climate/dwo/. Similar data is available from other
government authorities around the world, as well as from many personal
weather stations, which are now readily available.

B.1.1 Obtaining Data

The weather data for a specific month can be downloaded within R by
using read.csv(). The process of doing so illustrates our interaction
with R.

1Permission to use the dataset for this book and associated package (rattle) was
obtained 17 December 2008 from mailto:webclim@bom.gov.au, and the Australian
Bureau of Meteorology is acknowledged as the source of the data.
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First, we need to determine the date for which we want to download
data. For this, Sys.Date(), which returns the current date, will be
useful:

> Sys.Date()

[1] "2011-06-13"

The current date can be passed to format():

> today <- format(Sys.Date(), format="%Y%m")

This will generate a string consisting of the year and month, as spec-
ified by the format= argument to the function. The result of format()
is stored into memory with a reference name of today. This is achieved
using the assignment operator, <-, which itself is a function in R. No
output is produced from the command above—the value is saved into
the specified memory. We can inspect its contents simply by typing its
name:

> today

[1] "201106"

Now we build up the actual Web address (the URL from which we
can download the data) using paste(). This function takes a collection
of strings and pastes them together into one string. Here we override the
default behaviour of paste() using the sep= (i.e., separator) argument
so that there will be no spaces between the strings that we are pasting
together. We will save the result of the pasting into a memory reference
named bom:

> bom <- paste("http://www.bom.gov.au/climate/dwo/", today,

"/text/IDCJDW2801.", today, ".csv", sep="")

The string referenced by the name bom is then the URL2 to extract
the current month’s data for the Canberra weather station (identified as
IDCJDW2801):

> bom

[1] "http:[...]/dwo/201106/text/IDCJDW2801.201106.csv"

2Note that the URL here is correct at the time of publication but could change
over time.
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Note the use of the string “[...]” in the output—this is used so that
the result is no wider than the printed page. We will use this notation
often to indicate where data has been removed for typesetting purposes.

The most recent observations from the Bureau can now be read. Note
that, for the benefit of stability, the actual dataset used below is from a
specific date, June 2009, and the details of other data obtained at differ-
ent times will differ. The first few lines of the downloaded file contain
information about the location, and so we skip those lines by using the
skip= argument of read.csv(). The check.names= argument is set to
FALSE (the default is TRUE) so that the column names remain exactly as
recorded in the file:

> dsw <- read.csv(bom, skip=6, check.names=FALSE)

By default, R will convert them into names that it can more easily han-
dle, for example, replacing spaces with a period. We will fix the names
ourselves shortly.

The dataset is not too large, as shown by dim() (consisting of up to
one month of data), and we can use names() to list the names of the
variables included:

> dim(dsw)

[1] 28 22

> head(names(dsw))

[1] ""

[2] "Date"

[3] "Minimum temperature (\xb0C)"

[4] "Maximum temperature (\xb0C)"

[5] "Rainfall (mm)"

[6] "Evaporation (mm)"

Note that, if you run this code yourself, the dimensions will most
likely be different. The data you download today will be different from
the data downloaded when this book was processed by R. In fact, the
number of rows should be about the same as the day number of the
current month.
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B.1.2 Data Preprocessing

We do not want all of the variables. In particular, we will ignore the
first column and the time of the maximum wind gust (variable number
10). The first command below will remove these two columns from the
dataset. We then simplify the names of the variables to make it easier
to refer to them. This can be done as follows using names():

> ndsw <- dsw[-c(1, 10)]

> names(ndsw) <- c("Date", "MinTemp", "MaxTemp",

"Rainfall", "Evaporation", "Sunshine",

"WindGustDir", "WindGustSpeed", "Temp9am",

"Humidity9am", "Cloud9am", "WindDir9am",

"WindSpeed9am", "Pressure9am", "Temp3pm",

"Humidity3pm", "Cloud3pm", "WindDir3pm",

"WindSpeed3pm", "Pressure3pm")

We can now check that the new dataset has the right dimensions and
variable names:

> dim(ndsw)

[1] 28 20

> names(ndsw)

[1] "Date" "MinTemp" "MaxTemp"

[4] "Rainfall" "Evaporation" "Sunshine"

[7] "WindGustDir" "WindGustSpeed" "Temp9am"

[10] "Humidity9am" "Cloud9am" "WindDir9am"

[13] "WindSpeed9am" "Pressure9am" "Temp3pm"

[16] "Humidity3pm" "Cloud3pm" "WindDir3pm"

[19] "WindSpeed3pm" "Pressure3pm"

B.1.3 Data Cleaning

We must also clean up some of the variables. We start with the wind
speed. To view the first few observations, we can use head(). We further
limit our review to just three variables, which we explicitly list as the
column index:
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> vars <- c("WindGustSpeed","WindSpeed9am","WindSpeed3pm")

> head(ndsw[vars])

WindGustSpeed WindSpeed9am WindSpeed3pm

1 24 Calm 15

2 31 6 13

3 22 9 17

4 11 6 Calm

5 20 6 7

6 39 2 28

Immediately, we notice that not all the wind speeds are numeric. The
variable WindSpeed9am has a value of Calm for the first observation, and
so R is representing this data as a categoric, and not as a numeric as we
might be expecting. We can confirm this using class() to tell us what
class of data type the variable is.

First, we confirm that ndsw is a data frame (which is R’s representa-
tion of a dataset):

> class(ndsw)

[1] "data.frame"

With the next example, we introduce apply() to apply class() to each
of the variables of interest. We confirm that the variables are character
strings:

> apply(ndsw[vars], MARGIN=2, FUN=class)

WindGustSpeed WindSpeed9am WindSpeed3pm

"character" "character" "character"

The MARGIN= argument chooses between applying the supplied function
to the rows of the dataset or to the columns (i.e., variables) of the dataset.
The 2 selects columns, whilst 1 selects rows. The function that is applied
is supplied with the FUN= argument.

To transform these variables, we introduce a number of common R
constructs. We first ensure that we are treating the variable as a charac-
ter string by converting it (although somewhat redundantly in this case)
with as.character():
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> ndsw$WindSpeed9am <- as.character(ndsw$WindSpeed9am)

> ndsw$WindSpeed3pm <- as.character(ndsw$WindSpeed3pm)

> ndsw$WindGustSpeed <- as.character(ndsw$WindGustSpeed)

> head(ndsw[vars])

WindGustSpeed WindSpeed9am WindSpeed3pm

1 24 Calm 15

2 31 6 13

3 22 9 17

4 11 6 Calm

5 20 6 7

6 39 2 28

B.1.4 Missing Values

We next identify that empty values (i.e., an empty string) represent miss-
ing data, and so we replace them with R’s notion of missing values (NA).
The within() function can be used to allow us to directly reference vari-
ables within the dataset without having to prefix them with the name of
the dataset (i.e., avoiding having to use ndsw$WindSpeed9am):

> ndsw <- within(ndsw,

{

WindSpeed9am[WindSpeed9am == ""] <- NA

WindSpeed3pm[WindSpeed3pm == ""] <- NA

WindGustSpeed[WindGustSpeed == ""] <- NA

})

Then, Calm, meaning no wind, is replaced with 0, which suits our numeric
data type better:

> ndsw <- within(ndsw,

{

WindSpeed9am[WindSpeed9am == "Calm"] <- "0"

WindSpeed3pm[WindSpeed3pm == "Calm"] <- "0"

WindGustSpeed[WindGustSpeed == "Calm"] <- "0"

})

Finally, we convert the character strings to the numbers they actually
represent using as.numeric(), and check the data type class to confirm
they are now numeric:
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> ndsw <- within(ndsw,

{

WindSpeed9am <- as.numeric(WindSpeed9am)

WindSpeed3pm <- as.numeric(WindSpeed3pm)

WindGustSpeed <- as.numeric(WindGustSpeed)

})

> apply(ndsw[vars], 2, class)

WindGustSpeed WindSpeed9am WindSpeed3pm

"numeric" "numeric" "numeric"

The wind direction variables also need some transformation. We see be-
low that the wind direction variables are categoric variables (they are
technically factors in R’s nomenclature). Also note that one of the pos-
sible values is the string consisting of just a space, and that the levels
are ordered alphabetically:

> vars <- c("WindSpeed9am","WindSpeed3pm","WindGustSpeed")

> head(ndsw[vars])

WindSpeed9am WindSpeed3pm WindGustSpeed

1 0 15 24

2 6 13 31

3 9 17 22

4 6 0 11

5 6 7 20

6 2 28 39

> apply(ndsw[vars], 2, class)

WindSpeed9am WindSpeed3pm WindGustSpeed

"numeric" "numeric" "numeric"

> levels(ndsw$WindDir9am)

[1] " " "E" "ENE" "ESE" "N" "NNW" "NW" "S" "SE"

[10] "SSE" "SW" "WNW"

To deal with missing values, which are represented in the data as an
empty string (corresponding to a wind speed of zero), we map such data
to NA:
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> ndsw <- within(ndsw,

{

WindDir9am[WindDir9am == " "] <- NA

WindDir9am[is.na(WindSpeed9am) |

(WindSpeed9am == 0)] <- NA

WindDir3pm[WindDir3pm == " "] <- NA

WindDir3pm[is.na(WindSpeed3pm) |

(WindSpeed3pm == 0)] <- NA

WindGustDir[WindGustDir == " "] <- NA

WindGustDir[is.na(WindGustSpeed) |

(WindGustSpeed == 0)] <- NA

})

B.1.5 Data Transforms

Another common operation on a dataset is to create a new variable from
other variables. An example is to capture whether it rained today. This
can be simply determined, by definition, through checking whether there
was more than 1 mm of rain today. We use ifelse() to do this in one
step:

> ndsw$RainToday <- ifelse(ndsw$Rainfall > 1, "Yes", "No")

> vars <- c("Rainfall", "RainToday")

> head(ndsw[vars])

Rainfall RainToday

1 0.6 No

2 0.0 No

3 1.6 Yes

4 8.6 Yes

5 2.2 Yes

6 1.4 Yes

We want to also capture and associate with today’s observation whether
it rains tomorrow. This is to become our target variable. Once again,
if it rains less than 1 mm tomorrow, then we report that as no rain.
To capture this variable, we need to consider the observation of rainfall
recorded on the following day. Thus, when we are considering today’s
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observation (e.g., observation number 1), we want to consider tomorrow’s
observation (observation 2) of Rainfall. That is, there is a lag of one
day in determining today’s value of the variable RainTomorrow.

A simple approach can be used to calculate RainTomorrow. We sim-
ply note the value of RainToday for the next day’s observation. Thus, we
build up the list of observations for RainToday starting with the second
observation (ignoring the first). An additional observation then needs
to be added for the final day (for which we have no observation for the
following day):

> ndsw$RainTomorrow <- c(ndsw$RainToday[2:nrow(ndsw)], NA)

> vars <- c("Rainfall", "RainToday", "RainTomorrow")

> head(ndsw[vars])

Rainfall RainToday RainTomorrow

1 0.6 No No

2 0.0 No Yes

3 1.6 Yes Yes

4 8.6 Yes Yes

5 2.2 Yes Yes

6 1.4 Yes No

Finally, we would also like to record the amount of rain observed “tomor-
row.” This is achieved as follows using the same lag approach:

> ndsw$RISK_MM <- c(ndsw$Rainfall[2:nrow(ndsw)], NA)

> vars <- c("Rainfall", "RainToday",

"RainTomorrow", "RISK_MM")

> head(ndsw[vars])

Rainfall RainToday RainTomorrow RISK_MM

1 0.6 No No 0.0

2 0.0 No Yes 1.6

3 1.6 Yes Yes 8.6

4 8.6 Yes Yes 2.2

5 2.2 Yes Yes 1.4

6 1.4 Yes No 0.8
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The source dataset has now been processed to include a variable that we
might like to treat as a target variable—to indicate whether it rained the
following day.

B.1.6 Using the Data

Using this historic data, we can now build a model (as we did in Chap-
ter 2) that might help us to decide whether we need to take an umbrella
with us tomorrow if we live in Canberra. (You may like to try this on
local data for your own region.)

Above, we retrieved up to one month of observations. We can repeat
the process, using the same code, to obtain 12 months of observations.
This has been done to generate the weather dataset provided by Rattle.
The weather dataset covers only Canberra for the 12 month period from
1 November 2007 to 31 October 2008 inclusive.

Rattle also provides the weatherAUS dataset, which captures the
weather observations for more than a year from over 45 weather ob-
servation stations throughout Australia. The format of the weatherAUS
dataset is exactly the same as for the weather dataset. In fact, the
weather dataset is a subset of the weatherAUS dataset, and we could
reconstruct it with the following R code using subset():

> cbr <- subset(weatherAUS,

Location == "Canberra" &

Date >= "2007-11-01" &

Date <= "2008-10-31")

The subset() function takes as its first argument a dataset, and as its
second argument a logical expression that specifies the rows of the data
that we wish to retain in the result.

We can check that this results in the same dataset as the weather
dataset by simply testing if they are equal using ==:

> cbr == weather

This will print a lot of TRUEs to the screen, as it compares each value from
the cbr dataset with the corresponding value from the weather dataset.
We could have a look through what is printed to make sure they are all
TRUE, but that’s not very efficient.

Instead, we can find the number of actual values that are compared.
First, we get the two dimensions, using dim(), and indeed the two
datasets have the same dimensions:
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> dim(cbr)

[1] 366 24

> dim(weather)

[1] 366 24

Then we calculate the number of data items within the dataset. To do
this, we could multiply the first and second values returned by dim().
Instead, we will introduce two new handy functions to return the number
of rows and the number of columns in the dataset:

> dim(cbr)[1] * dim(cbr)[2]

[1] 8784

> nrow(cbr) * ncol(cbr)

[1] 8784

Now we count the number of TRUEs when comparing the two datasets
value by value. Noting that TRUE corresponds to the numeric value 1 in
R and FALSE corresponds to 0, we can simply sum the data. We need to
remove NAs to get a sum, otherwise sum() will return NA. We also need
to count the number of NAs removed, which we do. Note that the totals
all add up to 8784! The two datasets are the same.

> sum(cbr == weather, na.rm=TRUE)

[1] 8737

> sum(is.na(cbr))

[1] 47

> sum(is.na(weather))

[1] 47

> sum(cbr == weather, na.rm=TRUE) + sum(is.na(cbr))

[1] 8784

The sample weather dataset can also be downloaded directly from
the Rattle Web site:

> twweather <- "http://rattle.togaware.com/weather.csv"

> myweather <- read.csv(twweather)
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B.2 Audit

Another dataset we will use for illustrating data mining is the audit
dataset, which is also provided by rattle. The data is artificial but
reflects a real-world dataset used for reviewing the outcomes of historical
financial audits. Picture, for example, your country’s revenue authority
(e.g., the Internal Revenue Service in the USA, Inland Revenue in the UK
or the Australian Taxation Office). Revenue authorities collect taxes and
reconcile the taxes we pay each year against the information we supply
to them.

Many thousands of audits of taxpayers’ tax returns might be per-
formed each year. The outcome of an audit may be productive, in which
case an adjustment to the information supplied was required, usually re-
sulting in a change to the amount of tax that the taxpayer is liable to
pay (an increase or a decrease). An unproductive audit is one for which
no adjustment was required after reviewing the taxpayer’s affairs.

The audit dataset attempts to simulate this scenario. It is supplied as
both an R data file and a CSV file. The dataset consists of 2000 fictional
taxpayers who have been audited for tax compliance. For each case, an
outcome of the audit is recorded (i.e., whether the financial claims had
to be adjusted or not). The actual dollar amount of any adjustment
that resulted is also recorded (noting that adjustments can go in either
direction). The audit dataset contains 13 variables, with the first variable
being a unique client identifier. It is, in fact, derived from the so-called
adult dataset.

B.2.1 The Adult Survey Dataset

Like the weather dataset, the audit dataset is actually derived from an-
other freely available dataset. Unlike the weather dataset, the audit
dataset is purely fictional. We will discuss here how the data was de-
rived from the so-called adult survey dataset available from the Univer-
sity of California at Irvine’s machine learning3 repository. We use this
dataset as the starting point and will perform various transformations of
the data with the aim of building a dataset that looks more like an audit
dataset. With the purpose of further illustrating the data manipulation
capabilities of R, we review the derivation process.

3http://archive.ics.uci.edu/ml/.
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First, we paste() together the constituent parts of the URL from
which the dataset is obtained. Note the use of the sep= (separator)
argument to include a “/” between the constituent parts. We then use
download.file() to retrieve the actual file from the Internet, and to
save it under the name survey.csv:

> uci <- paste("ftp://ftp.ics.uci.edu/pub",

"machine-learning-databases",

"adult/adult.data", sep="/")

> download.file(uci, "survey.csv")

The file is now stored locally and can be loaded into R. Because the file
is a CSV file, we use read.csv() to load it into R:

> survey <- read.csv("survey.csv", header=FALSE,

strip.white=TRUE, na.strings="?",

col.names=c("Age", "Workclass", "fnlwgt",

"Education", "Education.Num",

"Marital.Status", "Occupation",

"Relationship", "Race", "Gender",

"Capital.Gain", "Capital.Loss",

"Hours.Per.Week", "Native.Country",

"Salary.Group"))

The additional arguments of read.csv() are used to fine-tune how
the data is read into R. The header= argument needs to be set to FALSE

since the data file has no header row (a header row is the first row
and lists the variable or column names—here, though, it is data, not
a header). We set strip.white= to TRUE to strip spaces from the data
to ensure we do not get extra white space in any columns. Missing values
are notated with a question mark, so we tell the function this with the
na.strings= argument. Finally, we supply a list of variable names using
the col.names= (column names) argument.

B.2.2 From Survey to Audit

We begin to turn the survey data into the audit dataset, first by se-
lecting a subset of the columns and then renaming some of the columns
(reinforcing again that this is a fictitious dataset):
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> audit <- survey[,c(1:2,4,6:8,10,12:14,11,15)]

> names(audit)[c(seq(2, 8, 2), 9:12)] <-

c("Employment", "Marital", "Income", "Deductions",

"Hours", "Accounts", "Adjustment", "Adjusted")

Here we see a couple of interesting language features of R. We have
previously seen the use of names() to retrieve the variable names from
the dataset. This function returns a list of names, and we can index the
data items within the list as usual. The interesting feature here is that
we are assigning into that resulting list another list. The end result is
that the variable names are thereby actually changed within the dataset:

> names(audit)

[1] "Age" "Employment" "Education" "Marital"

[5] "Occupation" "Income" "Gender" "Deductions"

[9] "Hours" "Accounts" "Adjustment" "Adjusted"

B.2.3 Generating Targets

We now look at what will become the output variables, Adjustment

and Adjusted. These will be interpreted as the dollar amount of any
adjustment made to the tax return and whether or not there was an
adjustment made, respectively. Of course, they need to be synchronised.

The variable Adjusted is going to be a binary integer variable that
takes on the value 0 when an audit was not productive and the value
1 when an audit was productive. Initially the variable is a categoric
variable (i.e., of class factor in R’s nomenclature) with two distinct values
(i.e., two distinct levels in R’s nomenclature). We use R’s table() to
report on the number of observations having each of the two distinct
output values:

> class(audit$Adjusted)

[1] "factor"

> levels(audit$Adjusted)

[1] "<=50K" ">50K"

> table(audit$Adjusted)

<=50K >50K

24720 7841
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We now convert this into a binary integer variable for convenience.
This is not strictly necessary, but often our mathematics in describing
algorithms works nicely when we think of the target as being 0 or 1. The
as.integer() function will transform a categoric variable into a numeric
variable. R uses the integer 1 to represent the first categoric value and 2

to represent the second categoric value. So to turn this into our desired
0 and 1 values we simply subtract 1 from each integer:

> audit$Adjusted <- as.integer(audit$Adjusted)-1

> class(audit$Adjusted)

[1] "numeric"

> table(audit$Adjusted)

0 1

24720 7841

It is instructive to understand the subtraction that is performed here.
In particular, the 1 is subtracted from each data item. In R, we can
subtract one list of numbers from another, but they generally need to be
the same length. The subtraction occurs pairwise. If one list is shorter
than the other, then it is recycled as many times as required to perform
the operation. Thus, 1 is recycled as many times as the number of
observations of Adjusted, with the end result we noted. The concept
can be illustrated simply:

> 11:20 - 1:10

[1] 10 10 10 10 10 10 10 10 10 10

> 11:20 - 1:5

[1] 10 10 10 10 10 15 15 15 15 15

> 11:20 - 1

[1] 10 11 12 13 14 15 16 17 18 19

Some mathematics is now required to ensure that most productive cases
(those observations for which Adjusted is 1) have an adjustment (i.e.,
the variable Adjustment is nonzero) and nonproductive cases necessarily
have an adjustment of 0.

We first calculate the number of productive cases that have a zero
adjustment (saving the result into the reference prod) and the number of
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nonproductive cases that have a nonzero adjustment (saving the result
into the reference nonp):

> prod <- sum(audit$Adjusted == 1 & audit$Adjustment == 0)

> prod

[1] 6164

> nonp <- sum(audit$Adjusted == 0 & audit$Adjustment != 0)

> nonp

[1] 1035

This example again introduces a number of new concepts from the R
language. We will break them down one at a time and then come back
to the main story.

Recall that the notation audit$Adjusted refers to the observations
of the variable Adjusted of the audit dataset. As with the subtraction
of a single value, 1, from such a list of observations, as we saw above, the
comparison operator == (as well as != to test not equal) operates over
such data. It tests each observation to see if it is equal to, for example,
1.

The following example illustrates this. Consider just the first few ob-
servations of the variables Adjusted and Adjustment. R notates logical
variables with the observations TRUE or FALSE. The “&” operator is used
for comparing lists of logical values pairwise:

> obs <- 1:9

> audit$Adjusted[obs]

[1] 0 0 0 0 0 0 0 1 1

> audit$Adjusted[obs]==1

[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE

> audit$Adjustment[obs]

[1] 2174 0 0 0 0 0 0 0 14084

> audit$Adjustment[obs] == 0

[1] FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE

> audit$Adjusted[obs] == 1 & audit$Adjustment[obs] == 0

[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE
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Notice that the final example here is used as the argument to sum() in
our code above. This summation relies on the fact that TRUE is treated
as the integer 1 and FALSE as the integer 0 when needed. Thus

> sum(audit$Adjusted[obs]==1 & audit$Adjustment[obs]==0)

[1] 1

so that there is only one observation where both of the conditions are
TRUE. Over the whole dataset:

> sum(audit$Adjusted == 1 & audit$Adjustment == 0)

[1] 6164

For these 6164 observations, we note that they are regarded as being
adjusted yet there is no adjustment amount recorded for them. So, for
some majority of these observations, we want to ensure that they do have
an adjustment recorded for them, as we would expect from real data.

The following formulation uses the integer division function %/% to
divide prod by nonp and then multiply the result by nonp. This will
usually result in a number that is a little less than the original prod and
will be the number of observations that we will adjust to have a nonzero
Adjustment:

> adj <- (prod %/% nonp) * nonp

The resulting value, saved as adj (5175), is thus an integer multiple
(5) of the value of nonp (1035). The significance of this will be apparent
shortly.

Now we make the actual change from 0 to a random integer. To do
so, we take the values that are present in the data for adjustments where
Adjusted is actually 0 (the nonp observations) and multiply them by a
random number. The result is assigned to an adjusted observation that
currently has a 0 Adjustment. The point around the integer multiple
of nonp, noted above, is that the following will effectively replicate the
current nonp observations an integer number of times to assign them to
the subset of the prod observations being modified:
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> set.seed(12345)

> audit[audit$Adjusted == 1 & audit$Adjustment == 0,

'Adjustment'][sample(prod, adj)] <-

as.integer(audit[audit$Adjusted == 0 &

audit$Adjustment != 0, 'Adjustment'] *

rnorm(adj, 2))

There is quite a lot happening in these few lines of code. First
off, because we are performing random sampling (using sample() and
rnorm()), we use set.seed() to start the random number generation
from a known point, and thus the process is repeatable (we will get the
same random numbers each time). We could have used any number as
the argument to set.seed() as long as we use the same number each
time.

Next, we see quite a complex assignment. First, we index audit to
include just those observations marked as adjusted yet having no adjust-
ment. For these observations, we extract just the Adjustment variable
(noting that all resulting observations will be 0). The point of the ex-
pression, though, is to identify the locations in memory where this data
is stored.

The variable is further indexed by a random sample (using sample())
of adj (5175) numbers between 1 and prod (6164). These are the observa-
tions for which we will be changing the Adjustment from 0 to something
else.

The remainder of the assignment command calculates the replace-
ment numbers. This time audit is indexed to obtain those nonproduc-
tive observations with a nonzero adjustment. These 5175 values are
multiplied by a sequence of adj (5175) random numbers. The random
numbers are normally distributed with a mean of 2 and are generated
using rnorm().

That is quite a complex operation on the data. With a little bit of
familiarity, and breaking down the operation into its constituent parts,
we can understand what it does.

We need to tidy up one last operation involving the Adjustment vari-
able. Observations marked as having a nonproductive outcome should
have a value of 0 for Adjustment. The following will achieve this:

> audit[audit$Adjusted == 0 & audit$Adjustment != 0,

'Adjustment'] <- 0
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B.2.4 Finalising the Data

The remainder of the operations we perform on the audit dataset are
similar in nature, and we now finalise the data. The observations of
Deductions, for nonadjusted cases, are reduced to be closer to 0, reflect-
ing a likely scenario:

> audit[audit$Adjusted==0, 'Deductions'] <-

audit[audit$Adjusted==0, 'Deductions']/1.5

To keep to a smaller dataset for illustrative purposes, we sample 2000
rows:

> set.seed(12345)

> cases <- sample(nrow(audit), 2000)

Finally, we add to the beginning of the variables contained in the
dataset a new variable that serves the role of a unique identifier. The
identifiers are randomly generated using runif(). This generates ran-
dom numbers from a uniform distribution. We use it to generate 2000
random numbers of seven digits:

> set.seed(12345)

> idents <- as.integer(sort(runif(2000, 1000000, 9999999)))

> audit <- cbind(ID=idents, audit[cases,])

B.2.5 Using the Data

The final version of the audit dataset, as well as being available from
rattle, can also be downloaded directly from the Rattle Web site:

> twaudit <- "http://rattle.togaware.com/audit.csv"

> myaudit <- read.csv(twaudit)

B.3 Command Summary

This appendix has referenced the following R packages, commands, func-
tions, and datasets:
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apply() function Apply a function over a list.
as.character() function Convert to character string.
as.integer() function Convert to integer.
as.numeric() function Convert to numeric.
audit dataset Sample dataset from rattle.
class() function Identify type of object.
dim() function Report the rows/columns of a dataset.
download.file() function Download file from URL.
format() function Format an object.
head() function Show top observations of a dataset.
names() function Show variables contained in a dataset.
paste() function Combine strings into one string.
read.csv() function Read a comma-separated data file.
rnorm() function Generate random numbers.
sample() function Generate a random sample of numbers.
subset() function Create a subset of a dataset.
sum() function Add the supplied numbers.
survey dataset A sample dataset from UCI repository.
Sys.Date() function Return the current date and time.
table() function Summarise distribution of a variable.
weather dataset Sample dataset from rattle.
weatherAUS dataset A larger dataset from rattle.
within() function Perform actions within a dataset.
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Spatial Data Analysis with R, Use R!, Springer, New York. 18

Breiman, L. (1996), Bagging predictors, Machine Learning 24(2), 123–
140. http://citeseer.ist.psu.edu/breiman96bagging.html. 264

Breiman, L. (2001), Random forests, Machine Learning 45(1), 5–32. 264

Breiman, L., Friedman, J., Olshen, R., and Stone, C. (1984), Classifi-
cation and Regression Trees, Wadsworth and Brooks, Monterey, CA.
215

Chambers, J. M. (2008), Software for Data Analysis: Programming with
R, Springer, New York. http://stat.stanford.edu/~jmc4/Rbook/.
68

     ,
      DOI 10.1007/978-1-4419-98 - , © Springer Science+Business Media, LLC 2011

G. Williams, Data Mining with Rattle and R: The Art of Excavating Data for Knowledge Discovery
Use R,

357
90 3



358 References

Cleveland, W. S. (1993), Visualizing Data, Hobart Press, Summit, NJ.
108

Cook, D. and Swayne, D. F. (2007), Interactive and Dynamic Graphics
for Data Analysis, Springer, New York. 138, 141, 148

Cowpertwait, P. S. P. and Metcalfe, A. V. (2009), Introductory Time
Series with R, Springer, New York. 18

Crano, W. D. and Brewer, M. B. (2002), Principles and Methods of Social
Research, Lawrence Erlbaum Associates, Mahwah, NJ. 176

CRISP-DM (1996), Cross Industry Process—Data Mining. http://www.
crisp-dm.org/. 7

Culp, M., Johnson, K., and Michailidis, G. (2010), ada: An R Pack-
age for Stochastic Boosting. R package version 2.0-2. http://CRAN.
R-project.org/package=ada. 275

Cypher, A., ed. (1993), Watch What I Do: Programming by Demon-
stration, The MIT Press, Cambridge, MA. http://www.acypher.com/
wwid/WWIDToC.html. 11

Dalgaard, P. (2008), Introductory Statistics with R, 2nd ed., Statistics
and Computing, Springer, New York. ix, 18

DebRoy, S. and Bivand, R. (2011), foreign: Read Data Stored by Minitab,
S, SAS, SPSS, Stata, Systat, and dBase. R package version 0.8-44.
http://CRAN.R-project.org/package=foreign. 87

Durtschi, C., Hillison, W., and Pacini, C. (2004), The effective use of
Benford’s law to assist in detecting fraud in accounting data, Journal
of Forensic Accounting 5, 17–34. 119

Fraley, C. and Raftery, A. E. (2006), MCLUST Version 3 for R: Normal
Mixture Modeling and Model-Based Clustering, Technical Report 504,
Department of Statistics, University of Washington. 190

Freund, Y. and Mason, L. (1997), The alternating decision tree learn-
ing algorithm, in Proceedings of the 16th International Conference on
Machine Learning (ICML99), Bled, Slovenia, Morgan Kaufmann, San
Fransisco, CA, pp. 124–133. 286



References 359

Freund, Y. and Schapire, R. E. (1995), A decision-theoretic generaliza-
tion of on-line learning and an application to boosting, in P. M. B.
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$, 71

Access, 76

ada (package), 275, 276, 286, 291

ada(), 274, 276, 286, 290, 291

adaboost, 269, 273, 290

Adjusted (variable), 96, 349, 351,
352

Adjustment (variable), 349–353

ADT, 288

ADT(), 290

adult (dataset), 347

Age (variable), 155, 166, 265

agile software engineering, 6

agnes(), 190, 191

Algorithm (widget), 220, 255

All (widget), 309, 314

all.vars(), 238

Annotate (widget), 110

apply(), 340, 355

apriori(), 201–203

archetypes (package), 97, 98

ARFF, 82–84

arff (filename extension), 75

ARFF (widget), 83

arules (package), 201, 203

As Categoric (widget), 167

As Numeric (widget), 167

as.character(), 340, 355

as.dendrogram(), 134

as.factor(), 167

as.integer(), 350, 355

as.list(), 52

as.numeric(), 167, 341, 355

Associate (widget), 198, 199

attach, 53

attribute, see variable

audit (dataset), 73, 74, 91, 95–
97, 119, 120, 135, 315–317,
319, 347, 348, 351, 353–355

bar chart, 33

Bar Plot (widget), 31

basicStats(), 103, 135

Baskets (widget), 198, 199

Benford’s law, 119

BI, 67

BiCluster (widget), 188

Binning (widget), 166

binning(), 164

Boost (widget), 272

boosting, 269–292

box plot, 110

Box Plot (widget), 32, 164

box-and-whisker plot, see box plot

boxplot(), 112, 113

bpplot(), 114, 135

brushing, 141
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Bureau of Meteorology, 26

By Group (widget), 155, 160

c(), 47, 55, 69, 74

C=, 299, 303
capture.output(), 72

caret (package), xii

cart, 215, 241
cat(), 72, 74

categoric variable, 59
caTools (package), 286, 291

centers=, 189
cex=, 113

cforest(), 266, 268

characteristic, see variable
check.names=, 338

Clara (widget), 188
class(), 340, 355

Cleanup (widget), 167

clients (dataset), 86, 97
clipboard, 88–89

Close (widget), 43
Cloud3pm (variable), 133, 206, 217,

254
Cloud9am (variable), 127, 133

cluster (package), 190, 191

Cluster (widget), 185
col.names=, 348

Colour (variable), 165
Colour Blue (variable), 165

Colour Green (variable), 165

Colour Red (variable), 165
column, see variable

Comment (widget), 82
Complexity (widget), 276

Conditional (widget), 220, 242, 255
confidence, 195

confidence=, 200

confusion matrix, 36

Confusion Matrix (widget), 308,
314

Console (widget), 12, 22–25, 39, 40,
48, 78–80, 88, 92, 112, 124,
125, 177, 218, 303, 312, 324

Constant (widget), 162

Continue (widget), 276
control=, 230, 232, 273

cor(), 129, 134, 136

correlation, 128
Correlation (widget), 129, 130

covariate variable, 58

cp=, 235, 236

CRISP-DM, 7
cross-validation, 311–312

cross=, 303

crs$rpart (variable), 48
CSV, 76–82, 323

csv (filename extension), 75, 76

CSV File (widget), 310

csvfile=, xi
ctree(), 242, 244, 266, 268

cumulative gain chart, 315

data, 3

Data (widget), 28, 31, 38, 76–78,
80, 87, 92, 97, 100, 127,
132, 154, 185, 198, 309–
311, 316, 318

data analysis, 3

data expert, 6

data frame, 28, 60
data mart, 66

data matching, 63–65

data mining, 3

data mining process, 7
Data Name (widget), 87, 91, 92

Data Plot (widget), 188

data quality, 62–63



Index 367

data warehouse, 61, 65–67

data(), 92, 97

data.frame(), 112

data=, 223

dataset, 58

dataset partition, 309

Date (variable), 82, 89, 141, 142,
222

DB2, 76

dd load(), 147, 148

deciles, 102

decision tree, see random forest

Deductions (variable), 354

Delete Ignored (widget), 167

Delete Missing (widget), 167

Delete Obs with Missing (widget),
167

Delete Selected (widget), 167

density estimate, 114

density plot, 32

dependent variable, 58

describe(), 102, 136

DescribeDisplay (package), 147

descriptive variable, 58

detach, 53

dev.off(), 148

dfedit(), 81, 97

diag.panel, 124

diana(), 190, 191

digits=, x, 48

dim, 44

dim(), 44, 45, 49, 55, 68, 74, 100,
335, 338, 345, 346, 355

dimension, 58

discrete variable, see categoric vari-
able

Discriminant Plot (widget), 188

display(), 143, 148

Distributions (widget), 31, 32, 108,
109, 125, 127

doBy (package), 113
domain expert, 6
dot plot, 34
download.file(), 348, 355
Draw (widget), 28, 215, 220, 221
draw.tree(), 228, 244
DSN (widget), 85

Ecdf(), 117, 136
Edit call... (widget), 139
Enter (widget), 221, 310
entity, see observation
Equal Width (widget), 164
Error (widget), 255, 274
error matrix, 36
Error Matrix (widget), 36
evalq(), 51, 54, 55, 191, 222, 257,

268
Evaluate (widget), 36, 38, 221,

307–310, 314–316, 321, 323
Evaporation (variable), 133, 143,

164
ewkm(), 190, 191
Excel, 76
Execute (widget), 24–28, 31, 32,

38, 39, 41, 48, 76–78, 80,
91, 125, 129, 138, 141, 185,
198, 199, 215, 272, 314,
316, 321

exploratory data analysis, 99
Explore (widget), 31, 32, 100, 106,

108, 109, 125, 127, 129,
130, 137–139, 141, 142, 164

Explore Missing (widget), 132
Export (widget), 40–42, 154, 167,

326

F10 (widget), 43
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F2 (widget), 39, 41, 43, 77

factor, see categoric variable

false negative, 37

false positive, 37

fBasics (package), 103, 136
feature, see variable

field, see variable

file.show(), 78, 97

Filename (widget), 77, 78, 80, 83,
198, 316

Filename: (widget), 27

fill=, 82

foreign (package), 87, 97

Forest (widget), 249, 256, 316

format(), 113, 337, 355

format=, 337

formula(), 238

formula=, 223

Full (widget), 38, 309, 310
FUN=, 340

function, 44

gbm (package), 286, 291

gdata (package), 51

Gender (variable), 166, 348

GGobi (widget), 141

ggobi(), 141, 148
ggplot(), 148

ggplot2 (package), xii

grid(), 183, 191

gsub(), 72, 74

hclust(), 134, 136, 190, 191

head(), 46, 49, 55, 70, 74, 90, 339,
355

Header (widget), 81, 82

header=, 82, 348

Help (widget), 42

help(), 47, 55, 314

help.search(), 47, 55

Hierarchical (widget), 135, 188

histogram, 32, 114

Histogram (widget), 32

Hmisc (package), 102, 105, 106,
114, 117, 136

hold-out dataset, 311

Humidity3pm (variable), 110–112,
126, 128, 131, 209, 281

Humidity9am (variable), 131

ID (variable), 198

Ident (widget), 96, 198, 321

ifelse(), 343

Ignore (widget), 96, 162, 166

importance=, 262, 263

imputation, 161

Impute (widget), 162

Include (widget), 311

Include Missing (widget), 241

Income (variable), 119, 120, 154,
158, 265

index, 46

Input (widget), 27, 31, 96, 162, 166,
198, 215

input variable, 58

inspect(), 202, 203

install, 331–334

Interactive (widget), 137–139, 141,
142

interquartile range, 111

is.na(), 167

Item (variable), 199

iter=, 273, 285

Iterate Clusters (widget), 187, 189

Join Categorics (widget), 166

kernel=, 301, 302
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kernlab (package), 299, 301, 302,
304

KMeans (widget), 164
kmeans(), 185, 188, 189, 191

kparm=, 303

ksvm(), 301–304

kurtosis, 106

kurtosis(), 106, 136

lattice (package), 138

latticist (package), 31, 55, 137–140,
146, 148

Latticist (widget), 138

latticist(), 138, 148

levels(), 167

Library (widget), 76, 92

library(), 22, 43, 44, 55, 68, 74, 92,
97

lift chart, 318

Linear (widget), 166

Linux, 11, 331

ll(), 51, 55

load(), 53, 55, 324, 327

loading data, 75–98

Location (variable), 82, 141, 142,
222

Log (widget), 40, 79, 112, 125, 134,
154, 156, 221, 303, 324

log(), 155, 159, 167

LogitBoost(), 286, 291

loss=, 239

lower.panel, 124

ls(), 51, 55

machine learning, 5, 18, 21, 58, 80,
83, 175, 205, 241

main=, 113

make Weka classifier(), 287

maptree (package), 228, 244

MARGIN=, 340

matrix, see dataset
Matrix (widget), 155

Max Depth (widget), 276

maxcompete=, 240
maxdepth=, 240, 280

maxsurrogate=, 241
MaxTemp (variable), 32, 133, 138,

140, 143, 182

mboost (package), 286
mclust (package), 190

md.pattern(), 106, 136

mean, 101, 191
Mean (widget), 162

mean(), 167
measured variable, 58

median, 101, 111

Median (widget), 162
Median/MAD (widget), 155, 156

metadata, 66, 84

method=, 230
mice (package), 106, 136

Min Split (widget), 276
minbucket=, 232, 233, 235, 236

minsplit=, 232, 235

MinTemp (variable), 71, 109, 131,
133, 138, 140, 143, 182

missing values, 80
Mode (widget), 162

model, 3

Model (widget), 25, 28, 42, 215,
249, 272, 309, 314, 316, 326

mosaic plot, 34

MySQL, 76

na.action=, 262, 264
na.roughfix(), 262, 268

na.strings=, 80, 348

names(), 70, 74, 338, 339, 349, 355



370 Index

Netezza, 76, 85, 86

New (widget), 26, 41

New York Times, 14

new.env(), 50, 55, 222, 223, 238

nomenclature, 58–61
nominal variable, see categoric

variable

Normalise (widget), 155

nrow(), 55, 100, 238
ntree=, 251, 262

ntry=, 262

Number of clusters (widget), 187

Number of Trees (widget), 276

Numeric (widget), 97

numeric variable, 60

object, see observation

observation, 58, 59

ODBC, 75, 84–87

ODBC (widget), 85

odbcConnect(), 85, 97
odfWeave (package), 148

OLAP, 67

Open (widget), 40, 42, 77

open source software, 14, 15

Options (widget), 299

options(), x

Oracle, 76
Ordered (widget), 130

OSX, 11, 331

out-of-bag, 311

out-of-sample, 60

outlier analysis, 152–153

output variable, 58

over-fitting, 241

pairs(), 123–126, 136

panel.cor(), 124, 136

panel.hist(), 124, 136

panel.smooth(), 126, 136

parallel (widget), 139
parent=, 53, 223

parms, 231

parms=, 230
Partition (widget), 93, 100

party (package), 242, 244, 266, 268

paste(), 72, 74, 97, 337, 348, 355
path.rpart(), 229, 244

pch=, 113

percentiles, 102, 111
performance(), 312

plot(), 135, 148, 182, 192, 228, 229,
244

plotcp(), 224, 235, 244

PMML, 325–327
pmml (package), 326, 327

pmml(), 326

points(), 112, 113
Postgres, 76

power laws, 120

Pr v Ob (widget), 320
predict(), 291, 307, 323, 324, 327

predictor variable, 58

preset variable, 58
Pressure3pm (variable), 30, 206–

209, 217, 226, 227, 254,
283, 294, 298

Pressure9am (variable), 130, 227,
254

Print (widget), 43

print(), 48, 55, 224, 244
printcp(), 224, 244

prior=, 237, 239

privacy, 17–18
prob.model=, 301, 303

Project (widget), 41, 42

q(), 24, 48, 55
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qualitative variable, see categoric
variable

Quantile (widget), 164

quartiles, 101, 111

quit, 24

Quit (widget), 24

R, 10–11, 18

R (filename extension), 40

R Dataset (widget), 87, 310

Rainfall (variable), 126, 129, 139,
140, 147, 157, 344

RainToday (variable), 166, 344
RainTomorrow (variable), 28, 30–

32, 109, 110, 112, 122, 138,
140, 144, 166, 175, 209,
217, 218, 223, 226, 252,
258, 273, 294, 312, 344

RainTomrrow (variable), 96

randomForest (package), 249, 264,
268

randomForest(), 258, 262, 264, 265,
268, 274, 291

Rank (widget), 155, 156, 159

raprt(), 239

Rattle, 11–13

rattle (filename extension), 40

rattle (package), x, 22, 44, 55, 68,
74, 76–78, 97, 98, 120, 136,
148, 156, 192, 203, 222,
228, 244, 268, 291, 304,
316, 324, 335, 336, 354, 355

rattle(), xi, 22, 43–45, 49, 55

rbind(), 112
RData (filename extension), 40, 90

RData File (widget), 90

read.arff(), 84, 98

read.csv(), 79–82, 98, 336, 338, 348,
355

read.dbf(), 87, 98
read.delim(), 98
read.spss(), 87, 98
read.table(), 88, 98

read.xport(), 87, 98
readHTMLTable(), 90, 98
recall, 37
Recenter (widget), 155, 156, 158,

160
Recode (widget), 164, 166
record, see observation
relational database, 5, 84
replace=, 262, 263
Report (widget), 41, 311
rescaler(), 158, 159, 167
reshape (package), 158, 159, 168

response variable, 58
rggobi (package), 31, 55, 137, 141,

148
rggobi(), 141
RGtk2 (package), xii

RGtk2Extras (package), 81
risk (dataset), 91, 98
Risk (widget), 315, 318
risk chart, 315
Risk Chart (widget), 316
Risk Variable (widget), 310
RISK Adjustment (variable), 318

RISK MM (variable), 188, 222
rnorm(), 353, 355
ROCR (package), 312, 314, 320
RODBC (package), 85, 86, 98
round(), 192
row, see observation
rpart, 231

rpart (package), 55, 215, 222, 228,
230, 244, 272, 276, 291

rpart(), 55, 215, 222, 223, 230–232,
237, 238, 240, 241, 244,
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273, 274, 276, 278, 280,
291, 311

rpart.control (package), 244

rpart.control(), 280, 291

RSiteSearch(), 47, 55
rug plot, 115

rug plot, 32
Rules (widget), 28, 220, 256

runif(), 354

Runs (widget), 187
RWeka (package), 286, 291

Sample Size (widget), 252

sample(), 55, 93, 98, 100, 136, 238,
353, 355

sampsize=, 262, 263

SAS, 10, 16, 18, 76, 80, 87, 98
Save (widget), 42, 43

save(), 53, 55, 91, 98, 324, 327

Scale [0–1] (widget), 155–157
scale(), 156, 168

scatter plot matrix, 123

scipen=, x
Score (widget), 221, 308, 310, 321,

323
script file, 11

Seed (widget), 187

sensitivity, 37
sep=, 81, 337, 348

Separator (widget), 81

seq(), 45, 47, 49, 55, 69, 74
set.seed(), 95, 98, 192, 222, 238,

244, 353
Settings (widget), 42

Show Missing (widget), 106

Show Rules (widget), 201
siatclust (package), 192

siatlust (package), 190

sigest(), 303, 304

skel (dataset), 98
skewness, 105
skewness(), 105, 136

skip=, 338
Source (widget), 76
specificity, 37
split=, 231
splom (pairs) (widget), 139
Spreadsheet (widget), 77, 78
sprintf, 74

sprintf(), 72
SPSS, 10, 16, 18, 87–88, 98
SQL, 67, 84
SQL Server, 76
sqlColumns(), 86, 98
SQLite, 76

sqlTables(), 86, 98
standard error of the mean, 103
statistics, 5
stats (package), 185, 190, 192
Stats (widget), 188
Status Bar (widget), 39
str(), 72, 74, 258, 268

strike rate, 317
strip.white=, 80, 348
sub=, 113
subset(), 345, 355
sum(), 346, 352, 355
Summary (widget), 100, 106

summary(), 101, 136, 225, 228, 244,
278, 291

summaryBy(), 113
Sunshine (variable), 32, 82, 101–

103, 105, 107, 109, 116–
118, 126–131, 133, 139,
140, 143, 145, 146, 207,
211, 218, 254, 294, 298

support, 195
support vector machines, 293–304
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support=, 200

surrogatestyle=, 240
survey (dataset), 347, 348, 355

Sweave(), x

SWordInstaller (package), 148

Sys.Date(), 337, 355
Sys.info(), 113

Sys.time(), 113

system.file(), 78, 98

table, see dataset

Table (widget), 85

table(), 55, 349, 355
tail(), 46, 55

Target (widget), 96, 164, 198, 199,
215

target variable, 58

Temp3pm (variable), 133, 155, 156,
159, 160

Temp9am (variable), 131, 133

Teradata, 76, 86

Testing (widget), 36, 309, 310
testing dataset, 36, 60, 323

text(), 112, 113, 228, 244

Textview (widget), 221, 249, 272,
273, 299, 314

title(), 113

Toolbar (widget), 41
Tools (widget), 42

tours, 141

Traditional (widget), 220, 255
Training (widget), 38, 309

training dataset, 36, 60, 209, 211,
213, 217, 219, 222, 223,
235, 309, 310, 315, 321, 323

Transform (widget), 153–155, 162,
164, 165

Tree (widget), 36, 215

true negative, 36

true negative rate, 37

true positive, 36

true positive rate, 37

txt (filename extension), 75

Type (widget), 308

type=, 302

upper.panel, 126

usesurrogate=, 240, 241

Validation (widget), 38, 309

validation dataset, 36, 60, 323

variable, 58, 59

variable independent, 58

vector, 45

View (widget), 81

weather (dataset), 25, 28, 29, 33,
45, 46, 48, 55, 68, 71,
73, 74, 76, 83, 91, 95,
96, 98, 100, 101, 121–123,
128, 136, 138, 140, 148,
156, 157, 159, 175, 180–
183, 185, 188, 192, 194,
198, 203, 215, 216, 222,
244, 262, 266, 268, 272,
277, 279, 291, 294, 299,
304, 312, 314, 316, 324,
335, 336, 345–347, 355

weather.csv (dataset), 28

weatherAUS (dataset), 73, 74, 91,
238, 345, 355

Weight (widget), 97

Weight Calculator (widget), 97

Weka, 286

where=, 228

which(), 281, 291

width=, x

WindDir3pm (variable), 254, 275
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WindDir9am (variable), 33, 34,
133, 227, 254, 275

WindGustDir (variable), 82, 109,
121–123, 132, 133, 160

WindGustSpeed (variable), 109,
133, 160

window(), 42, 55
Windows, 11, 331
WindSpeed3pm (variable), 106,

157
WindSpeed9am (variable), 106,

115–118, 133, 340

with(), 112

within(), 341, 355

workspace, 25

WOW(), 288, 291

write.csv(), 324

x11(), 42, 55

XML (package), 89, 90, 98

Zero/Missing (widget), 162
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