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Introduction 

In a 2006 Law Technology News article, Craig Ball made the following bold statement regarding the role 

of metadata in eDiscovery: 

It's the electronic equivalent of DNA, ballistics and fingerprint evidence, with a comparable 
power to exonerate and incriminate. Metadata sheds light on the context, authenticity, 
reliability and dissemination of electronic evidence, as well as providing clues to human 
behavior. 

And by June 2007, in its seminal work on best practices and principles for electronic document 

production, the Sedona Conference had formally recognized the importance of producing “accessible 

metadata that will enable the receiving party to have the same ability to access, search, and display . . . 

information as the producing party." Indeed, it is now widely acknowledged and accepted within the 

eDiscovery industry that metadata is a critical component of any electronically stored data. 

Opinion remains divided, however, regarding the role of metadata in machine learning for technology-

assisted review (TAR), particularly with respect to the algorithm development process. The Grossman-

Cormack Glossary of Technology-Assisted Review (2013) asserts that using metadata features is “typical” 

in the development of machine learning algorithms. Likewise, in a 2013 blog post, Ralph Losey maintains 

that one virtue of predictive coding systems is their use of a “complex analytic system that looks at the 

entire document . . . includ[ing] metadata.” 

On the other hand, Equivio and kCura have both produced documentation stating that machine learning 

systems typically rely upon extracted text only and that experts engaged in providing document 

assessments for training should, therefore, avoid considering metadata values in making responsiveness 

calls (Sharp 2012; kCura 2014). In 2014 in his blog “The eDiscovery Nerd,” attorney Joshua Tolles writes 

that “anyone suggesting that metadata is part of the [machine learning] algorithmic analysis of a given 

document misunderstands how the core algorithmic analysis occurs.”  

Regardless of whether most machine learning algorithms currently incorporate metadata, if we accept 

the importance of metadata to the eDiscovery process, it is reasonable to propose that metadata can 

and should be incorporated into the machine learning process for TAR. Questions still remain, however, 

regarding the extent to which metadata fields should be utilized, which fields are likely to be most 

constructive, and which techniques would prove most efficacious for leveraging the contents of these 

fields in algorithm development. 

Few active discussions of these topics exist in eDiscovery literature. Grossman and Cormack’s TAR 

Glossary (2013) specifically identifies subject, sender, recipient, date, and file type fields as potential 

sources of worthwhile metadata features. Cormack and Grossman (2014a) also discuss using cc, bcc, and 

time sent fields as part of their TAR protocol. Finally, in their patent, they extend the set of possible 

metadata feature sources to include revision history, as well (Cormack and Grossman 2014b). This set of 
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fields is intuitively appealing given the probable correlations between responsiveness and the 

participants, timing, subject and format of a conversation. 

Oard and Webber (2013) present a more expansive view of potentially useful metadata for TAR. They 

discuss several distinct classes of metadata each of which offers numerous fields of metadata that have 

the potential to contribute positively to machine learning-based document classification. They do note, 

though, that “building an actual working system also requires making many detailed choices about data 

cleaning, feature construction, and feature representation.” 

Cormack and Grossman (2014a) provide some insights into the methods they adopted for integrating 

select metadata field contents into their TAR process. Specifically, they describe an approach to feature 

engineering that involves creation of a “text representation of each document (including a text 

representation of the sender, recipient, cc or bcc recipients, subject, and date and time sent).” Through 

this process, metadata values are placed on par with content derived from document body text. 

Cheng and Jones (2013) briefly discuss an alternative approach to “incorporating document metadata 

information . . . in ways that preserve the special status of metadata.” They suggest this can be 

accomplished effectively by incorporating relevance scores generated from independent metadata 

models based on logistic regression analyses. The full details of this process are not explored in that 

work, however, and the questions of which and how many metadata fields to utilize remain open. 

The issues surrounding the role of metadata in machine learning for TAR warrant further investigation 

and clarification. In this paper, we address several foundational points in a series of comparative 

analyses designed to provide viable answers to several of the central questions. At a minimum, we hope 

to establish that metadata can be incorporated into the algorithm development process with positive 

impacts on machine learning results for document classification. Further, while we defer treatment of 

the question of exactly which specific metadata fields are best suited for machine learning in eDiscovery, 

we do tackle the question of how extensive the selection of metadata should be, finding that greater 

inclusivity is generally better for our purposes. Finally, we show the promise of incorporating metadata 

into the machine learning process in ways that more effectively tap the added layer of information 

intrinsic to the values in these fields and that more effectively capture the complementary perspective 

metadata contributes to document classification endeavors. 

Data 

We drew upon three different data sets for the purposes of our experimentation: 

a. Data Set 1: 4,500 documents were drawn at random from a subset of 10,586 individual documents 

coded as Responsive or Not Responsive to Topic 301 from the 2010 TREC Interactive Task. (Family-

level assessments were not considered.) The subset from which the randomly selected 4,500 

documents were drawn represents documents for which topic assessments, body text, and 

metadata were all readily available. Details regarding the attributes of this data set are as follows:  
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Data Set 1 

Review Type: Responsive Review 

Litigation Type: Class Action Suit 

Industry: Energy 

Rate of Relevance: 16.30% 

Custodian Info: 149 custodians 

Doc Type Info: Email 56%; Word Processing Docs 14%; Spreadsheets 7%; PDFs 3%; Other 20% 

Size Info: Mostly small docs; > 48% 0-1,000 bytes; 94% 0-50,000 bytes 

Date Info: Date range: Jan 1998 - Sep 2002 (95% 2000-2002) 

 

b. Data Set 2: 4,500 documents were drawn at random from a proprietary set of 20,000 business 

documents coded as Responsive or Not Responsive. Details regarding the attributes of this review 

and data set are as follows: 

Data Set 2 

Review Type: Responsive Review 

Litigation Type: Contract Dispute 

Industry: Technology 

Rate of Relevance: 16.10% 

Custodian Info: 23 custodians 

Document Type Info: 
Email 49%; HTML 15%; Word Processing Docs 5%; Spreadsheets 5%; PDFs 2%; 

Presentations 4%; Plain Text 4%; Other 20% 

Size Info: Mostly small-to-medium docs; 60% 1,000-10,000 bytes; 95% 0-50,000 bytes 

Date Info: Date range: Sep 2005 - Aug 2014 (90% 2009-2014) 

 

c. Data Set 3: 4,500 documents were drawn at random from a proprietary set of 11,088 business 

documents coded as Responsive or Not Responsive. Details regarding the attributes of this review 

and data set are as follows: 

Data Set 3 

Review Type: Responsive Review 

Litigation Type: Patent Infringement 

Industry: Manufacturing 

Rate of Relevance: 15.30% 

Custodian Info: 5 Custodians 

Document Type Info: Email 52%; Word Processing Docs 8%; Spreadsheets 26%; Other 14% 

Size Info: Mostly small-to-medium documents; 73% 0-10,000 bytes; 88% 0- 50,000 bytes 

Date Info: Date range: Aug 1999 - Jun 2014 (69% 2011 to Jun 2014) 

 

Data Set 1, the TREC 2010 Enron population, was impoverished in terms of metadata compared to Data 

Sets 2 and 3. The latter two better represent the full breadth and quality of metadata that can be 

gleaned from modern data processing techniques. Taken together the three data sets reflect the 

variability in metadata availability that is common across eDiscovery projects.  
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Methods 

From each of the three data sets of 4,500 documents, we selected a random subset of 3,000 documents 

to use as a Control Set, and we tested machine learning models built from the remaining set of 1,500 

documents against the Control Sets. 

For all machine learning model development, we used the Support Vector Machine implementation 

provided in the LIBSVM library (Chang and Lin 2011). We used a polynomial kernel of degree 2, and used 

the cross validation option of LIBSVM to obtain probability estimates. 

The metadata fields that were considered eligible for utilization in our experiments are listed in the 

Appendix, along with information showing which fields were used for each data set. 

The following fields were defined as belonging to the Standard Metadata set: Author, Sender, Recipient, 

Copy, Subject, Title, File Name, Document Type, File Extension, Sent Date, Created Date, Sender 

Domain, and Recipient Domain. These were selected for inclusion in the Standard Metadata set because 

a) they are the fields most commonly cited by practitioners providing details regarding their use of 

metadata in machine learning for TAR, b) they are commonly available or derivable for most modern 

eDiscovery populations, and c) they have obvious potential for correlating directly with document 

relevance. 

The following fields were added to the Standard set to form the Extended Metadata set: All Custodians, 

Primary Custodian, Record Type, Attachment Name, Bates Start, Delivery Id, Company/Organization, 

Native File Size, Text Size, Normalized Date, Parent Date, Family Count, Attachment Count, Recipient 

Count, Copy Count, Combined Recipient Count, and Page Count. These fields were selected more 

opportunistically – on the basis of availability and amenability to transformation into generalizable 

machine learning features. This approach was adopted to allow the worth of the various fields to 

emerge through the modeling process itself and to mimic the reality of many eDiscovery situations 

where users have minimal control over the volume or quality of the metadata at their disposal. 

Metadata fields that were blank or filled with a null value more than 5% of the time were omitted from 

the modeling process. Continuous or quasi-continuous metadata values were transformed into 

categorical values to enable correlations to emerge between these types of values and document 

relevance. For example, date values were collapsed into simple Month-Year values. Similarly, file size 

values were assigned to bands representing categories ranging from very small to very large. 

The metric we use throughout to compare model performance is Area Under the Receiver Operating 

Characteristic Curve (AUROC). This metric indicates the probability that a given model will assign a 

higher ranking to a randomly selected responsive document than a randomly selected non-responsive 

document. We used the pROC package (Robin et al. 2011) to calculate the AUROC values and to test the 

significance of the differences we observed between models. For significance testing, we used the 

Delong method with a two-sided test and a significance level of 0.05 (DeLong et al. 1988).  
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Experiments 

Metadata vs. Body Text Alone 

The foundational view driving this work is that disregarding metadata when undertaking machine 

learning for TAR leaves a wealth of potentially valuable information untapped. The content of key 

metadata fields pertaining, for example, to the timeframe in which a document was authored, the 

participants in a conversation, or the subject matter of a file will often be correlated strongly with 

document relevance in eDiscovery. Thus, our first hypothesis was that incorporating metadata into the 

machine learning process would lead to improved results. 

To test this hypothesis, we compared the results of machine learning models built from body text alone 

to models built from body text supplemented with the simple text contents of Standard Metadata. 

Results are presented in Table 1. 

Table 1. AUROC for Models based on Document Body Text Alone vs. Models based on Document Body Text 
Supplemented with Standard Metadata Values. 

 

AUROC Body Text + 
Values from Std MD 

Conf Interval 
95% Conf Level 

AUROC 
Body Text Alone 

Conf Interval 
95% Conf Level 

Statistical 
Significance 

Data Set 1 0.8593 0.8398-0.8788 0.8500 0.8297-0.8703 Not Significant 

Data Set 2 0.9042 0.8892-0.9192 0.9018 0.8877-0.9158 Not Significant 

Data Set 3 0.9341 0.9223-0.9458 0.9233 0.91-0.9366 p < 0.00001 

 

While including the text from Standard Metadata with body text for the generation of features did not 

result in significantly superior results across the board, the improvement was highly significant for Data 

Set 3. There were no instances in which the addition of Standard Metadata was detrimental to model 

performance. Our first hypothesis was supported in at least one instance by this initial comparison. 

Extended Metadata vs. Standard Metadata 

Given the above and in accordance with Oard and Webber’s (2013) assertion that a wide array of 

metadata fields "are potentially useful as sources of features for use by a classifier," we decided to push 

the initial hypothesis further by testing the impact of incorporating the text contents all of the readily 

available and robustly populated metadata fields for each of our data sets. For Data Set 2 and Data Set 

3, this doubled the number of metadata fields being tapped for modeling. For Data Set 1, the impact 

was less drastic, adding only seven fields to the original eleven that were available in the Standard 

Metadata set. Our second hypothesis was that models incorporating Extended Metadata text alongside 

body text would lead to superior results when compared to results generated from models based on 

body text with Standard Metadata text alone. Results are presented in Table 2. 

Table 2. AUROC for Models based on Document Body Text Supplemented with Extended Metadata Values vs. 
Models based on Document Body Text Supplemented with Standard Metadata Values. 

 

AUROC Body Text + 
Values from Ext MD 

Conf Interval 
95% Conf Level 

AUROC Body Text + 
Values from Std MD 

Conf Interval 
95% Conf Level 

Statistical 
Significance 

Data Set 1 0.8786 0.8609-0.8963 0.8693 0.8398-0.8788 p < 0.00001 

Data Set 2 0.9138 0.9001-0.9275 0.9042 0.8892-0.9192 Not Significant 

Data Set 3 0.9728 0.9655-0.9801 0.9341 0.9223-0.9458 p < 0.00001 
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A highly significant improvement was achieved using Extended Metadata, as opposed to Standard, for 

both Data Set 3 and Data Set 1. In the case of Data Set 2, leveraging the Extended Metadata did not lead 

to a significant improvement, but results were on a par with the performance achieved by the model 

based on Standard Metadata. These results provided strong support for our second hypothesis. 

Field-Encoded Metadata vs. Metadata as Text 

The first two experiments demonstrated that utilizing metadata content to supplement document body 

text in machine learning, even without distinguishing between text and metadata features, can have a 

significant positive impact on results. However, metadata values carry an added layer of information – 

field associations – that is lost when metadata content is conflated with body text content to generate 

features for machine learning. 

Neglecting to encode both metadata field and value information may constitute an unnecessary 

forfeiture of valuable input. This information loss can be avoided by creating distinct features for values 

occurring in different fields. This would mean, for example, that NYTimes as Sender, NYTimes as 

Recipient, and NYTimes as a topic of conversation within the body text of an email would each function 

as unique features. Creating these distinctions amongst values that would otherwise be collapsed into a 

single feature allows each one to be independently correlated with document relevance. We 

hypothesized that using field-encoded metadata values would lead to improved machine learning 

performance when compared to models where metadata values are undifferentiated from body text 

features. 

There are a number of options available for creating machine learning models that maintain the 

distinctions between features derived from the body text of a document and features derived from 

metadata. We first tested an approach that involved adding a simple “tag” to the metadata values to 

record their source, e.g. NYTimes_BODY versus NYTimes_Sender versus NYTimes_Recipient, before 

intermingling the values with body text for purposes of feature selection. We pursued this methodology 

in the first of our experiments exploring the impact of differentiating between metadata and text in 

modeling. Results are presented in Table 3. 

Table 3. AUROC for Models based on Document Body Text Supplemented with Tagged Extended Metadata Values 
vs. Models based on Document Body Text Supplemented with Plain Extended Metadata Values. 

 

AUROC Body Text + 
Tagged Ext MD 

Conf Interval 
95% Conf Level 

AUROC Body Text + 
Plain Ext MD 

Conf Interval 
95% Conf Level 

Statistical 
Significance 

Data Set 1 0.8766 0.8594-0.8938 0.8786 0.8609-0.8963 Not Significant 

Data Set 2 0.9300 0.9174-0.9427 0.9138 0.9001-0.9275 p = 0.007 

Data Set 3 0.9746 0.9683-0.9809 0.9728 0.9655-0.9801 Not Significant 

 

Performance differences were not as striking in this instance. For Data Set 2, utilizing metadata tagged 

with field information in addition to simple body text features improved performance significantly, but 

the result was not highly significant and significance was not attested in the other two cases. 

An alternative option for utilizing metadata values in a way that preserves their field attributes and also 

more strongly highlights the potential for metadata to provide a complementary profile of the 

document population involves modeling document metadata independently from the body text, as 
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noted by Cheng and Jones (2013). Specifically, one model is generated using field-encoded metadata 

values and a separate model is generated using body text values with the results of the two being 

combined thereafter – a technique sometimes referred to as “late fusion” (Cheng et al. 2013). In this 

study, we adopted a very simple technique for combining the scores from the two models: the score 

from one model was multiplied by the score from the other to generate a single new score for each 

document. Filippova and Hall (2011) express the intuition motivating this approach in two 

straightforward ways: “two complementary views on the data . . . refine predictions” and “a simple 

model which combines the predictions made by the two classifiers outperforms each of them taken 

independently.” 

In pursuing this approach, we first compared late fusion models to models built from data in which 

extended metadata values were simply intermingled with body text to create features. Results are 

presented in Table 4. 

Table 4. AUROC for Models based on Late Fusion of an Independent Document Body Text Model and an 
Independent Extended Metadata Model vs. Models based on Document Body Text Supplemented with Plain 
Extended Metadata Values. 

 

AUROC Body Text + 
Ext MD–Late Fusion 

Conf Interval 
95% Conf Level 

AUROC Body Text + 
Plain Ext MD 

Conf Interval 
95% Conf Level 

Statistical 
Significance 

Data Set 1 0.8856 0.8704-0.9008 0.8786 0.8609-0.8963 Not Significant 

Data Set 2 0.9388 0.9285-0.949 0.9138 0.9001-0.9275 p < 0.00001 

Data Set 3 0.9777 0.9714-0.984 0.9728 0.9655-0.9801 P = 0.01931 

 

These results indicate considerable promise for the late fusion approach to metadata modeling for TAR. 

A highly significant improvement was observed for Data Set 2 and a significant improvement for Data 

Set 3. A significant improvement was not observed for Data Set 1. 

Comparing the late fusion technique for incorporating metadata to the method in which field-tagged 

metadata values are intermingled with body text values in a single model yielded an analogous, albeit 

less pronounced, pattern of improvement, as seen in Table 5. 

Table 5. AUROC for Models based on Late Fusion of an Independent Document Body Text Model and an 
Independent Extended Metadata Model vs. Models based on Document Body Text Supplemented with Tagged 
Extended Metadata Values. 

 

AUROC Body Text + 
Ext MD–Late Fusion 

Conf Interval 
95% Conf Level 

AUROC Body Text + 
Tagged Ext MD 

Conf Interval 
95% Conf Level 

Statistical 
Significance 

Data Set 1 0.8856 0.8704-0.9008 0.8766 0.8594-0.8938 Not Significant 

Data Set 2 0.9388 0.9285-0.949 0.9300 0.9174-0.9427 P = 0.049 

Data Set 3 0.9777 0.9714-0.984 0.9746 0.9683-0.9809 P = 0.02982 

 

These findings suggest that generating independent metadata models combined with independent body 

text models via late fusion can lead to results that are significantly better than models that do not 

distinguish between text and metadata and models that distinguish between text and metadata via 

tagging alone.  



8 
 

Discussion 

All three of our hypotheses were supported, despite a degree of cross-topic/cross-corpus variability. We 

found evidence to support the idea that using metadata was preferable to omitting it, that using all 

available metadata was preferable to using a limited subset, and that exploiting both field and value 

information intrinsically associated with metadata is preferable to conflating metadata and text 

features. 

Up to this point, our pairwise comparisons have focused on incremental increases in the complexity of 

the methods adopted to incorporate metadata into the machine learning process. Taking a more global 

view of the results, though, allows stronger trends to emerge and offers more definitive answers to the 

fundamental questions raised at the outset of our discussion. 

First, there is strong support for the hypothesis that metadata can be leveraged to improve the 

performance of machine learning models for document classification in eDiscovery. In our first 

experiment, we restricted our attention to the differences between utilizing the limited Standard 

Metadata intermingled with body text to utilizing body text alone. If we compare utilizing the full 

Extended Metadata to using body text alone, we observe more striking performance differences, as 

seen in Figure 1. 

 

The models based on body text alone performed more poorly in every instance than models that 

incorporated Extended Metadata. These differences were highly significant across the board for Data 

Set 3. They were highly significant in two instances and moderately significant in the other for Data Set 

2. For Data Set 1, the difference was highly significant in one instance and moderately significant for the 

others. 

Similarly strong trends can be observed when each model created using Standard Metadata is compared 

to its Extended Metadata counterpart, as seen in Figure 2. 

0.75 0.8 0.85 0.9 0.95 1

Data Set 3

Data Set 2

Data Set 1

AUROC 

Figure 1- Extended Metadata vs. Body Text Alone 

Ext MD and Text - Late Fusion

Ext Tagged MD Added to Text

Ext Plain MD Added to Text

Text Only
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There were no cases in which a model built using Extended Metadata performed more poorly than an 

analogous model built using Standard Metadata only. For both Data Set 3 and Data Set 1, the 

improvements brought about by using Extended Metadata were highly significant (p < 0.00001) in each 

pairwise comparison. For Data Set 2, statistical significance was achieved only for the late fusion 

scenario, but improved performance through the use of all available metadata was observed as a 

general trend. 

Conclusions and Future Research 

The overall findings of this study support a move toward incorporating metadata as an integral 

component of the machine learning training process for TAR in eDiscovery. Undervaluing this data 

source by omitting it from model development may represent a missed opportunity and possibly even a 

failure to capture information material to fact discovery. 

Furthermore, the results indicate that using all available metadata, rather than relying solely on the 

more limited set that is most often discussed in the context of machine learning, can be highly 

advantageous. Thus, continuing to devise new and better ways to leverage as much of the information 

conveyed by metadata as possible – even from fields that do not intuitively correlate with relevance – 

could be a worthwhile endeavor for TAR practitioners. 

Finally, based on the experimental results observed for the late fusion approach to metadata and text 

modeling, a solid case can be made for viewing metadata as a wholly independent perspective on the 

data. Our preliminary exploration in this area suggests that this may be a key factor in fully capitalizing 

on the complementary contributions metadata can make to document classification for TAR. 

Still, there are many directions remaining for future research into the role of metadata in machine 

learning for eDiscovery. Our study involved data sets where the rates of relevance were all relatively 

high, ranging from ~15%-~16%; it would be valuable to determine whether rate of relevance itself 

influences the impact of metadata in the modeling process. Similarly, we examined a variety of topics 

and corpora in our research to establish a number of broad generalizations about the role of metadata 

in machine learning for TAR. The impacts of employing metadata likely depend to some extent on both 

0.75 0.8 0.85 0.9 0.95 1

Data Set 3

Data Set 2

Data Set 1

AUROC 

Figure 2- Extended Metadata vs. Standard Metadata 

Std MD and Text - Late Fusion

Ext MD and Text - Late Fusion

Std Tagged MD Added to Text

Ext Tagged MD Added to Text

Std Plain MD Added to Text

Ext Plain MD Added to Text
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the specific topics and the unique corpus attributes at play in the given matter. Identifying reliable 

correlations between these variables would enable TAR practitioners to make informed decisions about 

which projects would likely benefit from investment in more complex metadata-inclusive modeling 

tactics. 

Finally, we tested the impact of including all available metadata for algorithm development, as an 

alternative to foregoing metadata entirely or limiting its use to a small standard set. We did not examine 

the contributions of specific metadata fields at a more granular level. It is possible that certain classes of 

metadata consistently play bigger parts in the machine learning process than others. It would be 

valuable to know if there is a static set of key metadata fields that consistently leads to improved results 

without proliferating features and computational expense unnecessarily. 

There is clearly an important role for metadata in the machine learning process, and this paper presents 

viable starting-point heuristics for deciding which metadata fields to use and possible techniques for 

incorporating them into a machine learning model. The challenges now are to refine our understanding 

of the ideal scenarios in which to utilize metadata and to identify optimal methods for incorporating the 

most effective set of metadata into the most efficient modeling process.  
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Appendix – Metadata Fields – Standard and Extended 

The table below indicates utilization/non-utilization of each metadata field for each data set. Metadata 
fields that were eligible for use but not used in any model, due to insufficient attestation across all 
projects, are not listed. 

Metadata Field Data Set 1 Data Set 2 Data Set 3 

St
an

d
ar

d
 M

et
ad

at
a 

Fi
el

d
s 

Sender Yes Yes Yes 

Document Subject No No Yes 

File Name Yes Yes Yes 

Email Subject Yes Yes Yes 

Title No Yes Yes 

Author Yes Yes Yes 

Copy Yes Yes Yes 

Recipient Yes Yes Yes 

Created Date No Yes Yes 

Sent Date Yes Yes Yes 

Document Type Yes Yes Yes 

File Extension Yes Yes Yes 

Sender Domain Yes Yes Yes 

Recipient Domain Yes Yes Yes 

Ex
te

n
d

e
d

 M
et

ad
at

a 
Fi

e
ld

s 

All Custodians No Yes Yes 

Attachment Name Yes No Yes 

Attachment Count Yes No Yes 

Bates Start No No Yes 

Combined Recipient Count No Yes Yes 

Company/Organization No Yes No 

Copy Count Yes Yes Yes 

Primary Custodian Yes Yes Yes 

Delivery Id No Yes Yes 

Native File Size No Yes No 

Family Count No Yes Yes 

Normalized Date No Yes Yes 

Parent Date Yes Yes Yes 

Recipient Count Yes Yes Yes 

Record Type No No Yes 

Text Size Yes Yes Yes 

Page Count No Yes Yes 

 


