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ABSTRACT 
A significant challenge in electronic discovery is the ability to 
retrieve relevant documents from a corpus of unstructured text 
containing emails and other written forms of human-to-human 
communications. For such tasks, recall suffers greatly since it is 
difficult to anticipate all variations of a traditional keyword search 
that an individual may employ to describe an event, entity or item 
of interest. In these situations, being able to automatically identify 
conceptually related terms, with the goal of augmenting an initial 
search, has significant value. We describe a methodology that 
identifies related terms using a novel approach that utilizes 
Reflective Random Indexing and present parameters that impact 
its effectiveness in addressing information retrieval needs for the 
TREC 2010 Enron corpus. 

1. Introduction 
This paper examines reflective random indexing as a way to 
automatically identify terms that co-occur in a corpus, with a view 
to offering the co-occurring terms as potential candidates for 
query expansion. Expanding a user’s query with related terms 
either by interactive query expansion [1, 5] or by automatic query 
expansion [2] is an effective way to improve search recall. While 
several automatic query expansion techniques exist, they rely on 
usage of a linguistic aid such as thesaurus [3] or concept-based 
interactive query expansion [4]. Also, methods such as ad-hoc or 
blind relevance feedback techniques rely on an initial keyword 
search producing a top-n results which can then be used for query 
expansion. 

In contrast, we explored building a semantic space using 
Reflective Random Indexing [6, 7] and using the semantic space 
as a way to identify related terms. This would then form the basis 
for either an interactive query expansion or an automatic query 
expansion phase.  

Semantic space model utilizing reflective random indexing has 
several advantages compared to other models of building such 
spaces. In particular, for the specific workflows typically seen in 
electronic discovery context, this method offers a very practical 
solution. 

2. Problem Description 
Electronic discovery almost always involves searching for 
relevant and/or responsive documents. Given the importance of e-
discovery search, it is imperative that the best technologies are 
applied for the task. Keyword based search has been the bread and 
butter method of searching, but its limitations have been well 
understood and documented in a seminal study by Blair & Moran 

[8]. At its most basic level, concept search technologies are 
designed to overcome some limitations of keyword search. 

When applied to document discovery, traditional Boolean 
keyword search often results in sets of documents that include 
non-relevant items (false positives) or that exclude relevant terms 
(false negatives). This is primarily due to the effects of synonymy 
(different words with similar meanings) or polysemy (same word 
with multiple meanings). For polysemes, an important 
characteristic requirement is that they share the same etymology 
but their usage has evolved it into different meanings. In addition, 
there are also situations where words that do not share the same 
etymology have different meanings (e.g., river bank vs. financial 
bank), in which case they are classified as homonyms. 

In addition to the above word forms, unstructured text content, 
and especially written text in emails and instant messages contain 
user-created code words, proper name equivalents, contextually 
defined substitutes, and prepositional references etc., that mask 
the document from being indentified using Boolean keyword 
search. Even simple misspellings, typos and OCR scanning errors 
can make it difficult to locate relevant documents. 

Also common is an inherent desire of speakers to use a language 
that is most suited from the perspective of the speaker. The Blair 
Moran study illustrates this using an event which the victim’s side 
called the event in question an  “accident” or a “disaster” while 
the plaintiff’s side called it an “event”, “situation”, “incident”, 
“problem”, “difficulty”, etc. The combination of human emotion, 
language variation, and assumed context makes the challenge of 
retrieving these documents purely on the basis of Boolean 
keyword searches an inadequate approach. 

Concept based searching is a very different type of search when 
compared to Boolean keyword search. The input to concept 
searching is one or more words that allow the investigator or user 
to express a concept. The search system is then responsible for 
identifying other documents that belong to the same concept. All 
concept searching technologies attempt to retrieve documents that 
belong to a concept (reduce false negatives and improve recall) 
while at the same time not retrieve irrelevant documents (reduce 
false positives and increase precision). 

3. Concept Search approaches 
Concept search, as applied to electronic discovery, is a search 
using meaning or semantics. While it is very intuitive in evoking a 
human reaction, expressing meaning as input to a system and 
applying that as a search that retrieves relevant documents is 
something that requires a formal model. Technologies that attempt 
to do this formalize both the input request and the model of 
storing and retrieving potentially relevant documents in a 



mathematical form. There are several technologies available for 
such treatment, with two broad overall approaches: unsupervised 
learning and supervised learning. We examine these briefly in the 
following sections. 

3.1 Unsupervised learning 
These systems convert input text into a semantic model, typically 
by employing a mathematical analysis technique over a 
representation called vector space model. This model captures a 
statistical signature of a document through its terms and their 
occurrences. A matrix derived from the corpus is then analyzed 
using a Matrix decomposition technique. 

The system is unsupervised in the sense that it does not require a 
training set where data is pre-classified into concepts or topics. 
Also, such systems do not use ontology or any classification 
hierarchy and rely purely on the statistical patterns of terms in 
documents. 

These systems derive their semantics through a representation of 
co-occurrence of terms. A primary consideration is maintaining 
this co-occurrence in a form that reduces impact of noise terms 
while capturing the essential elements of a document. For 
example, a document about an automobile launch may contain 
terms about automobiles, their marketing activity, public relations 
etc., but may have a few terms related to the month, location and 
attendees, along with frequently occurring terms such as pronouns 
and prepositions. Such terms do not define the concept 
automobile, so their impact in the definition must be reduced. To 
achieve such end result, unsupervised learning systems represent 
the matrix of document-terms and perform a mathematical 
transformation called dimensionality reduction. We examine these 
techniques in greater detail in subsequent sections. 

3.2 Supervised learning 
In the supervised learning model, an entirely different approach is 
taken. A main requirement in this model is supplying a previously 
established collection of documents that constitutes a training set. 
The training set contains several examples of documents 
belonging to specific concepts. The learning algorithm analyzes 
these documents and builds a model, which can then be applied to 
other documents to see if they belong to one of the several 
concepts that is present in the original training set. Thus, concept 
searching task becomes a concept learning task. 

It is a machine learning task with one of the following techniques. 

a) Decision Trees 
b) Naïve Bayesian Classifier 
c) Support Vector Machines 

While supervised learning is an effective approach during 
document review, its usage in the context of searching has 
significant limitations. In many situations, a training set that 
covers all possible outcomes is unavailable and it is difficult to 
locate exemplar documents. Also, when the number of outcomes 
is very large and unknown, such methods are known to produce 
inferior results. 

For further discussion, we focus on the unsupervised models, as 
they are more relevant for the particular use cases of concept 
search. 

3.3 Unsupervised Classification Explored 
As noted earlier, concept searching techniques are most applicable 
when they can reveal semantic meanings of a corpus without a 
supervised learning phase. To further characterize this technology, 
we examine various mathematical methods that are available. 

3.4 Latent Semantic Indexing 
Latent Semantic Indexing is one of the most well-known 
approaches to semantic evaluation of documents. This was first 
advanced in Bell Labs (1985), and later advanced by Susan 
Dumais and Landauer and further developed by many information 
retrieval researchers. The essence of the approach is to build a 
complete term-document matrix, which captures all the 
documents and the words present in each document. Typical 
representation is to build an N x M matrix where the N rows are 
the documents, and M columns are the terms in the corpus. Each 
cell in this matrix represents the frequency of occurrence of the 
term at the “column” in the document “row”. 

Such a matrix is often very large – document collections in the 
millions and terms reaching tens of millions are not uncommon. 
Once such a matrix is built, mathematical technique known as 
Singular Value Decomposition (SVD) reduces the dimensionality 
of the matrix into a smaller size. This process reduces the size of 
the matrix and captures the essence of each document by the most 
important terms that co-occur in a document. In the process, the 
dimensionally reduced space represents the “concepts” that reflect 
the conceptual contexts in which the terms appear. 

3.5 Principal Component Analysis 
This method is very similar to latent semantic analysis in that a set 
of highly correlated artifacts of words and documents in which 
they appear, is translated into a combination of the smallest set of 
uncorrelated factors. These factors are the principal items of 
interest in defining the documents, and are determined using a 
singular value decomposition (SVD) technique. The mathematical 
treatment, application and results are similar to Latent Semantic 
Indexing. 

A variation on this, called independent component analysis is a 
technique that works well with data of limited variability. 
However, in the context of electronic discovery documents where 
data varies widely, this results in poor performance.  

3.6 Non-negative matrix factorization 
Non-negative matrix factorization (NMF) is another technique 
most useful for classification and text clustering where a large 
collection of documents are forced into a small set of clusters. 
NMF constructs a document-term matrix similar to LSA and 
includes the word frequency of each term. This is factored into a 
term-feature and feature-document matrix, with the features 
automatically derived from the document collection. The process 
also constructs data clusters of related documents as part of the 
mathematical reduction. An example of this research is available 
at [2] which takes the Enron email corpus and classifies the data 
using NMF into 50 clusters. 

3.7 Latent Dirichlet Allocation 
Latent Dirichlet Allocation is a technique that combines elements 
of Bayesian learning and probabilistic latent semantic indexing. In 
this sense, it relies on a subset of documents pre-classified into a 
training set, and unclassified documents are classified into 



concepts based on a combination of models from the training set 
[15]. 

3.8 Comparison of the above technologies 
Although theoretically attractive and experimentally successful, 
word space models are plagued with efficiency and scalability 
problems. This is especially true when the models are faced with 
real-world applications and large scale data sets. The source of 
these problems is the high dimensionality of the context vectors, 
which is a direct function of the size of the data. If we use 
document-based co-occurrences, the dimensionality equals the 
number of documents in the collection, and if we use word-based 
co-occurrences, the dimensionality equals the vocabulary, which 
tends to be even bigger than the number of documents. This 
means that the co-occurrence matrix will soon become 
computationally intractable when the vocabulary and the 
document collections grow. 

Nearly all the technologies build a word space by building a 
word-document matrix with each row representing a document 
and column representing a word. Each cell in such a matrix 
represents the frequency of occurrence of the word in that 
document. All these technologies suffer from a memory space 
challenge, as these matrices grow to very large sizes. Although 
many cells are sparse, the initial matrix is so large that it is not 
possible to accommodate the computational needs of large 
electronic discovery collections. Any attempt to reduce this size to 
a manageable size is likely to inadvertently drop potentially 
responsive documents. 

Another problem with all of these methods is that they require the 
entire semantic space to be constructed ahead of time, and are 
unable to accommodate new data that would be brought in for 
analysis. In most electronic discovery situations, it is routine that 
some part of the data is brought in as a first loading batch, and 
once review is started, additional batches are processed.  

4. Reflective Random Indexing 
Reflective random indexing (RRI) [6, 7, 11] is a new breed of 
algorithms that has the potential to overcome the scalability and 
workflow limitations of other methods. RRI builds a semantic 
space that incorporates a concise description of term-document 
co-occurrences. The basic idea of the RRI and the semantic vector 
space model is to achieve the same dimensionality reduction 
espoused by latent semantic indexing, without requiring the 
mathematically complex and intensive singular value 
decomposition and related matrix methods. RRI builds a set of 
semantic vectors, in one of several variations – term-term, term-
document and term-locality. For this study, we built an RRI space 
using term-document projections, with a set of term vectors and a 
set of document vectors. These vectors are built using a scan of 
the document and term space with several data normalization 
steps. 

The algorithm offers many parameters for controlling the 
generation of semantic space to suit the needs of specific accuracy 
and performance targets. In the following sections, we examine 
the elements of this algorithm, its characteristics and various 
parameters that govern the outcome of the algorithm. 

4.1 Semantic Space Construction 
As noted earlier, the core technology is the construction of 
semantic space. A primary characteristic of the semantic space is a 

term-document matrix. Each row in this matrix represents all 
documents a term appears in. Each column in that matrix 
represents all terms a document contains. Such a representation is 
an initial formulation of the problem for vector-space models. 
Semantic relatedness is expressed in the connectedness of each 
matrix cell. Two documents that share the same set of terms are 
connected through a direct connection. It is also possible for two 
documents to be connected using an indirect reference. 

In most cases, term-document matrix is a very sparse matrix and 
can grow to very large sizes for most document analysis cases. 
Dimensionality reduction reduces the sparse matrix into a 
manageable size. This achieves two purposes. First, it enables 
large cases to be processed in currently available computing 
platforms. Second, and more importantly, it captures the semantic 
relatedness through a mathematical model. 

The RRI algorithm begins by assigning a vector of a certain 
dimension to each document in the corpus. These assignments are 
chosen essentially at random. For example, the diagram below has 
assigned a five-dimensional vector to each document, with 
specific randomly chosen numbers at each position. These 
numbers are not important – just selecting a unique pattern for 
each document is sufficient. 

 

 
Figure 1: Document Vectors 

From document vectors, we construct term vectors by iterating 
through all terms in the corpus, and for each term, we identify the 
documents that term appears in. In cases where the term appears 
multiple times in the same document, that term is given a higher 
weight by using its term frequency. 

 
Each term k’s frequency in the document nk weighs in for each 
document vector’s position. Thus, this operation projects all the 
documents that a term appears in, and condenses it into the 
dimensions allocated for that term. As is evident, this operation is 
a fast scan of all terms and their document positions. Using 
Lucene API TermEnum and TermDocs, a collection of term 
vectors can be derived very easily. 

Once the term vectors are computed, these term vectors are 
projected back on to document vectors. We start afresh with a new 
set of document vectors, where each vector is a sum of the term 
vectors for all the terms that appear in that document. Once again, 
this operation is merely an addition of floating point numbers of 
each term vector, adjusting for its term frequency in that 
document. A single sweep of document vectors to term vector 
projection followed by term vectors to document vector 
constitutes a training cycle. Depending on needs of accuracy in 
the construction of semantic vectors, one may choose to run the 



training cycle multiple times. Upon completion of the configured 
number of training cycles, document and term vector spaces are 
persisted in a form that enables fast searching of documents 
during early data exploration, search, and document review. 

It is evident that by constructing the semantic vector space, the 
output space captures the essential co-occurrence patterns 
embodied in the corpus. Each term vector represents a condensed 
version all the documents the term appears in, and each document 
vector captures a summary of the significant terms present in the 
document. Together, the collection of vectors represents the 
semantic nature of related terms and documents. 

Once a semantic space is constructed, a search for related terms of 
a given query term is merely a task of locating the nearest 
neighbors of the term. Identifying such terms involves using the 
query vector to retrieve other terms in the term vector stores 
which are closest to it by cosine measurement. Retrieving 
matching documents for a query term is by identifying the closest 
documents to the query term’s vector in document vector space, 
again by way of cosine similarity. 

An important consideration for searching vector spaces is the 
performance of locating documents that are cosine-similar, 
without requiring a complete scan of the vector space. To 
facilitate this, the semantic vector space is organized in the form 
of clusters, with sets of the closest vectors characterized by both 
its centroid and the Euclidean distance of the farthest data point in 
the cluster. These are then used to perform a directed search 
eliminating the examination of a large number of clusters. 

4.2 Benefits of Semantic Vector Space 
From the study the semantic vector space algorithm, one can 
immediately notice the simplicity in realizing the semantic space. 
A linear scan of terms, followed by a scan of documents is 
sufficient to build a vector space. This simplicity in construction 
offers the following benefits. 

a) In contrast to LSA and other dimensionality reduction 
techniques the semantic space construction requires 
much less memory and CPU resources. This is primarily 
because matrix operations such as singular value 
decomposition (SVD) are computationally intensive, 
and requires both the initial term-document matrix and 
intermediate matrices to be manipulated in memory. In 
contrast, semantic vectors can be built for a portion of 
the term space, with a portion of the index.  It is also 
possible to scale the solution simply by employing 
persistence to disk at appropriate batching levels, thus 
scaling to unlimited term and document collections. 

b) The semantic vector space building problem is more 
easily parallelizable and distributable across multiple 
systems. This allows parallel computation of the space, 
allowing for a distributed algorithm to work on multiple 
term-document spaces simultaneously. This can 
dramatically increase the availability of concept search 
capabilities to very large matters, and within time 
constraints that are typically associated with large 
electronic discovery projects.. 

c) Semantic space can be built incrementally, as new 
batches of data are received, without having to build the 
entire space from scratch. This is a very common 
scenario in electronic discovery, as an initial batch of 
document review needs to proceed before all batches are 
collected. It is also fairly common for the scope of 
electronic discovery to increase after early case 
assessment. 

d) Semantic space can be tuned using parameter selection 
such as dimension selection, similarity function 
selection and selection of term-term vs. term-document 
projections. These capabilities allow electronic 
discovery project teams to weigh the costs of 
computational resources against the scope of documents 
to be retrieved by the search. If a matter requires a very 
narrow interpretation of relevance, the concept search 
algorithm can be tuned and iterated rapidly.  

Like other statistical methods, semantic spaces retain their ability 
to work with a corpus containing documents from multiple 
languages, multiple data types and encoding types etc., which is a 
key requirement for e-discovery. This is because the system does 
not rely on linguistic priming or linguistic rules for its operation. 

5. Performance Analysis 
Resource requirements for building a semantic vector space is an 
important consideration. We evaluated the time and space 
complexity of semantic space algorithms as a function of corpus 
size, both from the initial construction phase and for follow-on 
search and retrievals. 

Performance measurements for both aspects are characterized for 
four different corpora, as indicated below. 

 

Table 1: Data Corpus and Semantic Vectors 

As can be observed, term vectors and document vectors vary 
based on the characteristics of the data. While the number of 

Corpus 
Reuters 
Collection 

EDRM 
Enron 

TREC 
Tobacco 
Corpus 

PST Files - 171 - 

No.  of Emails - 428072 - 

No. of Attachments 21578 305508 6,270,345 

No. of Term Vectors (email) - 251110 - 
No. of Document Vectors 
(email) - 402607 - 
No. of Term Vectors 
(attachments)  63210 189911 3,276,880 
No. of Doc Vectors 
(attachments)  21578 305508 6,134,210 

No. of Clusters (email) - 3996 - 

No. of Clusters (attachments) 134 2856 210,789 



document vectors closely tracks the number of documents, the 
number of term vectors grows more slowly. This is the case even 
for OCR-error prone ESI collections, where the term vector 
growth moderated as new documents were added to the corpus. 

5.1 Performance of semantic space building 
phase 
Space complexity of the semantic space model is linear with 
respect to the input size. Also, our implementation partitions the 
problem across certain term boundaries and persists the term and 
document vectors for increased scalability. The algorithm requires 
memory space for tracking one million term and document 
vectors, which is about 2GB, for a semantic vector dimension of 
200. 

Time for semantic space construction is linear on the number of 
terms and documents. For very large corpus, the space 
construction requires periodic persistence of partially constructed 
term and document vectors and their clusters. A typical 
configuration persist term vectors for each million terms, and 
documents at each million documents. As an example, the TREC 
tobacco corpus would require 4 term sub-space constructions, 
with six document partitions, yielding 24 data persistence 
invocations. If we consider the number of training cycles, each 
training cycle repeats the same processes. As an example, the 
TREC tobacco corpus with two training cycles involves 48 
persistence invocations. For a corpus of this size, persistence adds 
about 30 seconds for each invocation.  

 

Performance Item Vector 
Construction 
(minutes) 

Cluster 
Construction 
(minutes) 

Reuters-21578 dataset 1 1 

EDRM Enron dataset 40 15 

TREC Tobacco Corpus 490 380 

 

Table 2: Time for space construction, two training cycles 
(default) 

These measurements were taken on commodity Dell PowerEdge 
R710 system, with two Quad Xeon 5500 processors at 2.1GHz 
CPU and 32GB amount of memory. 

5.2 Performance of exploration and search 
Retrieval time for a concept search and time for building semantic 
space exploration are also characterized for various corpus sizes 
and complexity of queries. To facilitate a fast access to term and 
document vectors, our implementation has employed a purpose-
built object store. The object store offers the following. 

a) Predictable and consistent access to a term or document 
semantic vector. Given a term or document, the object 
store provides random access and retrieval to its 
semantic vector within 10 to 30 milliseconds. 

b) Predictable and consistent access to all nearest 
neighbors (using cosine similarity and Euclidean 
distance measures) of a term and document vector. The 
object store has built-in hierarchical k-means based 
clustering. The search algorithm implements a cluster 

exploration technique that algorithmically chooses the 
smallest number of clusters to examine for distance 
comparisons. A cluster of 1000 entries is typically 
examined in 100 milliseconds or less. 

Given the above object store and retrieval paths, retrieval times 
for searches range from 2 seconds to 10 seconds, depending on 
large part, on the number of nearest neighbors of a term, the 
number of document vectors to retrieve and on the size of the 
corpus. 

The following table illustrates observed performance for the 
Enron corpus, using the cluster-directed search described above. 

 

 

Table 3: Search Performance Measurements 

As is apparent from the above time measurements as well as 
number of clusters examined and skipped, identifying related 
terms can be offered to users with predictability and consistency, 
thereby making it possible for its usage as an interactive, 
exploratory tool during early data analysis, culling, analysis and 
review phases of electronic discovery. 

6. Search Effectiveness 
An important analysis is to evaluate the effectiveness of retrieval 
of related terms from the perspective of the search meeting the 
information retrieval needs of the e-discovery investigator. We 
begin by analyzing qualitative feel for search results by examining 
the related terms and by identifying the relevance of these terms. 
We then analyze search effectiveness using the standard measures, 
Precision and Recall. We also examine search effectiveness using 
Discounted Cumulative Gain (DCG). 

6.1 Qualitative Assessment 
To obtain a qualitative assessment, we consider the related terms 
retrieved and examine its nearness measurement, and validate the 
closest top terms. The nearness measure we use for this analysis is 
a cosine measure of the initial query vector when compared with 
the reported result. It is a well-understood measure of judgment of 
quality in that a cosine measure reflects the alignment of the two 
vectors, and closeness to the highest value of cosine, which is 1.0, 
means perfect alignment. 

Table 4 shows alignment measures for two concept query terms 
for the EDRM Enron Dataset [12]. 

Term vector search Average Stdev 

Clusters Examined 417.84 274.72 

Clusters Skipped 1001.25 478.98 

Terms Compared 24830.38 16079.72 

Terms Matched 21510.29 15930.2 

Total Cluster Read Time (ms) 129.39 88.23 

Total Cluster Read Count 417.84 274.72 

Average Cluster Read Time (ms) 0.29 0.18 

Total Search Time (ms) 274.56 187.27 



It is quite clear that several of the related terms are in fact 
logically related. In cases where the relationship is suspect, it is 
indeed the case that co-occurrence is properly represented. E.g., 
the term offshore and mainly appear in enough documents 
together to make it to the top 20 related terms. Similarly, we have 
offshore and foreign co-occur to define the concept of offshore on 
the basis of the identified related terms. 

 

 

Table 4: Illustration of two query terms and their term neighbors 

We can further establish the validity of our qualitative assessment 
using individual document pairs and their document co-
occurrence patterns. As an example, Table 5 shows cosine 
similarity, the number of documents the two terms appear in and 
the common set of documents both terms appear in, again in the 
EDRM Enron Dataset. 

 

Term1 Term2 Cosine Docs1 Docs2 CDocs 

offshore drilling 0.2825 1685 1348 572 

governor Davis 0.3669 2023 2877 943 

brownout power 0.0431 13 30686 13 

brownout ziemianek 0.5971 13 2 1 

 

Table 5: Cosine similarity comparison for select terms from 
EDRM Enron corpus 

An observation from the above data is that when the two terms 
compared appear in large number of documents with large 
overlap, the similarity is greater. In contrast, if one term is 
dominant in its presence in a large number of documents, and the 
other term is not, the presence of the two terms in all the common 
documents (brownout and power), the similarity is lower. Also 
noteworthy is if two terms are common in every document and the 
documents each appears in are small number (brownout and 
ziemianek) the similarity measure is significantly higher.  

6.2 Precision and Recall Measures 
Precision and recall are two widely used metrics for evaluating the 
correctness of a search algorithm [8]. Precision refers to the ratio 
of relevant results compared to the full retrieved set, and 
represents the number of false positives in the result. Recall on the 
other hand, measures the ratio of relevant results compared to the 
number of relevant results actually present in the collection, i.e. 
the number of false negatives. Usually, recall is a harder measure 
to determine since it would require reviewing the entire collection 
for identifying all the relevant items, and sample-based estimation 
is a substitute. 

For our purposes, two critical information retrieval needs should 
be evaluated. 

a) The ability of the system to satisfy information retrieval 
needs for the related concept terms. 

b) The ability of the system to provide the same for 
documents in a concept. 

We evaluated both for several specific searches using the EDRM 
Enron dataset, and we present our results below. 

6.3 Precision and Recall for Related Concept 
Terms 
Note that Precision and Recall are defined for related concept 
terms using a combination of automated procedures and manual 
assessment. As an example, we supplied a list of queries and their 
related concept terms and asked human reviewers to rate each 
related term result as either strongly correlated or related to the 
initial query, or if it is not related. This gives us an indication of 
precision for our results, for a given cutoff point. Evaluating recall 
is harder, but we utilized a combination of sampling methodology 
and a deeper probe into related term result. As an example of this, 
we evaluated precision for a cutoff at 20 terms and recall by 
examining 200 terms and constructing relevance graphs. 

6.4 Impact of dimensions 
Given that the semantic vector space performs a dimensionality 
reduction, we were interested in understanding the impact of 
dimension choice for our semantic vectors. For the default 
implementation, we have a vector dimension of 200, which means 
that each term and document has a vector of 200 floating point 
numbers.  

To study this, we performed a study of precision and recall for the 
EDRM Enron dataset and tracked the precision-recall graph for 
four choices of dimensions. The results are indicated in Figure 2 
below. 

As can be observed, we did not gain significant improvement on 
precision and recall characteristics with a higher choice of 
dimension. However, for a large corpus, we expect that precision-
recall graph would indicate a significantly steeper fall-off. 

We also evaluated search performance relative to dimensions. As 
expected, there is a direct correlation between the two, which can 
be explained by the additional disk seeks to retrieve both cluster 
objects as well as semantic vectors for comparison to the query 
vector. This is illustrated in Figure 3 below. 

 

 

Query: drilling Query: offshore 

Related 
Term 

Similarity Related 
Term 

Similarity 

refuge 0.15213 interests 0.13212 

Arctic 0.12295 foreign 0.13207 

wildlife 0.12229 securing 0.12597 

exploration 0.11902 viable 0.12422 

Rigs 0.11172 involves 0.12345 

Rig 0.11079 associated 0.12320 

supplies 0.11032 mainly 0.12266 

Oil 0.11017 principle 0.12248 

refineries 0.10943 based 0.12241 

Environmen
talists 

0.10933 achieved 0.12220 



 

 

 

Figure 2: Precision and Recall graphs for the EDRM Enron 
Dataset 

 

 
Figure 3: Characterizing Search time and dimensions for 20 

random searches 

A significant observation is that overall resource consumption 
increases substantially with increase in dimensions. Additionally, 
vector-based retrieval also times increase significantly. We need 
to consider these resource needs in the context of improvements 
in search recall and precision quality measures. 

6.5 Discounted Cumulative Gain 
In addition to Precision and Recall, we evaluated the Discounted 
Cumulative Gain (DCG), which is a measure of how effective the 
concept search related terms are [14]. It measures the relative 
usefulness of a concept search related term, based on its position 
in the result list. Given that Concept Search query produces a set 
of related terms and that a typical user would focus more on the 
higher-ranked entries, the relative position of related terms is a 
very significant metric. 

Figure 4 illustrates the DCG measured for the EDRM Enron 
Dataset for a set of 20 representative searches, for four dimension 
choices indicated. 

We evaluated the retrieval quality improvements in the context of 
increases in resource needs and conclude that acceptable quality is 
achievable even with a dimension of 200. 

6.6 Impact of Training Cycles 
We studied the impact of training cycles on our results. A training 
cycle captures the co-occurrence vectors computed in one cycle to 
feed into the next cycle as input vectors. As noted earlier, the 
document vectors for each training cycle start with randomly 
assigned signatures, and each successive training cycle utilizes the 
learned term semantic vectors and feeds it into the final document 
vectors for that phase. This new set of document vectors forms the 
input (instead of the random signatures) for the next iteration of 
the training cycle. 

 

 
Figure 4: Normalized DCG vs. dimensions of semantic vector 

space 

In our model, we note that term has a direct reference to another 
discovered term when they both appear in the same document. If 
they do not appear in the same document but are connected by 
one or more other common terms between the two documents, we 
categorize that as an indirect reference. 

Adding training cycles has the effect of discovering new indirect 
references from one term to another term, while also boosting the 
impact of common co-occurrence. As an example, Table 6 
illustrates training cycle 1 and training cycle 4 results for the term 
drilling. Notice that new terms appear whose co-occurrence is 
reinforced by several indirect references. 

Another view into the relative changes to term-term similarity 
across training cycles is shown below. Table 7 illustrates the 
progression of term similarity as we increase the number of 
training cycles. Based on our observations, the term-term 
similarity settles into a reasonable range in just two cycles, and 
additional cycles do not offer any significant benefit. 

Also noteworthy is that although the initial assignments are 
random, the discovered terms settle into a predictable collection 
of co-occurrence relationship, reinforcing the notion that initial 
random assignment of document vectors get subsumed by real 
corpus-based co-occurrence effects. 

 

 

 

 

 



Query: drilling  

Training Cycle 1 Training Cycle 4 

Related 
Term 

Similarity Related 
Term 

Similarity 

Wells 0.164588 rigs 0.25300 

Rigs 0.151399 wells 0.23867 

viking 0.133421 offshore 0.22940 

Rig 0.130347 rig 0.21610 

buckeye 0.128801 exploration 0.21397 

Drill 0.124669 geo 0.20181 

exploration 0.123967 mcn 0.19312 

richner 0.122284 producing 0.18966 

producing 0.121846 ctg 0.18904 

alpine 0.116825 gulf 0.17324 

 

Table 6: Training Cycle Comparisons 

 

Term1 Term2 TC-1 TC-2 TC-3 TC-4 

offshore drilling 0.2825 0.9453 0.9931 0.9981 

governor davis 0.3669 0.9395 0.9758 0.9905 

brownout power 0.0431 0.7255 0.9123 0.9648 

brownout ziemianek 0.5971 0.9715 0.9985 0.9995 

 

Table 7: Term Similarity of training cycles (TC) for four cycles 

7. CONCLUSIONS 
Our empirical study of Reflective Random Indexing indicates that 
it is suitable for constructing a semantic space for analyzing large 
text corpora. Such a semantic space has the potential to augment 
traditional keyword-based searching with related terms as part of  
query expansion. Co-occurrence patterns of terms within 
documents are captured in a way that facilitates very easy query 
construction and usage. We also observed the presence of several 
direct and indirect co-occurrence associations, which is useful in a 
concept based retrieval of text documents in the context of 
electronic discovery. We studied the impact of dimensions and 
training cycles, and our validations indicate that a choice of 200 
dimensions and two training cycles produced acceptable results. 
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