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Abstract

Performance measures like the F1-score make strong assumptions about
the trade-off between recall and precision that are not a good fit for some
contexts like e-discovery. This paper advocates comparing performance
at different recall levels, when necessary, by using a novel method for
extrapolating a single precision-recall point to a different level of recall.
With this approach, the constant-performance contours are a parameter-
ized family of reference precision-recall curves.

1 Problems with F-Scores and Similar Measures

When evaluating information retrieval (IR) systems where both high recall, R,
and high precision, P , are desirable, comparing precision values at the same level
of recall avoids the problem of determining how much degradation of precision
is acceptable to attain higher recall. Sometimes, however, it is necessary to
compare results when the level of recall is different. For example, systems may
generate binary relevance predictions rather than relevance scores, or systems
may aim for a particular level of recall with the exact level reached only being
determined during analysis that occurs after the retrieval. The goal is to make
a useful quantitative measure of how one point in the precision-recall plane
compares to another.

Before proposing a new approach, it is worthwhile to examine some of the
shortcomings of other performance metrics to identify areas where improvement
is possible. One popular metric is the F -measure or F -score [vR79]:

Fb(R,P ) =
1

1
b2+1

(
b2

R + 1
P

) =
(b2 + 1)RP

b2P +R
(1)

The value for Fb will fall between R and P , with large values of the weighting
parameter, b, pushing Fb closer to R. A common choice for the weighting
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Figure 1: Precision and F1 as a function of recall for two tasks. The shaded
regions indicate points where a system with better precision at that recall would
get a lower F1 than the best F1 that the graphed system could achieve (at a
different recall).

parameter is b = 1. F1 tends to be closer to the smaller of R and P , so one
cannot achieve a high value for F1 while having a very low value for R or P .

Recall and precision can have very different significance to the user of an IR
system in some contexts like e-discovery. In e-discovery, the documents that are
retrieved by the IR system are often reviewed by humans to make final relevance
determinations and identify any privileged information that should be redacted
or withheld. The number of documents retrieved, n, is related to the size of the
document population, N , the prevalence (or richness) of relevant documents, ρ,
and recall and precision, by:

n =
ρNR

P
(2)

where the numerator is the number of relevant documents found, and dividing
by P converts it to the number of documents retrieved. High recall is required
to satisfy the court, whereas Equation (2) shows that high precision is desirable
to minimize the time and expense of human document review corresponding to
a particular level of recall.

Although the goal is to compare systems at different levels of recall, it is an
informative first step to examine the performance measure at equal recall be-
cause Equation (2) provides a way to quantify the value of the results. Figure 1
shows P and F1 as a function of R for a system performing two IR tasks, but one
could imagine the two graphs as comparing two different IR systems performing
the same task. At R = 0.75, the system on the right would require 6.5 times
as much document review (excluding training and testing) as the system on the
left, based on the precision values and Equation (2). The ratio of the F1 scores
at R = 0.75 is only 3.6. This is a general property of F -scores—they mix P and
R together in a way that dilutes the impact of differing precision. The effect
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is even more significant if more weight is given to the recall. For example, the
ratio of F2 values at R = 0.75 in this case is only 2.0. F -scores fail to accurately
measure performance differences in the single situation (equal recall) where the
right result is known without ambiguity.

Figure 1 shows that F1 is maximal at R = 0.83 on the left and at R = 0.46 on
the right. If F1 is truly the right performance measure when comparing different
IR systems, it should also be the right measure when comparing different points
on the same precision-recall curve. In other words, it would be irrational to
stop the retrieval at any R value other than the one that maximizes F1. In
the context of e-discovery, stopping retrieval at the recall level that maximizes
F1 is simply not consistent with common practice or the law. Currently, it
is common to aim for recall of at least 0.75 when using supervised machine
learning. Producing only 46% of the relevant documents, as F1 would suggest
for the situation on the right side of Figure 1, is likely to lead to objections from
the requesting party unless the cost of that 46% is already substantial compared
to the value of the case, which highlights another critical problem with F -scores.
Rule 26(b)(2)(C) of the Federal Rules of Civil Procedure requires discovery
to be limited if “the burden or expense of the proposed discovery outweighs
its likely benefit,” a principle known as proportionality. The recall level that
maximizes F1 is determined by the document population, the retrieval task, and
the performance of the IR system. It is completely blind to the value of the case
being litigated or any of the other factors that are considered when determining
the limits imposed by proportionality. If the recall levels that people aim for in
practice aren’t consistent with maximizing F1, that says quite clearly that F1’s
approach to measuring the relative worth of recall and precision is not in line
with the actual needs of the people using IR systems. Shifting to a different
F -score that weights recall more heavily, like F2, doesn’t fix the problem—it
would dictate aiming for R = 0.59 to maximize F2 in the case on the right side
of Figure 1, which seems more reasonable, but it would also push up the optimal
recall for the left side of the figure to 0.89, and still wouldn’t account for the
case-specific limitations imposed by proportionality.

F -scores are problematic because they make strong assumptions about per-
missible trade-offs between precision and recall, and those assumptions cause
trouble when they don’t align with the actual information need. F -scores are
intentionally small when R is very small or very large (since P will inevitably
be small at very large recall), leading to a hump-shaped curve that penalizes
hitting a recall level that is too far from the recall that the F -score considers
to be optimal. This means a superior system may appear, based on an F -score,
to be inferior if evaluated at a recall level that is not favorable as far as the
F -score is concerned. Regions of the precision-recall plane where that can occur
are shaded in Figure 1. The shaded regions are large in Figure 1 because the
contours of constant F1 are not shaped like precision-recall curves—the upper
bound of each shaded region is a constant F1 contour. Although we’ve focused
on F -scores, this analysis applies to other hump-shaped (as a function of R)
performance measures like the Matthews correlation coefficient [Mat75].

Another approach to comparing performance at different recall levels is to
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extrapolate the precision values to the same target recall. As an example of a
simple extrapolation scheme, an IR system giving binary relevance predictions
could be extrapolated to a lower recall level by taking a random subset of
the documents predicted to be relevant, effectively treating the precision as
being the same for all recall levels below the recall that was actually achieved.
This is similar to the interpolation that is sometimes done with precision-recall
curves [OW13]. Although this paper advocates using extrapolated precision
as a performance measure, the simple extrapolation scheme is flawed. The
performance measure is really just P itself, without any regard for the recall
where it was achieved (see Figure 9 for an example of the method’s bias). As
a thought experiment, consider creating several binary IR systems by taking a
single IR system that generates a relevance score and applying different relevance
score cutoffs to generate binary results. The system with the highest relevance
score cutoff would typically achieve the highest precision (hence, appearing to
be superior) by retrieving the smallest number of relevant documents, which
isn’t a good fit for the goals of e-discovery.

2 Extrapolated Precision

Since proportionality, and therefore factors that are external to the document
population and classification task, should dictate recall goals in e-discovery, we
seek a performance measure that reflects how well the IR system is working
without trying to dictate an optimal recall level for evaluation. In other words,
the contours of constant performance should be shaped like typical precision-
recall curves, so varying the recall by moving along a precision-recall curve
having typical shape will have minimal impact on the value of the performance
measure and thus will minimize the risk of drawing wrong conclusions about
which system is performing best due to differences in the recall level where
the measurement is made. If an IR system has a precision-recall curve with
an unusual shape, it will cut across constant performance contours and should
achieve higher values for the performance measure in recall regions where the
precision achieved is considered anomalously good compared to the rest of the
precision-recall curve. Since the performance measure aims to be fairly recall-
agnostic, any recall requirements should be imposed externally, like requiring
the recall to be above some level or applying a penalty factor to the performance
measure if the recall doesn’t lie within a specified range.

To achieve the goals outlined in the previous paragraph, we will create a
parameterized set of non-overlapping (except at R = 1 or P = 1) reference
precision-recall curves based on a reasonable model of how a precision-recall
curve is typically shaped. A single reference curve will pass through each mean-
ingful (i.e., P > ρ) point in the precision-recall plane. The parameter value,
β, that indicates which curve passes through the IR system’s precision-recall
point would be sufficient to rank the IR systems that are being compared, but
we want a measure that says something meaningful about how much better
one system is compared to another, so we’ll translate β into an extrapolated

4



0

0.2

0.4

0.6

0.8

1

P

0 0.2 0.4 0.6 0.8 1
R

Figure 2: The three solid dots represent precision-recall measurements for three
different systems. We find the approximate precision at target recall RT = 0.75
for each point by moving along the reference curve that passes through it.

estimate of the precision at some target recall, RT , by simply moving along the
reference curve as shown in Figure 2. Furthermore, the extrapolated precision
has a straightforward and meaningful interpretation—it is an estimate of the
quantity we would have measured in the first place, P (RT ), if we could demand
that all IR systems reach exactly the same recall for evaluation. If the system is
evaluated at a recall that is reasonably close to RT , the extrapolated precision
should be a good approximation to the actual precision at RT , so it can be
used in Equation (2) as a reasonable estimate of review cost. If the system is
evaluated at a recall that is far from RT , the extrapolated precision will still be
a reasonable performance measure, it just won’t necessarily be a good estimate
for P (RT ).

To be clear, the extrapolation will involve estimating P (RT ) from a single
point, P (R). This approach does not involve knowing the full precision-recall
curve, so it can be used on systems that provide binary relevance predictions.

It would be unwise to try to write down a set of reference precision-recall
curves directly, because the slope of the precision-recall curve is related to the
probability of a document at that recall level being relevant, p(R), and it would
be easy to accidentally write down a precision-recall curve that implied a prob-
ability function with strange lumps, or that failed to stay between 0 and 1.
Instead, we’ll write down a reasonable model for p(R) and generate P (R) from
it.

The differential equation relating the precision and recall to the probability
of a document being relevant is (in the continuum limit):

dP (R)

dR
=
P (R)

R

[
1− P (R)

p(R)

]
(3)
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It can be confirmed by direct substitution that Equation (3) is solved by:

P (R) =
R∫ R

0
dr
p(r)

(4)

for any well-behaved p(R) that satisfies the normalization condition:∫ 1

0

dr

p(r)
=

1

P (1)
(5)

The intuition is that the integral in the denominator of Equation (4) is the
number of documents retrieved to reach recall R divided by the number of
relevant documents in the whole document population.

The next step is to choose a reasonable model for p(R). To clearly differenti-
ate between actual probability and precision curves and our model curves, we’ll
use x for the model probability and X for the model precision (corresponding
to p and P respectively). Also, we’ll take the model precision at R = 1 to be
equal to the prevalence, i.e., X(1) = ρ. We aim to find a simple model that can
produce a full range of realistic precision-recall curves. The model should also
be one where the integral in Equation (4) can be performed analytically.

A ratio of two second-degree polynomials can easily be parameterized to
provide monotonic probability curves satisfying 0 ≤ p(R) ≤ 1, while accom-
modating widely varying curvature. The numerator will primarily control the
behavior when R is close to 1. Examination of probability curves for several
classification tasks (see bottom of Figure 3) suggests that the dominant behav-
ior near R = 1 is proportional to (1 − R)2. There must be an additional term
in the numerator that approaches zero more slowly as R→ 1 or the integral in
Equation (4) will diverge. Adding a constant term to represent a small number
of documents that are found at random because the IR system has not detected
the features that make them relevant is reasonable, and works well for ρ ≈ 0.01.
Some classification tasks with high prevalence show a hint of a (1 − R) term,
but it is small and it is probably not worthwhile to try to model it.

We take the denominator to be equal to the numerator plus an additive
piece that is normally relatively small when R → 0 since the probability of a
document being relevant at R = 0 is typically high. Thus far, the form of the
model is:

x(R) =
1 + β2(1−R)2

1 + β2(1−R)2 + c0 + c1R+ c2R2
(6)

where the c0 + c1R+ c2R
2 part must be non-negative for all R ∈ [0, 1] to ensure

that the probability is never greater than one.
The β parameter will ultimately be used to select the curve from the family

of model curves based on the observed value of precision and recall; all other
parameters must be eliminated. We take c2 to be zero for simplicity, and because
it doesn’t seem to be necessary. The normalization condition in Equation (5)
forces a relationship between c0, c1, and the prevalence:

c0 =
1− ρ
ρ

β

tan−1 β
− c1

[
1− 1

2

ln(1 + β2)

β tan−1 β

]
(7)
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Figure 3: Classification tasks on left have ρ ranging from 0.005 to 0.014. Tasks
on right have ρ from 0.040 to 0.255. Graphs along the top show precision-recall
curves and model curves, X, where the β parameter for each model curve comes
from the measured precision at R = 0.75, which is indicated with a dot. Bottom
shows the probability curves and corresponding model curves, x. β values range
between 16 and 526 on the left, and between 8 and 50 on the right.
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To ensure that x(R) ≤ 1 at R = 0 we must have c0 ≥ 0, which imposes a
restriction on c1:

c1 ≤
1− ρ
ρ

β

tan−1 β

[
1− 1

2

ln(1 + β2)

β tan−1 β

]−1

(8)

It is useful to understand the impact of the final unwanted parameter, c1,
before choosing a value for it. The larger we make c1, within the limit imposed
by Equation (8), the smaller c0 will be, due to Equation (7). The smaller c0 is,
the closer x(0) will be to 1 for a given value of β, according to Equation (6).
Probability and precision are equal at R = 0, so X(0) = x(0). Larger c1 pushes
x, and therefore precision, values closer to 1 at R = 0.

If we take the largest allowed value for c1, c0 will be zero and all of the
model’s precision-recall curves (all values of β) will have precision equal to 1 at
R = 0. That would be too extreme—we know from experience that precision is
sometimes less than perfect at low recall. A model that forces perfect precision
at zero recall will behave badly if forced to fit a point with modest precision at
very low recall.

On the other hand, if our choice for c1 makes c0 too large, the model
precision-recall curves will fall far short of perfect precision at R = 0, even
when precision is observed to be relatively high at high recall. In other words,
the precision-recall curves will flatten out instead of climbing toward 1 as R→ 0.
Normally, the β2 term in the numerator and denominator of Equation (6) would
tend to drive the precision to 1 at low recall as β is increased, but Equation (7)
shows that c0 is superficially proportional to β for large β, due to the normaliza-
tion requirement, so it fights against achieving perfect precision (though it will
lose out to β2 if β is large enough). Examination of Equation (7) reveals that
the strongest part of c0’s dependence on β can be cancelled out with a judicious
choice for c1:

c1 =
1− ρ
ρ

β

tan−1 β
(9)

There are other possibilities for c1 that vary in how much they reduce c0, but
Equation (9) is simple and produces reasonable results, as shown in Figure 3,
which shows how the model compares to some actual precision-recall curves
for tasks of varying difficulty and prevalence. For comparison, Figure 4 shows
the poor model curves that would result from taking c1 to be half of the value
suggested in Equation (9).

The final model for the probability curves is:

x(R; ρ, β) =
1 + β2(1−R)2

1 + β2(1−R)2 + 1−ρ
ρ

β
tan−1 β

[
R+ 1

2β tan−1 β ln(1 + β2)
] (10)

and the model for the precision curves is:

X(R; ρ, β) =
R

R+ 1−ρ
ρ

{
1− tan−1[β(1−R)]

tan−1 β

[
1 + 1

2β tan−1 β ln(1 + β2)
]

+ 1
2β tan−1 β ln[1 + β2(1−R)2]

}
(11)
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Figure 4: Example of a bad model. Similar to Figure 3, but c1 is taken to be
half of the value recommended in Equation (9), resulting in model curves that
are too flat at low recall.
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Figure 5: Graph of model probability curves, x(R; ρ, β), on the left, and cor-
responding precision curves, X(R; ρ, β), on the right, for ρ = 0.03 and various
values of β ranging from 2.44 to 833, with β values chosen to give evenly spaced
X values at R = 0.75.

Figure 5 shows a graph of the model probability function, x, and the corre-
sponding reference precision-recall curves, X, for various values of β.

Finally, we determine which reference curve passes through the single precision-
recall point that was measured, P (R), by finding the value of β that satisfies:

P (R) = X(R; ρ, β) (12)

which must be done numerically. Extrapolation should not be attempted if
the measured recall or precision are extremely close to 1.0 because those regions
contain very little information about how the system will perform at other recall
levels, which is reflected in Figure 5 by many different reference curves being
very close together in those regions.

To summarize the process, start with a single R and P value for the IR
system being analyzed, similar to computing F1. The prevalence for the doc-
ument population, ρ, is also required. Solve Equation (12) numerically to find
the β that corresponds to the known values of ρ, R, and P . Once β is known,
extrapolate to any target recall, RT , desired by computing X(RT ; ρ, β) using
Equation (11). Extrapolate results for several different IR systems (potentially
measured at different recall levels, but ideally those levels should be close to
RT for accurate extrapolation) to the same RT so they can be compared in
a meaningful manner. The end result is a performance measure that has real
meaning—it is an estimate of the precision at RT , not some strange mixture of
precision and recall that is hard to interpret, and it can be used in Equation (2)
to estimate the number of documents that would need to be retrieved to reach
recall RT .

X(RT ) can be computed from a single precision-recall point. If an entire
precision-recall curve is available, X(RT ) can be computed for each point on
the curve and plotted as a function of R (the recall of the precision-recall point
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Figure 6: Precision and X(0.75) as a function of recall for two tasks. The shaded
regions indicate points where a system with better precision at that recall would
get a lower X(0.75) than the best X(0.75) that the graphed system could achieve
for any recall (though recall would normally be restricted).

used in the computation), similar to the F1 plots in Figure 1. Figure 6 shows
the plot for RT = 0.75 with the data from Figure 1. The X(0.75) curve must
cross the P curve at R = 0.75 because X(0.75) is intended to be an estimate of
what P would be at RT = 0.75 based on a measurement at some arbitrary R,
so any sensible extrapolation scheme should give the exact right answer when
the arbitrary R happens to equal RT . To the extent that the extrapolation
scheme is working well, X(0.75) should be perfectly flat, which means that
conclusions about IR system quality won’t change if systems are evaluated at
differing levels of recall. If the actual precision-recall curve deviates from the
shape of the reference curves generated by the model, that will be reflected in
X(0.75) having bumps or a non-zero slope. For example, the precision-recall
curve on the right side of Figure 6 shows a little dip when recall is greater than
0.9, and that dip also appears and is amplified in X(0.75).

Figure 7 shows a comparison of six different supervised machine learning
algorithms applied to the same easy IR problem. Dots highlight performance
values at R = 0.75, which we’ll take to be a reasonable recall level for the IR
task. If all of the systems could be evaluated at exactly R = 0.75, the ranking of
the systems would be unambiguous. If the full precision-recall curves were not
known for the six systems and we had just six precision-recall points to compare,
measured at slightly different recall levels, comparing precision values without
any adjustment for the differences in recall might result in the wrong system
winning because P varies strongly with R. The center graph in Figure 7 shows
that F1 gives a distorted view of the relative performance of the systems even if
they are all measured at exactly R = 0.75. The F1 values at R = 0.75 are much
closer to each other than the corresponding P values are, giving the misleading
impression that the performance differences are smaller than they are. The
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Figure 7: Comparison of P , F1, and X(0.75) as a function of recall for six
different supervised machine learning algorithms trained and tested on the same
data for the same relatively easy IR task. Dots highlight values at R = 0.75 for
comparison.

rightmost graph in Figure 7 shows that the X(0.75) values are exactly equal to
the P (0.75) values at R = 0.75, and for recall values slightly away from 0.75 the
X(0.75) values change very little (with the exception of the worst-performing
system, which has a very oddly-shaped precision-recall curve). Evaluating the
systems at recall levels slightly away from 0.75 is less likely to result in drawing
wrong conclusions about relative performance with X(0.75) than with P .

Figure 8 shows the same systems applied to a more difficult IR problem. The
system that would come in dead last based on precision for all values of recall
greater than 0.57 would take fourth place in an evaluation based on maximizing
F1, illustrating the fact that maximum F1 is not an appropriate measure when
high recall is required. The F1 values at R = 0.75 are again distorted compared
to P at R = 0.75. In this case, they are more spread out, but not by a uniform
amount. The F1 values change significantly as you move away from R = 0.75, so
an evaluation involving recall values that vary slightly could result in incorrect
performance rankings based on F1. Again, X(0.75) is seen to be flatter near
R = 0.75, so there is less risk of erroneous performance rankings due to varying
recall.

Finally, Figure 9 examines extrapolation accuracy over small differences in
recall. The left side shows the extrapolation error, X(R) − P (R), where X
extrapolates from P (R+0.05). The right side analyzes the simpler extrapolation
method of assuming that precision is constant, so it graphs P (R+0.05)−P (R).
X is seen to generally have smaller errors than the simple method. As one
might expect, the simple method produces predictions that are too low when
the precision-recall curve isn’t flat.
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Figure 8: Comparison of P , F1, and X(0.75) as a function of recall for six
different supervised machine learning algorithms trained and tested on the same
data for the same relatively difficult IR task. Dots highlight values at R = 0.75
for comparison.
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Figure 9: Extrapolated precision minus actual precision. Values are extrapo-
lated from recall R + 0.05 down to recall R. Extrapolation on left side uses X.
Right side uses the simple method of treating the precision as a constant. Top
corresponds to the same data and classification algorithms as Figure 7. Bottom
corresponds to data and algorithms from Figure 8.
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3 Conclusions

The proposed performance measure based on extrapolating precision values to a
target recall does not make strong assumptions about the appropriate trade-off
between recall and precision, as F1 does, so it is sensitive to the IR system’s
performance while being less sensitive to the recall level where the measurement
is made. This reduces the risk of drawing incorrect conclusions about which sys-
tem is performing best when the measurements are made at different levels of
recall. The extrapolation method involves a family of reference precision-recall
curves that are seen to have reasonable shapes compared to a modest set of test
curves. A few tests of extrapolations over small differences in recall are found
to be more accurate than the simple method of extrapolating precision to lower
recall by treating precision as a constant. Work remains to be done on comput-
ing confidence intervals on the extrapolated precision when it is estimated via
sampling.
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