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ABSTRACT
The process of Electronic Discovery includes collecting, pro-
cessing, and classifying large corpora of electronically stored
information. It has spawned an entire support industry with
annual revenue estimated at 40 billion dollars 1. Although
various automated classification methods, such as predictive
coding, have been developed to reduce the cost of the classifi-
cation process, it still heavily relies on manual review due to
concern about acceptance by judges and regulators. In this
work, we develop an efficient approach for similar document
detection that aims to increase the efficiency of manual re-
view, which has been estimated at 73% of total expenditures
in the overall process 2. Effective similar document detec-
tion can dramatically decrease these costs, as the number
of similar documents in a typical electronic discovery corpus
ranges between 25% and 50% [14]. We will also discuss how
similar document detection can be used to complement and
improve predictive coding methodologies. Given a query
document, the proposed approach will efficiently detect the
subset of documents within a large corpus whose text is sim-
ilar to the query document’s text. Compared to the existing
techniques for similar document detection, the proposed ap-
proach is advantageous in two aspects: first, it is based on
a lightweight representation of documents that can be effi-
ciently extracted from the document texts; second, it casts
the problem of similar document detection into a sequence of
one-dimensional range searches that can be efficiently imple-
mented using bi-section search. Our empirical study with a
collection of 13 million documents verifies the effectiveness
of the lightweight representation and the proposed range
search algorithm for similar document detection.

1http://www.nelsonmullins.com/DocumentDepot/
StrikingtheRightBalancetoControlLitigationSpend.
pdf
2http://www.rand.org/content/dam/rand/pubs/
monographs/2012/RAND_MG1208.pdf

1. INTRODUCTION
We first discuss the application of similar document detec-
tion in electronic discovery and its relationship to machine
learning techniques such as predictive coding. We then dis-
cuss the existing techniques for similar document detection
and their limitations, which motivates this work.

1.1 Electronic Discovery
The high cost of document review has led to the application
of various machine learning based classification methods to
the electronic discovery review process. One challenge to
the use of machine learning in this domain is the nature
of the document populations which are typically involved
in an electronic discovery matter. These populations are
characterized as follows:

• Size: The corpus may range from hundreds of thou-
sands to hundreds of millions of documents.

• Schedule: The documents are very rarely made avail-
able as a single corpus. Typically, the documents ar-
rive in waves over a period of months or years.

• Diversity: The documents in any single matter can
range from email advertisements to highly technical
manuals. They also often span a number of languages.
Document collections arriving at different times may
contain completely different subject matter.

Another challenge to the use of machine learning techniques
has been concern about acceptance by judges and regulators.
Although recent judicial decisions concerning predictive cod-
ing indicate a growing acceptance, and even a preference,
amongst judges for technology assisted review, many lawyers
are still loath to abandon manual review of documents for
automated techniques. Lack of understanding, fear of sanc-
tions due to incomplete productions, waiver of privilege, and
even the potential loss of revenue to law firms all contribute
to this reluctance to embrace predictive coding.

Due to the continued predominance of manual review, there
is continued interest in utilizing tools such as clustering
based on semantic similarity, identification of email threads,
and identification of textually similar documents to improve
the efficiency of manual review. This last approach of iden-
tifying textually similar documents (sometimes referred to
as near duplicate detection) can have a huge impact on the
cost of review. According to [14], 25 ∼ 50% of documents



reviewed in the process of electronic discovery are near du-
plicates.

It is also important to note that near duplicate detection can
play a major role in the document review process even when
predictive coding is employed. Predictive coding detects se-
mantic similarity, while the goal of near duplicate detection
is to find documents that are syntactically similar. Two
examples of how duplicate detection can be employed in a
predictive coding setting are:

• Quality control of the training set: Near duplicate de-
tection can be employed to check the consistency of
the training set and ensure that documents designated
as responsive and not responsive are not near dupli-
cates of each other. This is especially important when
multiple reviewers are used to create the training set.
When Stroz Friedberg applied this check to a training
set created by a law firm in a recent predictive cod-
ing case, a significant number of the documents in the
training set were found to violate this constraint.

• Detection of significant small edits: There are situ-
ations when small differences between documents can
be highly significant. For instance, differences between
drafts of a contract can be informative even if only a
small number of words were changed and successive
versions of an earnings report in which earnings are
altered could indicate an attempt to manipulate fi-
nancial results. Predictive coding will generally not
differentiate between these highly similar versions of a
document. The ability to retrieve all versions of the
current document and highlight their differences us-
ing near duplicate detection can greatly simplify the
process of finding these important variations.

This paper describes an approach to textually similar doc-
ument detection (henceforth, similar document detection)
which is both effective and novel in the industry, and which
has been deployed in the Stroz Friedberg review application,
resulting in significant improvement in reviewer productiv-
ity, improved consistency in predictive coding training sets,
and detection of highly significant differences between simi-
lar documents.

1.2 Similar Document Detection
The objective of similar document detection is to efficiently
find a subset of documents within a large collection that
are textually similar to a given query document. Besides
electronic discovery, it has found many applications in in-
formation retrieval [12], including web crawlers [6], data ex-
traction [22], plagiarism [4], and spam detection [23, 10].
Many algorithms have been developed for similar document
detection ( [26] and references therein). They are usually
divided into two stages. The first stage is to represent the
content of documents by a vector. Given the vector rep-
resentation of documents, the second stage is to map the
vector representation to a low dimensional space to perform
efficient search.

One shortcoming shared by most algorithms for similar doc-
ument detection is that they require a ”heavy”representation

of documents, leading to high cost in both computation and
storage space. The most popular representation for similar
document detection is n-grams (i.e., n consecutive words,
which is also referred to as shringles) [30, 1, 7, 6]. In this
representation, the content of a document is represented by
a binary vector. The size of the binary vector is the number
of unique n-grams, with each entry of the vector indicat-
ing if a given n-gram appears in the document. Besides
the n consecutive words, both n consecutive characters and
sentences have also been used for similar document detec-
tion [29, 34]. In order to differentiate dissimilar documents,
n has to be sufficiently large, making it computationally ex-
pensive to extract the n-gram features. The next popular
representation for similar document detection is based on
the classical vector space model [12, 10, 19, 23]. In this
representation, each document is represented by a vector of
word histograms weighted by a tf.idf scheme [12]. In [18, 11],
the authors extended the vector space model from words to
phrases in order to improve the detection accuracy. Both n-
gram and vector space models represent documents by long
vectors, requiring a high level of computation and storage
space. Although hashing methods [7, 9] are applied to re-
duce the size of document representation and thus improve
detection efficiency, extracting both vector representations
for a large collection of documents is still computationally
expensive.

In this work, we address this challenge by considering a
lightweight representation of documents, in which the con-
tent of each document is based simply on the counts of
characters and numbers. More specifically, we propose to
represent each document by a vector of 62 dimensions, in-
cluding 52 dimensions for both lower and upper case Latin
characters and 10 dimensions for digits. To detect the doc-
uments similar to a given query document dq, we apply a
range search algorithm to efficiently identify the subset of
documents whose vector representations are within a given
range of the vector representation of dq. Compared to the
existing approaches for similar document detection, the key
advantage of the proposed approach is its light vector rep-
resentation, making it attractive both computationally and
storage-wise. Despite the simplicity, we verify empirically
that this light vector representation is sufficient for similar
document detection when the difference between the query
document and the matched ones is small. In addition, this
approach allows the user to specify the degree of allowed
dissimilarity in similar document detection by varying the
threshold of range search. This feature is particularly impor-
tant for electronic discovery as the criterion for documents
to be similar varies from one situation to another.

Although the proposed vector representation is already in a
significantly lower dimension than the existing approaches,
efficiently performing a range search in a 62 dimensional
space is still a challenging problem. Although many algo-
rithms have been developed for search, none of them is de-
signed for high dimensional range search. For instance, tree
based approaches (e.g., KDtree [5]) are effective for range
search in low dimensional space, but fail when dimensional-
ity is high (over 20) [36]; many hashing based methods (e.g.,
Locality Sensitive Hashing [13]) are mostly designed for find-
ing nearest neighbors, not for range search. The main tech-
nical contribution of this work is to develop and evaluate an



efficient algorithm for high dimensional range search. We
prove the theoretical guarantee for the proposed algorithm
and evaluate its empirical performance on a dataset of 13
million documents.

The rest of the paper is arranged as follows. Section 2 dis-
cusses the related work on similar document detection in
electronic discovery and high dimensional search. Section 3
describes the proposed approach and its theoretical guar-
antee. Section 4 presents our empirical study for the pro-
posed algorithm and compares it to the state-of-the-art ap-
proaches. Section 5 concludes with suggestions for further
work.

2. RELATED WORK
We review the related work of similar document detection
in electronic discovery, high dimensional search, and random
projection.

Similar document detection in electronic discovery
As the similar document population must be presented to
reviewers in real time, retrieval of this population must be
performed quickly. In order to satisfy this speed require-
ment, the most common technique for similar document
detection in electronic discovery uses pre-built clusters to
group similar documents around a centroid. This approach
has a number of drawbacks:

• The threshold for “similarity” cannot be changed dy-
namically when similarity clusters are pre-built using
a similarity threshold. Depending on their require-
ments, users may want to dynamically relax or tighten
the criteria for document similarity.

• Due to the large number and variety of documents in
a typical document population, it is usually impossible
to construct well-separated clusters. Thus it is possible
that documents in adjacent clusters are more similar
to each other than to their respective centroids.

• The challenge to creating well-separated clusters is ex-
acerbated by the fact that the entire document corpus
does not arrive at once, but usually arrives in multiple
waves. There are two ways to approach this compli-
cation. One way is to cluster each wave of documents
separately. This approach has the drawback that sim-
ilar documents are not identified across waves. The
other approach is to merge newly arrived documents
into an existing cluster structure by scanning existing
centroids for an eligible cluster. This approach leads
to degradation of cluster quality and more situations
of documents in adjacent clusters being more similar
to each other than to their respective centroids.

In contrast, the proposed method quickly identifies simi-
lar documents dynamically without pre-built clusters, even
when the corpus contains millions of documents. Review-
ers can vary the similarity threshold at will, thus retrieving
tighter or looser similar document populations.

High dimensional search Given a query q and a dis-
tance threshold r, range search aims to efficiently identify
the subset of data points from a database that are within a
distance r from q. When data points are represented by low
dimensional vectors, a number of efficient solutions, based

on pre-built index structures, have been proposed (e.g., KD-
tree [5] or R-tree [3]). However, when the dimensionality is
high, none of these approaches is more efficient than a sim-
ple brute-force search [36]. Several randomized approaches
(e.g., Locality Sensitive Hashing (LSH) [9, 13, 2] and its
variants [31, 28, 25, 32]) have been developed for high di-
mensional range search. The main limitation of these ap-
proaches is that they are mostly designed for a fixed range.
In contrast, this work addresses the general problem of range
search where the threshold r is a variable that will be deter-
mined by users. Although randomized KD-tree [35] shows
encouraging empirical performance for range search, its the-
oretical guarantee is unknown, making it an unsatisfactory
approach. In addition, the size of KD tree grows linear in the
number of data points, and a significant amount of memory
is needed to hold KD tree in the main memory in order to
perform efficient search, making it potentially inefficient for
very large data sets.

Besides range search, another important search problem is
nearest neighbor (NN) search. Many randomized algorithms
have been developed for high dimensional NN search. Among
them, the hashing methods have shown promising perfor-
mance. The most notable hashing method for high dimen-
sional NN search is based on Locality Sensitive Hashing [9,
13, 2]. Many variants of LSH have been developed to speed
up the NN search, including entropy-based LSH [31], Multi-
Probe LSH [28], and kernelized LSH [25, 32]. One drawback
of LSH and its variants is that in order to achieve both high
precision and recall, they often require many hashing tables
and long codewords, leading to high computational cost in
indexing and significant overhead in searching. The data
dependent hashing algorithms address this limitation by sig-
nificantly reducing code length and the number of hashing
tables. Example algorithms for data dependent hashing in-
clude spectral hashing [37], self-taught hashing [39], seman-
tic hashing [33], Laplacian co-hashing [38], anchor graph
hashing [27] and random maximum margin hashing [21].
Since these approaches are developed for NN search, they
are in general not suitable for range search.

Random projection The proposed work is also related
to the random projection based approaches [20]. The key
idea of these approaches is to convert a high dimensional
range search problem into a low dimensional one. It first
randomly projects data points into a low dimensional space
and then performs range search over the projected space
using the conventional approaches (e.g., KD-tree). The the-
oretical foundation of these works is based on the Johnson
Lindenstrauss Theorem [20], which claims that the pairwise
distance is well preserved through random projection. Ran-
dom projection has been applied to several applications, in-
cluding anomaly detection [16], classification [17] and clus-
tering [15]. The main drawback of these approaches is that a
large number of random projections is needed to preserve the
pairwise distance with high accuracy, and as a consequence,
the resulting search problem is no longer low dimensional.

3. EFFICIENT ALGORITHMS FOR HIGH
DIMENSIONAL RANGE SEARCH

We first describe the problem of range search, and then
present our algorithm and its theoretical guarantee.



Algorithm 1 Efficient Range Search using Gaussian Ran-
dom Variables
1: Input:

• D = {x1, . . . ,xN ): the database
• r > 0: specified range
• τ ≥ 1: threshold factor
• m: the number of one dimension range searches
• q: the query point

2: //Offline processing
3: Random sample U = (u1, . . . ,um), where uk ∼

N (0, I/d), k ∈ [m].
4: for i = 1, . . . , N do
5: Compute zi = x⊤

i U
6: end for
7: //Online processing
8: Compute the projection zq = (zq1 , . . . , z

q
m)⊤ = q⊤U for

query q
9: for k = 1, 2, . . . ,m do
10: if k = 1 then
11: Compute the set D1(r,q) as D1(r,q) ={

i ∈ [N ] : |zi,k − zqk| ≤ τ r√
d

}
12: else
13: Update the set Dk(r,q) as Dk(r,q) ={

i ∈ Dk−1(r,q) : |zi,k − zqk| ≤ τ r√
d

}
14: end if
15: end for
16: Output the set Dm(r,q).

Let D = {x1, . . . ,xN} be a collection of vectors (i.e., the
database), where xi ∈ Rd and d ≫ 1 is the dimension of
the space. Let q ∈ Rd be a query point. The goal of range
search is to find a subset of data points in D that are within
distance r from q, where r is the range specified by the
user. Define D(r,q) as the subset of data points in D that
are within distance r from the query q, i.e.,

D(r,q) = {x ∈ D : |x− q|2 ≤ r}

Let m(r,q) = |D(r,q)| be the number of data points within
the given range, and A(r,q) = maxx∈D(r,q) |x− q|∞ be the
maximum difference in any attributes between the query
point and the data points within the given range. Evidently,
we have m(r,q) ≤ N and A(r,q) ≤ r. In general, we assume
r is sufficiently small such that m(r,q) has a weak depen-
dence on N . For the simplicity of our analysis, we assume
both the data points in D and the query q have bounded
length, |x|2 ≤ 1,∀x ∈ D and |q| ≤ 1.

To speed up the search, we propose to convert high dimen-
sional range search into a sequence of one-dimensional range
searches. More specifically, we randomly sample multiple
vectors from a Gaussian distribution, denoted by u1, . . . ,um.
For each randomly sampled vector ui, we project both the
query q and the data points in D along the direction of ui,
and find the subset of data points in D whose projections
are within a certain threshold ρ (not r, but dependent on r)
of the query q, denoted by Di. To implement efficient one
dimensional range search, we rank the projection of data
points in D along the direction of ui in a descending or-
der and perform a bi-section search to find the subset of
data points whose projections are within a given range. The
intersection of the data points returned by all of the one

dimensional range searches is used to form the final result,
i.e., D(r,q) = ∩m

i=1Di. Algorithm 1 gives the detailed steps
for the proposed algorithm. We note that although the pro-
posed algorithm is also based on random projection, it is
different from the existing approaches in that it does not
try to approximate the pairwise distance by random projec-
tion. Instead, it tries to approximate the binary decision, i.e.
whether a data point is within a certain range of a query,
by a sequence of binary decisions based on one dimensional
projections of both the data point and the query.

As the first step of our analysis, we show that a single one
dimension range search with appropriately chosen threshold
ρ is able to ensure a high recall, namely that with a high
probability, a data point within the specified range will be
returned by the one dimension range search. The theorem
below gives the performance guarantee for one-dimensional
range search.

Theorem 1. Let u be a vector randomly sampled from
N (0, I/d). With a probability 1− δ − c ln d

d3
, we have

sup
x∈D(r,q)

|(x− q)⊤u|

≤ r√
d

(
C1 ln

2m(r,q)

δ
+ C2

√
ln

2m(r,q)

δ

)
where

C1 = 6K2, C2 =

√
6K2 +

c ln d

d2
(1)

The proof can be found in Appendix A.

Remark. As indicated by Theorem 7, when the dimension-
ality d is very high, with a high probability, |(x − q)⊤u|
is upper bounded by O(|x − q|/

√
d), implying that most

of the data points within the given range of a query will
be returned by one-dimensional range search (i.e. high re-
call) provided a sufficiently large threshold. The problem
with Theorem 1 is that it does not provide a lower bound
|(x − q)⊤u|. Without a lower bound, the one dimensional
range search may result in a high recall but a very poor pre-
cision as many of the returned data points can be far away
from the query q. We address this problem by performing
multiple one dimensional range searches, and only the data
points found by all one dimensional range searches will be
returned.

First, we extend the result from Theorem 1 to multiple one-
dimension range searches by using the union bound.

Corollary 2. Let u1, . . . ,um be m vectors randomly sam-
pled from N (0, I/d). With a probability 1 −mδ − c ln d

d3
, we

have

sup
x∈D(r,q)

max
1≤k≤m

|(x− q)⊤uk| ≤

r√
d

(
C1 ln

2m(r,q)

δ
+ C2

√
ln

2m(r,q)

δ

)
where C1 and C2 are defined (1).



As indicated by the above corollary, if we set τ = τ0 in
Algorithm 1, where τ0 is given by

τ0 = C1 ln
2m(r,q)

δ
+ C2

√
ln

2m(r,q)

δ
(2)

then, with a high probability, all documents within distance
r from the query document will be returned by Algorithm 1,
i.e., we have a high recall for the returned documents.

Theorem 3. Assume m is sufficiently large, i.e.,

m ≥ 64K1

(
C1 ln

2

δ
+ C2

√
ln

2

δ

)

where C1 and C2 are defined in (1). Then, with a probability
1− (m+ 1)δ − mc ln d

d3
, we have

max
1≤k≤m

|(x− q)⊤uk| ≥
|x− q|
2
√
d

The proof can be found in Appendix B.

Remark. As indicated by Theorem 3, if we set τ = 1/
√
2

in Algorithm 2, then, given a sufficiently large number of
random projections, there is a high probability that none of
the documents returned by Algorithm 1 will have a distance
larger than or equal to r, implying that we will have a high
precision for the returned documents. By combining the
results from Corollary 2 and Theorem 3, we have, with a
high probability,

|x− q|
2
√
d

≤ max
1≤k≤m

|(x− q)⊤uk| ≤
τ0|x− q|√

d

provided m is sufficiently large.. Hence, by varying τ in Al-
gorithm 2 between 1/

√
2 and τ0, we will be able to make an

appropriate tradeoff between high precision and high recall.

In cases when the dimensionality is high, sampling u1, . . . ,um

from a Gaussian distribution can be computationally ex-
pensive. We address this challenge by replacing Gaussian
random variables in Algorithm 1 with Rademacher random
variables 3. More specifically, to construct each random vec-
tor ui, we first sample d Randemacher variables σ1

i , . . . , σ
d
i ,

with Pr(σk
i = −1) = Pr(σk

i = +1) = 1/2, and form ui as
ui = (σ1

i , . . . , σ
d
i ). The details are given in Algorithm 2.

Below we will show that the Rademacher variable based ap-
proach yields similar performance as the one based on the
Gaussian variables. Similar to the analysis for Algorithm 1,
we first analyze the performance of one dimensional range
search based on the Rademacher random variable.

Theorem 4. Let u = 1√
d
(u1, . . . , ud) be a random vector

with ui drawn from a Bernoulli distribution Pr(ui = 1) =
Pr(ui = −1) = 1/2. Then, with a probability 1 − δ, for a

3A Rademacher random variable has equal probability to be
−1 and +1

Algorithm 2 Efficient Range Search using Rademacher
Random Variables
1: Input:

• D = {x1, . . . ,xN ): the database
• r > 0: specified range
• τ ≥ 1: threshold factor
• m: the number of one dimension range searches
• q: the query point

2: //Offline processing
3: Random sample U = 1√

d
(u1, . . . ,um), where Ui,j is a

Rademacher variable with Pr(Ui,j = −1) = Pr(U =
+1) = 1/2.

4: for i = 1, . . . , N do
5: Compute zi = x⊤

i U
6: end for
7: //Online processing
8: Compute the projection zq = (zq1 , . . . , z

q
m)⊤ = q⊤U for

query q
9: for k = 1, 2, . . . ,m do
10: if k = 1 then
11: Compute the set D1(r,q) as D1(r,q) ={

i ∈ [N ] : |zi,k − zqk| ≤ τ r√
d

}
12: else
13: Update the set Dk(r,q) as Dk(r,q) ={

i ∈ Dk−1(r,q) : |zi,k − zqk| ≤ τ r√
d

}
14: end if
15: end for
16: Output the set D(r,q).

fixed data point x, we have

sup
x∈D(r,q)

|(x− q)⊤u| ≤

r√
d

(
2 ln

2m(r,q)

δ
+

√
2 ln

2m(r,q)

δ

)

The proof can be found in Appendix C. Compared to The-
orem 1, we found that Theorem 4 is slightly stronger with a
larger probability guarantee.

We then show the performance guarantee for multiple one-
dimensional searches based on Rademacher random vari-
ables.

Theorem 5. Let U = 1√
d
(u1, . . . ,um) be random vari-

ables with Ui,j having equal probability to be +1 and −1.
With a probability at least 1− 2m/[d3], we have

sup
x∈D(r,q)

max
1≤k≤m

|(x− q)⊤uk| ≤

r√
d

(
2 ln

2m(r,q)

δ
+

√
2 ln

2m(r,q)

δ

)

When m is sufficiently large, i.e.,

m ≥ 64K1

(
2 ln

2

δ
+

√
2 ln

2

δ

)



Then, with a probability 1− (m+ 1)δ, we have

max
1≤k≤m

|(x− q)⊤uk| ≥
|x− q|
2
√
d

The proof of Theorem 5 is similar to that of Theorem 3.
We skip the proof due to space constraints. Compared to
Theorem 3, the theoretical guarantee provided by Theorem 5
is almost identical except for the constant C1 and C2.

4. EXPERIMENT
In this experiment, we first demonstrate the effectiveness of
the proposed light vector representation for similar docu-
ment detection. We then evaluate both the efficiency and
effectiveness of the proposed algorithm for similar document
detection. The successful outcome of this experiment vali-
dates the use of this approach in the Stroz Friedberg review
application.

4.1 Dataset
The collection used in our study consists of 13, 228, 105 doc-
uments drawn from an actual, and consequently not publi-
cally available, e-discovery project. The size of documents in
this collection varies from 1 character to 51, 034, 295 charac-
ters, and the average document length is 12, 521 characters.
The documents included in this collection are very diverse,
including an English dictionary, customer lists, recipes, par-
ent teacher association meeting minutes, project manage-
ment reports, contracts, and descriptions of clinical drug
trials. We utilized this collection rather than a publically
available collection as we do not believe there exists a pub-
lically available collection of the size and diversity necessary
to realistically test performance of our proposed algorithm.
To evaluate the performance of the proposed approach, we
select the query documents by randomly sampling 0.01% of
documents in the collection that have more than 20 charac-
ters, which leads to 1, 283 query documents.

4.2 Experiment 1: validating the lightweight
vector representation

To evaluate the effectiveness of the proposed vector represen-
tation for similar document detection, for each query doc-
ument q, we first find the matched documents {xi} that
satisfy the condition

|x− q|2 ≤ γ|q|2, (3)

where {xi} and q are the lightweight vector representations
of documents and the query, respectively, and γ is set to
0.025 which is a reasonable coefficient based on our experi-
ence. Note that the distance threshold in (3) is set to γ|q|2,
thus dependent on the length of the query document. This
is more appropriate than a constant threshold because the
allowed difference between two similar documents should de-
pend on the size of the documents. Given the matched doc-
uments found by the criterion in (3), we then measure the
similarity between the query document dq and each matched
document d, based on the edit distance dist(dq, d) between
their texts, i.e.,

sim(dq, d) = 1− dist(dq, d)

max(|dq|, |d|)
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Figure 1: The distribution of similarity between
query documents and the matched documents found
by the proposed lightweight representation

where |dq| and |d| represents the number of characters in dq
and d, respectively. Our hypothesis is that if the lightweight
vector representation is sufficient for similar document de-
tection, we would expect to observe on average a high simi-
larity between query documents and matched ones.

Figure 1(a) shows the distribution of similarity averaged over
1, 283 query documents. We observe that around 99% of
matched documents found by the proposed vector represen-
tation have similarity ≥ 95%. To further validate the pro-
posed vector representation for similar document detection,
we relax coefficient γ in (3) to 0.05 and show the similar-
ity distribution in Figure 1(b). We again observe that close
to 90% of the matched documents found have more than
90% similarity. Based on these results, we conclude that
the proposed lightweight vector representation is sufficient
for similar document detection when the difference between
similar documents is small.

4.3 Experiment 2: evaluating the proposed al-
gorithm for similar document detection

As Algorithms 1 and 2 share the same idea and have similar
theoretical guarantees, we only evaluate the performance of
Algorithm 2 due to its simplicity. Below, we first discuss
the implementation of our algorithm, and then present the



experimental results.

Implementation Similar to Experiment 1, we set the thresh-
old r in Algorithm 2 to be r = γ|q|2. For parameter τ in
Algorithm 2, we set it to be τ = τ0 as defined in (2), with
m(r,q) = 10 (best guess based on experience 4), δ = 0.1,
and C1 = C2 = 1. Since our data is stored in an Oracle
database, we implement our algorithm using the PL/SQL
language. We pre-compute the random projections for all
the documents in the collection. Our timing experiments
were run on an Oracle server (version 11g) with 4 cores (2
GHz per core) and a total of 24G memory. In order to elim-
inate the effects of other users and database caching during
the timing experiments, the procedure running the timing
experiments had exclusive use of the server and the database
global cache was cleared after each document in the test set
was processed.

Results for searching accuracyWe first evaluate the per-
formance of the proposed approach by precision and recall.
Given a query document q, let D(r,q) be the subset of the

documents within the distance r from q, and D̂(r,q) be the
subset of documents returned by Algorithm 2. The precision
and recall is defined as

Prec =
|D(r,q) ∩ D̂(r,q)|

|D̂(r,q)|
, Recall =

|D(r,q) ∩ D̂(r,q)|
|D(r,q)|

Figure 2(a) shows the precision and recall curves as we in-
crease the number of random projections. We observe that
as we increase the number of random projections, the recall
remains almost unchanged at 1, while the precision improves
from less than 0.2% to almost 90%. To further validate the
proposed approach, we relax γ to 0.05 and show the preci-
sion and recall curves in Figure 2(b). We observe a small
decrease in recall and a significant improvement in precision
as we increase the number of random projections. Both re-
sults verify that the proposed algorithm is effective for high
dimensional range search provided that the difference be-
tween similar documents is specified to be small.

Results for searching efficiency In order to present re-
viewers with only truly similar documents, we add to Algo-
rithm 2 a post procedure that removes any returned doc-
ument if its distance to the query document is larger than
the given threshold. As a result, the runtime includes two
components: the time to perform the range search using
Algorithm 2, and the time used to check if each returned
document is within distance γ|q|2 from the query document
q. We note that by increasing the number of random pro-
jections, we can significantly improve the precision and thus
reduce the time spent checking if the returned documents are
within the given range of the query, but at the price of in-
creasing the time for performing the range search. Based on
our experience, we found that setting the number of random
projections to 8 seems to be a good tradeoff between the two
components of runtime. The results for using 8 random pro-
jections are given in Table 1. We observed that compared to
the exhaustive search (the last column in Table 1), the time
used to find the matched documents is reduced dramatically

4Although the number may be very different from the true
number of matched documents, it will have little impact on
our algorithm since it appears in the form of lnm(r,q).
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Figure 2: Precision (solid curve) and recall (dotted
curve) for Algorithm 2 with varied numbers of ran-
dom projections.

by the proposed algorithm.

While Algorithm 2 provides excellent precision and recall,
the average runtime to find similar documents is still too
long for real time response to reviewers, due to the algo-
rithm’s implementation in our application. The document
vector representations and random projections are stored in
an Oracle database, and the sequential range searches on the
random projections are accomplished via a SQL statement
with a WHERE clause of the form

∩
1≤i≤m |(x−q)⊤ui| ≤ ρ.

Due to Oracle’s indexing structure, the speed of this state-
ment is heavily dependent on the number of documents that
satisfy the first projection range. For our test set, the av-
erage number of documents that satisfied the first projec-
tion range was 263, 883 when γ = 0.025 and 525, 264 when
γ = 0.05, which caused a significant delay in obtaining the
similar document set. We therefore introduced a heuris-
tic to reduce the number of documents in the first projec-
tion range by first filtering on 2 additional one dimensional
ranges. The first one-dimensional filter returns the docu-
ments satisfying the condition ||x|2 − |q|2| ≤ γ|q|2 and the
second filter returns the documents satisfying the condition
||x|1 − |q|1|| ≤ γ|q|2. Introducing these filters reduces the
average number of documents satisfying the new first range
search to 56, 591 when γ = 0.025 and to 113, 739 when
γ = 0.05. While these filters have poor precision on their



Table 1: Running time (seconds) for Algorithm 2
(using 8 random projections) and exhaustive search

Time Alg. 2 Alg. 2 + Two filters Exhaustive
(second) two filters search
γ = 0.025 2.57 0.48 2.93 5452.80
γ = 0.05 4.00 0.95 11.43 5452.80

Table 2: Precision and recall for Algorithm 2 (using
8 random projections) with and without additional
two one-dimensional filters

γ Alg. 2 Alg. 2 + Two filters KD-tree
two filters

0.025
Recall 0.999 0.992 0.992 0.960
Prec 0.912 0.956 0.021 N/A

0.05
Recall 0.981 0.949 0.964 0.940
Prec 0.312 0.542 0.006 N/A

own (Table 2), using them in conjunction with Algorithm 2
reduces the average runtime to less than 1 second (Table 1)
with a small degradation in recall (Table 2). For complete-
ness, we also include in Table 1 and 2 the results of the two
additional filters by themselves. We conclude that the ad-
ditional two filters are effective in improving both efficiency
and search accuracy.

We finally compare the proposed approach to the random-
ized KD-tree [35], a state-of-the-art approach for high di-
mensional range search. We apply the FLANN library 5

to construct a randomized KD-tree for the entire document
collection where each document is represented by its 62 tu-
ple vector. It takes over ten hours to construct the KD-tree,
and the resulting index structure consumes roughly twice
the storage space as the original data. The recall values of
KD-tree are given in Table 2. We did not include the pre-
cision of KD-tree in this comparison because the program
has a post procedure that removes any returned document
if its distance to the query document is larger than the given
threshold. As a result, its precision is always 1. It is clear
that the proposed approach, despite its simplicity, performs
slightly better than KD-tree in recall without incurring the
additional storage and computational costs of KD-tree.

5. CONCLUSION
In this work, we study the problem of similar document de-
tection in the domain of electronic discovery. We develop a
lightweight representation and an algorithm for similar doc-
ument detection based on efficient high dimensional range
search. Our empirical study with a collection of over 13
million documents shows encouraging results of the pro-
posed algorithm in both searching accuracy and searching
efficiency. In the future, we plan to improve the efficiency
and the effectiveness of the proposed approach by explor-
ing data dependent sampling approaches, such as sampling
the random vectors based on the covariance structure of the
data. We also plan to expand the lightweight document rep-
resentation to further improve its efficiency and accuracy for
similar document detection.
5http://www.cs.ubc.ca/~mariusm/index.php/FLANN/
FLANN
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APPENDIX
A: Proof of Theorem 1

Proof. Central to our analysis is Talagrand’s inequal-
ity [24] given in the following theorem.

Theorem 6. (Talagrand’s inequality) Let X1, . . . , Xm be
independent random variables in X . For any class of func-
tions F on X that is uniformly bounded by a constant U > 0
and for all δ > 0, with a probability 1− δ, we have∣∣∣∣∣supf∈F

∣∣∣∣∣
n∑

i=1

f(Xi)

∣∣∣∣∣− E sup
f∈F

∣∣∣∣∣
n∑

i=1

f(Xi)

∣∣∣∣∣
∣∣∣∣∣

≤ K1U ln
K1

δ
+

√
K1σ2 ln

K1

δ

where K1 is an universal constant and σ2 is defined as

σ2 = E sup
f∈F

n∑
i=1

f2(Xi)

We also need the following theorem to bound |u|∞.

Theorem 7. (Lemma 2.2 [8]) Let u be a vector randomly
sampled from N (0, I/d). Then, for any β ≥ 3, we have, with
a probability 1− cd−β ln d, such that

max
1≤k≤d

|uk| ≤
K2β√

d

where K2 and c are constants.

We now proceed to our proof. First, according to Theorem 7,
with a probability 1− cd−3 ln d, we have

|u|∞ = max
1≤k≤d

|uk| ≤
3K2√

d

As a result,

U = max
x∈D(r,q)

|(x− q) ◦ u|∞ ≤ 3K2A(r,q)√
d



We then prove the result by using the Berstein inequality.
For any fixed x ∈ D(r,q), according to the Berstein inequal-
ity, with a probability 1− δ, we have∣∣∣(x− q)⊤u

∣∣∣ ≤ 2U ln
2

δ
+

√
2σ2 ln

2

δ

where

σ2 = E|(x− q) ◦ u|22
≤ Pr(|u|∞ ≤ 3K2/

√
d)|u|2∞r2 +(

1− Pr(|u|∞ > 3K2/
√
d)
)
r2

≤ 3K2r
2

d
+

c ln d

d3
r2 =

r2

d

(
3K2 +

c ln d

d2

)
We complete the proof by taking the union of the probability
over all x ∈ D(r,q).

B: Proof of Theorem 3

Proof. Since

max
1≤k≤m

|(x− q)⊤uk| ≥

√√√√ 1

m

m∑
k=1

|(x− q)⊤uk|2

it is sufficient to bound 1
m

∑m
k=1 |(x − q)⊤uk|2. Using the

Telegrand inequality, we have

sup
x∈D

∣∣∣∣∣ 1m
m∑

k=1

|(x− q)⊤uk|2 − E

[
1

m

m∑
k=1

|(x− q)⊤uk|2
]∣∣∣∣∣

≤ K1U ln
K1

δ
+

√
K1σ2 ln

K1

δ

where

U = sup
x∈D

sup
1≤k≤m

|(x− q)⊤uk|2

σ2 = E sup
x∈D

m∑
k=1

|(x− q)⊤uk|4

|x− q|4

According to Theorem 1, we have, with a probability 1 −
mδ − cm ln d

d3
, for any x ∈ D,

|(x−q)⊤uk| ≤
4|x− q|√

d

(
C1 ln

2

δ
+ C2

√
ln

2

δ

)
, k = 1, . . . ,m

and therefore

U = sup
x∈D

max
1≤k≤m

|(x− q)⊤uk|2

|x− q|2 ≤ 16

d

(
C1 ln

2

δ
+ C2

√
ln

2

δ

)2

To bound the variance σ2, we have

σ2 ≤ U

|x− q|2E
m∑

k=1

|(x− q)⊤uk|2

Using the bound of U , we have, with a probability 1−mδ−
cm ln d

d3
,

σ2 ≤ 16m

d2

(
C1 ln

2

δ
+ C2

√
ln

2

δ

)2

Finally, using the fact

E

[
1

m

m∑
k=1

|(x− q)⊤uk|2
]
=

|x− q|2

d
,

and the upper bounds for U and σ2, we have, with a prob-
ability 1−mδ −mcd−3 ln d,

sup
x∈D

1

m

m∑
k=1

|(x− q)⊤uk|2

|x− q|2 ≥

1

d

(
1− 16K1C

2
δ

m
ln

K1

δ
− 4Cδ

√
K1

m
ln

K1

δ

)
where

Cδ = C1
2

δ
+ C2

√
2

δ

By choosing m that satisfies the following condition

16K1C
2
δ

m
ln

K1

δ
+ 4Cδ

√
K1

m
ln

K1

δ
≤ 3

4
(4)

we have

max
1≤k≤m

|(x− q)⊤uk| ≥
|x− q|2
2
√
d

The condition

m ≥ 64K1

(
C1 ln

2

δ
+ C2

√
ln

2

δ

)
follows directly from the condition in (4).

C: Proof of Theorem 4

Proof. We first fix x ∈ D(r,q). We write (x− q)⊤u as∑d
i=1(xi − qi)ui. Since E[(x − q)⊤u] = 0, using Berstein

inequality, we have, with a probability 1− δ,

|(x− q)⊤u| ≤ 2V ln(2/δ) +
√

2σ2 ln(2/δ)

where V = max
i

(xi− qi)ui and σ2 = E
[
(xi − qi)

2u2
i

]
. Using

the fact V ≤ |x− q|∞ ≤ |x− q|, σ2 = |x− q|2, we have

|(x− q)⊤u| ≤ r√
d

(
2 ln

2m(r,q)

δ
+

√
2 ln

2m(r,q)

δ

)
We complete the proof by taking the union bound over the
set D(r,q).


