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Abstract 

While sample size calculations based on confidence levels and confidence intervals are widely used 

in predictive coding for determining the size of a validation set, their use in determining the size of 

the training sample, however, is somewhat questionable. In this paper, we argue that the number of 

documents in the training set has less to do with the total size of the document population and more 

to do with the complexity of the categorization problem at hand. We further argue that this 

complexity may be approximated by the number of features (i.e., predictive terms) sufficient for 

achieving near optimal classification performance. We use empirical results from four real-life legal 

matters to support the above arguments. 

Introduction 

Text categorization - often referred to as predictive coding in e-Discovery — is the task of 

automatically classifying documents into a set of predefined categoriesi. It typically involves two 

steps: (1) training and (2) prediction - or scoring (Figure 1). In the training step, a supervised 

learning algorithm is used to build a classification (or predictive) model from a sample of attorney 

reviewed documents, also referred to as the training set. The classification model is then used to 

generate class predictions (or scores) for all the documents that have not been yet reviewed. This 

happens in the prediction step.  

To measure the effectiveness of the classification model and as such assess the reliability of the 

document scores, the performance of the model is generally evaluated on a separate sample of 

attorney reviewed documents, also referred to as the validation set. The above steps can then be 

repeated iteratively, with each round adding more attorney reviewed documents to the training set 

(typically by augmenting it with previous round’s validation set), with the aim of improving the 

classification performance of the model.  

Given the high cost of attorney review, it would generally be preferable to use as few training 

documents as possible when building a classification model. But exactly how many documents 

should be included in the training set? There seems to be some confusion and misconceptions 

around this question. Some have suggested statistical sampling as a means to arrive at this number. 

While statistical measures such as confidence levels and confidence intervals are helpful in 

calculating the size of the validation set, they don’t provide a good means for approximating the 

required size of the training set, i.e., the number of training documents needed for the classification 
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model to approach its peak performance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. The Text Categorization Process 

 

Here, we suggest that the number of documents needed for the model to approach its peak 

performance can be quite different from one categorization problem to another. In other words, 

when it comes to training sets, one size does not fit all. We argue that the size of the training set 

is less dependent on the total size of the document population and much more dependent on the 

complexity of the categorization problem at hand. We further argue that the complexity of the 

categorization problem itself can be approximated by the number of features, or in this case 

significant terms (e.g., words), required for the classification model to approach its peak 

performance.  

The outline of the paper is as follows. In the next two sections, we will list some of the related work 

and state the objectives of this study. In the two sections following that, we will discuss our 

experimental setup and the results obtained on data from four real-life matters. We will then 

summarize our findings and conclude the study in the last section. 

Related work 

Questions surrounding the size of training and feature sets have long been of interest to machine 

learning researchers. Works in computational learning theory attempt to answer these questions 

using a theoretic framework by which the researchers try to place theoretical bounds on the sample 

complexity for various learning algorithmsii. The theoretical relationship between sample complexity 

and classification performance has also been examined in the context of text categorization with the 

support vector machine (SVM) algorithm, which is also the supervised learning algorithm of choice in 

our studyiii. 

 

The relationship between the training sample size, or feature set size, and model performance in 

text categorization has also been examined in a number of empirical studies. Examples of these 

includeiv v vi vii viii ix x 
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Objective 

The objectives of this study are as follows: 

 To conduct an empirical analysis of the relationship between the complexity of a categorization 

problem and the number of features (i.e., significant terms) required for the associated model to 

approach its peak performance. 

 To conduct an empirical analysis of the relationship between the complexity of a categorization 

problem and the number of training documents required for the associated model to approach its 

peak performance. 

Since the focus of this study is that of text categorization in e-Discovery, we will rely on results 

obtained on document populations from real-life legal matters. 

Experimental setup 

We conducted two groups of experiments, one for each of the objectives as stated above. The data 

used in all experiments came from four real-life legal matters, each involving millions of documents. 

Since our empirical analysis makes use of the attorney coding decisions, this analysis was limited to 

those documents that had been reviewed and coded for responsiveness by the attorneys. These 

included all of the documents originally used in various iterations of text categorization model 

training and validation for each of the four matters. 

The setup for the feature set size experiments on each of the four datasets was as follows. From the 

available population of attorney reviewed documents, a statistically significant validation set was 

held out to perform all the categorization results analysis on. Five classification models were then 

trained with the remaining documents for varying feature set sizes, namely 50, 100, 250, 500 and all 

the available features.  

Information gain was used as the feature selection criterion in these experiments. Information gain is 

a statistical measure for calculating the expected reduction in entropy, a common measure in 

information theory, capturing the impurity of a sample relative to the intended classificationxi. The 

information gain value of a given term is generally based on its effectiveness in discriminating 

between the classes of interest, i.e., the higher the discrimination power, the higher the information 

gain. The effectiveness of information gain as a feature selection criterion for text categorization 

tasks has been established in a number of studies, includingxii. 

The performance of the classification models with varying feature set sizes was analyzed, using the 

AUC (Area Under the ROC Curve) as the performance measure. A ROC (Receiver Operating 

Characteristic) curve, is a two-dimensional plot with the X axis representing the false positive rate 

and the Y axis representing the true positive rate. The formula for calculating the true positive rate is 

the same as that of recall. False positive rate, as the name implies, is the ratio of false positive test 

cases to the total number of negative examples. Generally speaking, an ROC curve captures the 

trade-off between the true positive and false positive rates for varying classification scores for a 

classifier with continuous output. This is in contrast to accuracy, for instance, that simply measures 

performance for a fixed cutoff score value.  

In terms of statistics, the AUC captures the probability that a randomly chosen positive data point is 

assigned a higher score than a randomly chosen negative data point by the classifierxiii. The value of 

AUC generally ranges from 0.5 to 1, with 0.5 representing a random classifier and 1 representing a 

perfect classifier. AUC is generally considered to be a more effective classification performance 

measure than the widely used accuracyxiv. 
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The setup for the training set size experiments for each dataset followed that of the feature set size 

experiments described above. Here, however, instead of building different classification models by 

varying the size of the feature set, we built different models by varying the number of documents in 

the training set. More specifically, five such models were built for each of the four legal matters, 

using five different training sample sizes, namely 500, 1500, 3000, 5000, and 6500 documents.  

Experimental results 

Figure 2 shows the effect of the feature set size on the classification performance for the four legal 

matters. As it can be seen in the figure, the number of features that it takes for the model to 

approach its peak performance (in terms of AUC) can vary from one categorization problem to 

another. Here for example, in the case of Dataset 1, the model’s performance improves only slightly 

when going from 50 to all the available features, whereas the associated performance gain is larger 

for Datasets 2 and 3 and even larger in the case of Dataset 4. 

 

 

 

 

 

 

 

 

 

 

Figure 2. Model performance for varying feature set sizes 

 

Figure 3 captures the performance gain from one feature set size to the next, as a percentage of the 

model performance at the smallest feature set size (i.e., 50). The maximum gain here was around 

30 percentage points for Dataset 4 and the minimum gain was around 2 percentage points for 

Dataset 1. Incidentally, off the bat, we were able to achieve the highest performance on Dataset 1 

and the lowest performance on Dataset 4 (i.e., 95% and 64%, respectively, for 50 features).  

Assuming the model performance to be generally linked to the complexity of the categorization 

problem (i.e., separability of the two classes), we can see a connection between such problem 

complexity and the feature set size, with more complex problems generally benefitting more from 

larger feature sets. Again, in the above example, with Dataset 4 at one end of the spectrum, 

presenting the most challenging problem and as such benefitting the most from an increase in the 

feature set size, and Dataset 1, on the opposite end of the spectrum, presenting the least 

challenging problem and as such benefitting the least from an increase in the feature set size, and 

Datasets 2 and 3 falling somewhere in the middle of the spectrum. 
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Figure 3. Performance gain for varying feature set sizes 

 

The effect of the training sample size on the classification performance is captured in Figure 4. As it 

was the case with the feature set size, the gain in performance due to an increase in the sample size 

seems to be highly correlated with the complexity of the categorization problem. In other words, 

models with higher AUCs generally seem to benefit less from larger training sets. Figure 5 captures 

the performance gain from one training sample size to the next, as a percentage of the model 

performance at the smallest sample size (i.e., 500 documents). 

Again, as it was the case for the feature size experiments, Dataset 4, involving the most complex 

categorization problem seems to benefit the most from an increase in the training sample size, while 

Dataset 1, involving the least complex categorization problem, seems to benefit the least from such 

an increase. And once again, Datasets 2 and 3 fall somewhere in the middle.  

 

 

 

 

 

 

 

 

 

 

Figure 4. Model performance for varying training sample sizes 
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Figure 5. Performance gain for varying training sample sizes 

 

Here, however, as it can be seen in the two figures, Dataset 3 exhibits an atypical characteristic, in 

that while an increase in the training sample size typically results in an improvement in model 

performance, this doesn’t seem to be the case for this particular dataset. In other words, the model 

performance for this dataset seems to be at its highest for a training sample with 3000 documents 

versus 6500 documents for all the other datasets. But even then, as stated previously, this model 

seems to benefit more from an increase in the training sample size than the one for the least 

complex categorization problem, namely Dataset 1. 

Conclusions  

We have conducted an empirical analysis of the size of the feature and training sets in text 

categorization in e-Discovery. We have demonstrated the relationship between the complexity of the 

categorization problem at hand and the associated training sample size, with more complex 

problems generally benefitting more from larger sample sizes. We have further demonstrated how 

an analysis of the feature set size can help measure such complexity, again with more complex 

problems generally benefitting more from larger feature set sizes. 

Future work will use this empirical analysis as a basis to formulate a mechanism for approximating 

the size of the training set, one that is hopefully more technically sound than statistical sample size 

calculations based on confidence levels and intervals and other even more ad hoc standardizations 

of the training sample size. 
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