
1

An Intelligent Approach to E-discovery

Steve Akers

CTO/Founder Digital Reef Inc.

Boxborough, Ma

Jennifer Keadle Mason, Esq.

Partner Mintzer, Sarowitz, Zeris, Ledva & Meyers, LLP

Pittsburgh, Pa

Peter L. Mansmann

CEO Precise Litigation Inc.

Pittsburgh, PA

2

Introduction
Legal Discovery and assessment is an expensive proposition for corporations and organizations of all

types. Last year (2010) it is estimated that $1 billion – $3 billion was spent on legal discovery processing

alone1. This cost is large and growing; finding more intelligent methods to assess Electronically Stored

Information (ESI) and understand what is contained within it is a goal of not just corporate personnel

but also lawyers and legal service providers (companies providing legal discovery services). This paper

outlines a proposed “standard” methodology and defines “ideal” tools and technology methods that

combined are suggested as a “standard” for search. It focuses on 1. a standard methodology to identify

potentially relevant data, and 2. tools and technology that can aid this process. It discusses important

technological aspects of Ediscovery and how products either address or fall short of perfection in certain

areas. Using the best process of identification in combination with the proper technologies for specific

data types in order to have resulting cost-effective Ediscovery is the focus of this paper.

One of the quandaries facing attorneys is how best to approach any particular data set to identify

potentially relevant information either for their own use or use in responding to discovery. Increasing

variety of data types and sources along with expanding volumes of unstructured data has made the

decision of how to search the data more imperative than ever. Analytic search tools have blossomed in

this environment and certainly provide some of the best options for searching. However analytic

searching has many flavors in and of itself. Understanding the pros and cons to each approach is

important in deciding which route to go. In addition attorneys cannot ignore “traditional” search

methods as they can be an effective supplement to analytic searching or in some cases may be the best

primary method for running a search. The decisions about which route to take is largely driven by the

types of data being searched, the relative organization of the data being searched, the particularity of

the case facts, and the attorneys familiarity with the case facts and client.

The application of keywords has long been the standard for searching data sets. Keyword searching in

its basic form is identifying any documents that contain particular terms. Ideally the parties discuss the

keywords to be run, review a report of the initial search results to discuss any necessary adjustments,

apply a privilege filter, review, and produce. These steps may be repeated numerous times to allow the

parties to apply new search terms based upon the knowledge gained in reviewing the records. The

problems with keyword searching are several and include: The parties must have sufficient knowledge

of the case facts and industry/party parlance; straight keyword searching will not find misspellings;

natural language usage has the problem of synonymy (multiple words with the same meaning – kitten,

cat, feline) and polysemy (same word having different meanings – strike); finding variations of people’s

names can be difficult (Dr. Jones, Indiana Jones, Indiana J.).

Because of these difficulties in running straight keyword searches, variants on the searching were

developed to work around some of the deficiencies. Attorneys began running keyword searches in

conjunction with metadata searches. Star searching allows the user to find root words to account for

variations (interp* - would find interpret & interpretation). Fuzzy searching allowed users to find

words within a certain percentage similarity of the word being searched. Proximity searching allowed

1
 Source: <Marketing to supply reference to report by Gartner or Forrester>

3

users to search for words within a certain distance of other words of each other. These variants on the

keyword search alleviated some of the issues discussed above, but still didn’t overcome the obstacles of

synonymy and polysemy. This is where analytic searching has come to the forefront.

Analytic searching in, its most rudimentary explanation, is a method of finding or grouping documents

based upon the content of the documents themselves not solely on a keyword(s) being used. This is

commonly employed by internet search engines that allow the user to type in a basic subject inquiry and

retrieve search results that aren’t solely driven by the words entered into the search box. The basis for

this search technology is the conversion of a document’s contents into numeric values that allows the

computer to compare differing document’s values in order to determine similarity of content. By

approaching document comparison in this way, specific terms (or even language) of a record becomes

irrelevant to the determination of similarity.

Alex Thomo an Associate Professor in the Department of Computer Science at the University of Victoria

offers the following example to explain the basis for how analytic searching (and in particular a Latent

Semantic Analysis) operates in determining documents responsive to a search request:

Suppose there is a set of five documents containing the following language:

 Document 1: “Romeo and Juliet”

 Document 2: “Juliet: O happy dagger!”

 Document 3: ”Romeo died by dagger.”

 Document 4: “Live free or die - New Hampshire’s motto”

 Document 5: “Did you know, New Hampshire is in New England?”

A search is conducted for: dies, dagger

A classical IR system (for our purposes keyword searching) would rank d3 to be the top of the list

since it contains both dies, dagger. Then, d2 and d4 would follow, each containing a word of the

query.

However, what about d1 and d5? Should they be returned as possibly interesting results to this

query? A classical IR system will not return them at all. However (as humans) we know that d1 is

quite related to the query. On the other hand, d5 is not so much related to the query. Thus, we

would like d1 but not d5, or differently said, we want d1 to be ranked higher than d5.

The question is: Can the machine deduce this? The answer is yes, LSA does exactly that. In this

example, LSA will be able to see that term dagger is related to d1 because it occurs together

with the d1’s terms Romeo and Juliet, in d2 and d3, respectively.

Also, term dies is related to d1 and d5 because it occurs together with the d1’s term Romeo and

4

d5’s term New-Hampshire in d3 and d4, respectively.

LSA will also weigh properly the discovered connections; d1 more is related to the query than d5

since d1 is “doubly” connected to dagger through Romeo and Juliet, and also connected to die

through Romeo, whereas d5 has only a single connection to the query through New-Hampshire.

Using the above as an example, its apparent that analytic search engines can have a significant role in

searching by obviating some of the problems of straight keyword searching. However, this does not

mean that analytic searching alone will always be the most defensible method of searching. In addition

when running analytic searching, its important to understand the different analytic engines and the

limitations of each.

With all that said, in an attempt to identify a standard search process, this paper will first identify the

problem, that is to determine what data you have and who has it. Next, the paper will elicit standard

characteristics of a proposed standard search process. These will include identification methods and

search and process methodologies to identify potentially relevant data in an effective, efficient and

repeatable manner. Finally, the paper will discuss why those search and process methodologies are

suggested for the search standardization model proffered. (The reasons for the identification methods

proffered have been discussed in many articles, blogs and cases. Therefore, they are not discussed

herein.)

Deciding What You Have (where you have it and how much)
The first problem with Ediscovery projects is assessing the magnitude and characteristics of the data in

common knowledge repositories (email archives, SharePoint repositories, etc.). IT or Litigation Support

professionals know they have a lot of data but are not sure where they have it and what these

repositories contain. Not understanding the locations of data in an organization may seem like an odd

statement but, for example, departments put SharePoint servers into production and users copy data to

shared drives on networked file systems without knowing what they have copied. In other

circumstances, administrators may not have knowledge of what systems are used for what data. These

types of problems are ubiquitous and growing. The first step to effective assessment of a potential legal

matter is to know what exists in various repositories within an organization. This is often the biggest

problem in Ediscovery; identifying how much data exists and where it exists.

Legal Problem: Identification of Potentially Relevant Data

When litigation is filed and/or is reasonably anticipated, parties and counsel are required to identify and

preserve data that is potentially relevant to the claims or defenses of the parties. In order to meet this

obligation, parties have utilized numerous methodologies with varying levels of success. Success is

often dependant upon the participants knowledge of the location of data as well as their understanding

of the legal requirements and the technology involved. However, there has been no standard method

to accomplish the task of searching for and reliably and efficiently locating that data.

5

Deciding who has it
Another big problem is in knowing who owns (or is responsible for) the information that is stored in

various repositories. When a custodian (or potential custodian) is identified, it is important to know

where their data might reside. Many organizations don’t have any idea who owns what data and how

often the data is accessed (if ever).

Technological Problem: Lack of Ownership insight

 Historically data indexing and search solutions have not provided support for just a quick scan of file

ownership in a short period of time to show what data requires further deeper analysis. Historically data

has required full content indexing and analysis to provide insight into what it contains. Often the first

level of analysis should be just a “who owns what” look at available data. In this case not all content

needs full indexing. An intelligent approach is to perform a first-level analysis with just Meta data

indexing and to then identify what content needs full content indexing. These are different

“representations” of the data; one in Meta data form and one with all the content in the documents

represented within the index. Systems with the ability to “represent” data in various ways let (users)

reviewers decide what to deeply analyze. This saves time, storage space and lots of money.

Deciding What to Look For
A legal complaint will contain key facts about the case that will get the lawyers started on what they

should ask the legal counsel representing an organization to identify and produce. A set of analytics that

can assess the main complaint language or other “known key terms” and use these data to help build a

set of “similar” documents would be very valuable to legal staff working on a case. Analytic processes

that can expose “terms of interest” within a document to help lawyers involved with the case decide

what to look for in other documents would be of great assistance to legal reviewers. Analytics to identify

content that is “similar” to known example content is also very valuable.

Legal Problem: Identification of Potentially Relevant Claims/Defenses/Data

Upon identification of potential litigation and/or receipt of an action that has been filed, counsel must

identify potentially relevant data and preserve it. How to most efficiently and effectively accomplish

this goal is the problem faced by counsel and vendors alike. The proposed standard search

methodology would begin with a litigation hold which involves identification of the “relevant topics” for

the case. Relevant topics include but are not limited to the claims or defenses. Relevant topics might

also include particular areas of interest for the litigation including, for example, profits/losses, prior

claims, prior knowledge, investigations, testing, etc. in products liability cases. Once the relevant topics

are known, the next area of inquiry is to identify the key players who might have possession of and/or

who have created potentially relevant data. Key player questionnaires should be sent to these

individuals. The questionnaire seeks information from the key player about “basic” data of which they

are aware, why they were named, what position they hold, time frames of relevance, what documents

they create in that position that might be relevant to the known relevant topics and where they store

that data. It also should contain basic questions about the media on which they store information and

where it is mapped and/or backed up. After this information is identified, a data map for the litigation

should be drafted and key player interviews held. The interviews are usually more productive in person

6

where information sources located in the office, but often forgotten, can be identified. The interviews

should be a much more detailed analysis of the way the corporation works, where data is stored, to

whom it is copied, the purpose for which it is created, etc. The locations of the known potentially

relevant data should also be discussed and, if possible, the path followed to locate specific server, drive,

file names, etc. The data map for the litigation should be updated with this information and the client

should verify the information contained therein by signature. Once the specific known locations are

identified and all relevant topics have been discussed, known relevant documents can be pulled for use

in creating better search parameters for further collection of data. In addition, once additional known

relevant documents are located through the analytical search processes, the information from those

documents can be utilized to search for other potentially relevant documents. Further, the

terms/phrases from these new documents can be compared to the search results, i.e. clustering, to

more efficiently identify potentially relevant data. In other words, the process should be iterative. In

the meantime, an IT key player questionnaire should be sent to the person responsible for IT to

determine the data architecture of the entity and backup/legacy information. The identification of

mapping should also be sought along with information as to third party entities who maintain data

and/or website information. Finally, IT and all key players should be asked to discontinue any document

destruction, turn off auto delete and auto archive, and identify backup rotation. Potentially relevant

data should be properly preserved depending upon data type and business capability until further

decisions are made.

Technological Problem: lack of an “analytics toolkit” and Lack of Flexibility and Scale

Vendors have historically pushed one approach or solution on customers for Ediscovery. Every solution

requires a search capability; when the solutions begin to contain analytics the vendor approach has

been to offer a single type of analysis. One type of analysis does not always product the best results with

all data sets. Sometimes email is the only source of data pertinent to a matter. One set of tools for email

analysis may work fine for such a case. With other data pertinent to the same case, key evidence may

exist in MS Word documents and email analysis techniques are not appropriate. This fact of life in

Ediscovery has caused legal reviewers to turn to multiple solutions that are stand-alone applications.

Moving data into and out of these applications introduces complexity and potential for error (human

and otherwise). One platform providing a number of analytic tools that are appropriate at various times

throughout the lifecycle of a case would be the most efficient approach to take for legal discovery. In

addition, historically data indexing and search solutions lack the flexibility and scale to analyze the

amount of data that may exist within a typical organization. A platform that could analyze large

volumes of data efficiently would be helpful.

Deciding who shared what (and with whom)
Conversational analytics are very important to an Ediscovery solution. Knowing who spoke with whom

about certain topics is often the cornerstone to legal analysis.

Technological Problem: lack of capability or full-featured capability for conversations

Some solutions use email header analysis, others use Meta data analysis and header analysis, others rely

on message content. A solution that can identify content and header similarity is often the best solution.

Providing this capability at scale is a challenge in many solutions.

7

Solution: A “Standard” Ediscovery Process
The solution to many of these problems with Ediscovery would be contained within an “standard e-

discovery system” that connects to many sources of local data (behind the corporate firewall), to help

litigation support personnel generate reports about data that may prove relevant to a case matter. This

software would also interface with collection tools for desktop or laptop collection and process data at

great scale in large data center environments. The ideal discovery system would also perform a number

of functions that would allow collection processing and analysis of data regardless of file format. The

system would support a system of “describing” data without moving it into a separate repository;

reducing the required storage space to use the system and making collection efforts more targeted and

specific; let alone more cost effective (take just what you need for legal hold for example). This

“system” would be coupled with additional standard processes and best practices to form the

“standard” Ediscovery process.

Such a system would also provide specific access to certain data items but not others based on user

credentials and group membership of users (multi-tenancy; or the ability of multiple groups to use the

system but only see specific documents depending on their role in the organization or on the review

team). Please see Figure One and Figure Two (below) for an illustration of these concepts and how the

system is deployed within an organization.

At the present time, it is not believed that any one platform on the market has all of the capabilities

mentioned herein and certainly does not account for capabilities not yet developed. Counsel should

always keep abreast of technological advances and incorporate the same into any standard process.

Depending upon the case and the data set, you may want to consider one or more platforms that best

fit your needs. The choice of platform may be driven by which of the following options, beyond

standard keyword-Boolean options, are available and/or needed for your data set:

1. Platform capability to allow unprecedented scale of indexing, search and analytics

a. OCR conversion to text capabilities to ensure that content is captured even in image

files

b. Exception processing of certain file types that may need special processing like forensic

video or audio analysis

c. Processing with “flexible attribute selection”

i. Indexing with Regular Expression matching turned “on” or “off”

ii. Numerical content turned “on” or “off”

2. Multiple representations of data corpora

a. File system- level Meta data only

b. Application-level Meta data

c. Full content

d. Analytic attribute structures for semantic analysis

e. Analytic Meta data structures for user-supplied attributes “tagging”

f. Analytic Meta data structures for machine generated attributes

i. Cluster associations for similar documents

8

ii. Near-duplicate associations for similar documents

iii. Group views for search associations

3. Analysis Capabilities

a. To help identify keyword criteria – figure out which words are contained within the

data universe and subsequently determine which are most relevant

b. To identify relationships in the content that is in need of scrutiny or discovery

(clustering)

c. To organize documents and relate keyword searches to content that is in an analytic

folder

d. To remove duplicate content from responsive document sets

e. To identify versions of content within sets of documents (versions of contracts or

emails)

f. To identify language characteristics of documents (language identification)

g. To identify email conversations and conversation “groups”

h. Linguistic analysis (categorization in terms of meaning)

i. Sampling to pull data from known locations to use for additional searching

j. Supervised classification or categorization (using known relevant documents to form

search queries to find other potentially relevant documents

k. Lexical analysis (entity extraction or analysis)

4. Validation Capabilities (Whether in the platform or extraneous)

a. To validate the search (pulling random sample of all documents to validate search

methodology

b. To validate the review for:

i. Privilege

ii. Confidential Information (i.e. other products, social security numbers)

iii. Tagged/relevant topics (pulling random sample of reviewed data to validate the

review process)

Definitions of Key Terms
Key terms relevant to understanding an ideal Ediscovery system are:

Representation of Data

In the ideal system, it is important to represent documents so that they can be identified, retrieved,

analyzed and produced for attorney review. Documents can be represented within the system by some

sort of index or by certain kinds of data structures (covered in detail in a later section of this document).

Different types of analysis require different types of indices or data structures. It is ideal to build the

appropriate data structures to support the kind of data analysis that is required at a certain stage of the

ediscovery process.

In an ideal system document representations can be constructed to include certain kinds of information

but not other types. This is valuable as it keeps the space required for an index as small as possible and

maximizes the speed of indexing or other data representation.

9

Meta data Categories and Use Cases

There are three main types of Meta data that are important in electronic discovery. The first two are

attributes of file systems and applications and help identify who created, copied or modified documents.

This capability helps to identify custody or ownership criteria for documents important to a case. The

third type of Meta data is supplied by either human reviewers or analytic software processes.

File System or Repository Meta data

For example, the file system where documents are found has Meta data about who copied a file to the

file system or when a file was created on a specific file repository. This category would include

SharePoint Meta data, NTFS (Windows) file system Meta data and any kind of Meta data that is relevant

to the repository storing a data item (when it was placed into the repository, how large it is, what Access

Control Lists (ACLs) apply to control the viewing of the item, etc.). If a litigation support person was

looking for files that were created on a file system during a specific time period, they would be

interested in file-level Meta data. An ideal discovery solution always indexes the import path of any

document it represents along with as many file system attribute fields as possible.

Application-level Meta data

The application (MS Word for example) that creates a document stores certain Meta data fields inside

any documents it creates. This presents an additional type of Meta data that can be indexed and

analyzed to identify documents with certain characteristics. Application Meta data contains fields like

who the author of a document may be, when they created the file with the application (MS Word in this

instance) or when the file was modified (inside the application). The ideal discovery solution would

capture as many of these document-specific Meta data fields as possible to determine everything from

authorship of the document to when it was last printed (depending on what application created the

document).

User-supplied or “Analytic” Meta data

The last type of Meta data that the system can store for a user is “Analytic” Meta data. This is user or

machine supplied Meta data. Even though final document tagging is done by an attorney within the final

review stage of a legal discovery operation, other support personnel will mark or tag documents to

indicate their status. Legal support personnel may need to mark or “tag” documents with labels

identifying certain documents as “important” for some specific reason (the documents may qualify for

“expert” review by a professional in a certain field of expertise for example). They may want to tag

them so that a supervisor can review their work and decide that they meet certain criteria that qualify

them to “move along” in the discovery process.

In addition to human review, a software analytic process can be run against a document collection and

identify documents that are duplicate copies of one another in a large collection. An automatic process

could generate tags (within the Analytic Meta data) indicating that certain documents are duplicates of a

“master” document. If the master document was described as document “DOC000002345” then a tag

such as “DUP_DOC1000002345” could describe all the documents that are duplicates of the master.

These documents could then be identified quickly as redundant and they would not be passed along to

attorneys for review. The system could retain the original copy of a duplicate document and mark or

10

remove the others so that attorneys would not have to read duplicates unnecessarily. The ideal

discovery solution can run near-duplicate analysis and determine that certain documents meet a

threshold of “similarity” to other documents, qualifying them as “versions” of an original document.

Tags can then be automatically applied to the documents exhibiting these relationships so that they are

identified for in-house counsel who may want to pass them along as data that outside counsel should

review.

Analytic Meta data is the repository where an ideal platform can conveniently place both human and

machine-assisted codes or tags that will streamline or aid review of documents in a later part of the

process. Given that human review is very expensive machine-assisted “culling” of information can

reduce costs dramatically. Many experts in the industry term this process as part of “assisted coding” or

“predictive coding” of documents.

Analytic Processes

For purposes of this paper, “analytic processes” will refer to the following main functions within the

ideal discovery solution:

1. Unsupervised Classification – some refer to this as “clustering” where documents are organized

together into lists or folders with members exhibiting some level of semantic similarity to one

another. The term unsupervised refers to the technique’s ability to perform this semantic

matching with no human supervision.

2. Supervised Classification – this refers to a capability where the product can take example

content from a user and organize documents into lists using these examples as starting points or

“seed” documents. The “best matches” are taken from among the candidate population of

documents that are to be classified. The user can assign meaning to the seed clusters as they

see fit; assign labels, etc. In the ideal solution a user can pick a number of documents as seeds,

and specify an ordinal indicator of similarity that is a number between 0-1 that indicates a

“threshold” of similarity that must be met for the candidate document to be placed on a seed

list. Another form of the supervised classification is “search by document” where a user can

select a single document as a “seed” and have it attract the most likely matches from the

candidate list.

3. Near-duplicate analysis – this is very similar to supervised classification except that the system

can take one “pivot” (example) document and compute all others within a relative “similarity

distance” of it. Instead of organizing the document into a list of other semantically similar

documents; candidates are marked as “near-duplicate” neighbors of a pivot should they fall

within a range of similarity specified by a user. The documents are marked with “near-duplicate

association” markers in the analytic Meta data repository as indicated above.

4. Email conversation analysis – this is where the ideal system identifies the email and instant

messaging conversations that occur between parties. The parties and who sees a message is

discernible through this type of analysis.

5. Different types of searching – simple keyword search, Boolean search, fuzzy search, proximate

search are other types of search that are sometimes referred to as analytics within a product. An

emerging technology that is more and more important to legal discovery is conceptual

11

searching, where concepts are computed among the members of documents and presented

with the keyword results. Often conceptual searching is referred to in the context of conceptual

mining which means a process that identifies concepts in documents that transcend keywords.

Conceptual mining is often used to identify “latent” or immediately “unseen” words that are

significant among a population of documents. These can often help a human reviewer identify

what keywords should be included in a case and also to identify documents that the initial

keyword searches did not include.

Virtual Index

For legal discovery purposes, a system needs to support building and searching the aforementioned

three types of Meta data and must include support for analyzing and searching full document content as

well. For analytics of certain kinds documents must be represented by special data structures that allow

analysis (duplicate analysis, near-duplicate analysis, similarity comparisons to example content, etc.) to

be undertaken. The system has to account for these at great scale.

This entire set of capabilities should appear (to a user of the system) to be possible across one “index”.

In the ideal system, these capabilities are encapsulated in one entity that will be referred to as: “the

virtual index”. It is referred to in this way because it supports various operations on multiple data

representations and encapsulates these operations transparently to the user. The user should not know

or care about the different repository or representations of the documents within the ideal system. The

user should simply issue searches or ask for “similar documents” and get the results. The virtual index

will abstract all of these details for a user.

Multi-site Support

The ideal system should support use cases “behind the corporate firewall” for analyzing and collecting

data within local enterprise or client environments, and also support large data center deployments. The

indices built within the enterprise environment should be “portable” so that they can be built in the

enterprise environment and then be transported to the larger data center environment where all

aspects of the case can be evaluated in one “virtual place”. The idea of a virtual index supports this

vision, as it allows local data sources to be analyzed at various remote locations and then any relevant

files moved to a legal hold location at a central data center. The indices can be added to the central

location along with any data that is copied for legal hold purposes.

In all cases it is ideal to have a platform that “connects” to data sources, reads in a copy of the

documents stored within them, but leaves the original in place at its source location. Instead of moving

the original document into the ideal system and duplicating the document and the storage required to

maintain or analyze it, the documents can be represented by an index or some data structure that is

generally more compact. The original documents do not have to be resident within the ideal system to

be analyzed and referenced. Please see Figure Two (below) for an illustration of the ideal system in

relation to data sources it represents.

It is important that documents do not have to be loaded and analyzed in “batches” and that the ideal

system has the scale to represent vast numbers of documents within one single system. A system that

12

supports a set of analytic operations and scalable search is also an important feature of such a discovery

platform. Having the ability to analyze new documents by comparing them analytically with examples

already represented within the ideal discovery system is extremely important to solid ediscovery

practices.

Key Architectural Attributes of an All-Inclusive Platform
An all-inclusive platform approach presents all of the capabilities shown above to the IT or legal review

professional. The user can index data from locations within their data center or from sources as diverse

as their SharePoint server “farm” their Exchange email server, NT file servers or large-scale NAS devices.

The user can pick various levels of data representation based on the level of insight required for the task

and the computational and storage burden acceptable to the reviewers. The user can then search for

data that is relevant, select those results to “pass on” to other analytic processes (such as de-duplication

and near-duplicate identification or email analysis) and then tag or otherwise mark the results.

All of these capabilities should be available from a single console without the need for moving the data

from one tool to another. Once the data is in the platform it can be identified, analyzed and marked

according to the needs of the case. The important thing is that it can be managed with these processes

at unprecedented scale. Please see Figure One (below) for an illustration of the ideal platform. The

reader can quickly recognize that this is a product with a full suite of analytic and legal production

capabilities. It is far beyond a single function product like a search engine. Please see Figure Two below

for an illustration of how this platform could operate in the IT infrastructure among various repositories

of data.

Figure One: Ideal Discovery Platform

Ideal Platform

2

Ideal
Platform

(Web
Services)

Internet

A SW product that provides secure multi-tenant
(multi-organization) access to scalable electronic data
processing, analysis and data management services

Processing/Indexing

Organization “A”

Organization “B”

Organization “C”

Searching/Analytics

Unsupervised
Classification

Supervised
Classification

Tagging/View
Management

Data Mgt.
Migration/Legal

Export

Data Conversion PDF/HTML Conversion

EDRM XML
Concord.dat, DB(3)

User tags, admin. tags

Clustering

Profile (Model based)

Search/Near-dup., etc.

OCR, File ID, Index (3)

Po
licy En

fo
rcem

ent (B
P

EL)

13

The ideal discovery platform will perform all of the functions in the illustration above. The power of

having all these capabilities in one platform is undeniable. Being able to process content (OCR, REGEX),

index it, “cull” it down to a smaller size and then analyze it (remove duplicate material, perform NIST

analysis, identify near-duplicate content, calculate email conversation “threads”) all in one platform

without having to move the content from one system to another eliminates labor and potential human

error. Promoting efficiency in electronic discovery is a key component to success in legal review matters.

Figure Two: Intelligent File Analysis and Management

Intelligent File Management Services

Ideal Discovery

Platform

File/email
Servers

NAS
Storage

SharePoint

Files

ImagesDocs

Storage

Manages Content and Retains History

Intranet

Private or
Public Cloud

Analyze De-dup Encrypt Move

Virtual

Index/

Repository
VI maintains history

Storage

Internet

Business Process
Execution Logic

Scale of Indexing and Representation
An ideal discovery solution must have unprecedented scale. Scale is provided through superior use of

physical computing resources but also through the segmenting of the various data resources into the

virtual index components described previously.

Scale of Indexing, Search and Analytics [List of All Unique Terms in a Collection]

With the correct architecture hundreds of millions to billions of documents can be indexed and

managed in a fraction of the time required for other solutions, and with a fraction of the hardware they

require. One vendor, utilizing a unique grid-based (multi-server) architecture has demonstrated the

indexing and preparation of a given 17.3 TB data set in less than a twenty-four hour period. This is

possible due to two factors:

1. The platform’s unique “Grid” architecture (see Figure Three)

2. The platform’s unique “Virtual Indexing” architecture and technology (see Figure Five)

14

This platform can be deployed as a single server solution or in the large data center configurations

shown in figure three below. The ability to expand as the customer needs to index and analyze more

data in a given amount of time is made possible by the architecture. Certain software components of

the architecture schedule activities on the analytic engine components shown in the diagram. These

analytic engines “perform intensive work” (indexing, searching) and the controlling software requests

them to perform the work to produce results for users. The controlling software is the “intelligence or

brains” of the system and the analytic engines are the “brawn” of the system. As the user needs more

processing power, more analytic engines can be employed within the “grid” to provide more processing

and analytic power (the user is again referred to Figure Three)

Scale of Representation

This architecture also supports the representation of content in multiple ways so that the search,

classification and other analytic operations available from the analytic engines can “work on” the data

that has been processed. This means that the index is really a set of “managed components” which

include:

1. Meta data indices

2. Content indices

3. Analytic data structures

4. Analytic Meta data (tags, cluster groups, other associations)

All of these things are what is meant by “scale of representation”; the platform can represent content in

multiple ways so that the appropriate level of search or analytics can be undertaken on the documents

that are within a collection or corpus.

Speed and Scale of Indexing

A second aspect of scale is the speed with which data can be processed and made available for

assessment. With a superior architecture an index can be presented for searching within hours. Other

solutions require days if not months to build the content for a case into a searchable representation.

The ability to build an index and get results in one or two days and have it done reliably allows case

matters to be investigated rapidly and with fewer errors. The sooner a reviewer can determine what is

relevant within the scope of discovery the sooner lawyers can begin making intelligent decisions about

the case. This leads to better outcomes because the reviewers are not as rushed and because they have

better analysis options than they would have with traditional methods. With the data prepared faster,

organizations have time to perform search operations and then perform more complex analysis of data

that will aid the reviewer later in the case.

15

Figure Three: Scalable Grid Architecture

Unique Three-Tiered Architecture

Service Tier
(scales from 1 to n)

Access Tier
(scales from 1 to n)

Virtual Warehouse

Services Manager

Services Manager

Analytics Tier
(scales from 1 to n)

Analytics Engine

Analytics Engine

Analytics Engine

Analytics Engine

Access Manager

Access Manager

Access Manager

High Speed
Index Storage

High Capacity
File Storage

User Access
Tier

Service
Control Tier

Analytics Tier Analytics and
File Storage

User Access
(AAA)
•AD/LDAP

Service Control
•Grid Scheduling
•Fail-over
•High-availability
•Load-scheduling
•Job
Mgt./Monitoring

Data StoresAnalytic Ops
•File Identification
•Archive Mgt. (PST)
•Indexing (3 levels)
•Analytic Env.
•Search ops.
•Near-duplicate analysis
•Duplicate detection
•Threading analysis

Policy
Engine

As one can see from the illustration above, the data processing and search workload can be distributed

over various machines in the “grid”. The customer simply has to install and provision more “engines” to

exist in the grid and the intelligent management layer of software will use these resources for

processing, indexing and search operations. This allows the product to scale to handle unprecedented

levels of documents and to process them in unprecedented timeframes. In Figure Eight (below) the

search operation is illustrated as being distributed over the available grid processing power.

Virtual Indexing: a Key to Large Corpus Management

In addition to a distributed “grid-like” architecture, another key to managing large data sets is using the

proper constructs to represent the data. As mentioned, this platform builds different representations of

the data based on the needs of the analysis tasks that will be required for specific discovery activities. It

ties them together in a logical set of components that is referred to as a “Virtual Index”. This is

necessary because the Meta data from files, the user-supplied Meta data from other reviewers, and

analytically generated Meta data all must be searched as a single logical entity to make decisions about

a given case.

A virtual index stores the various pieces of the logical index separately so that the Meta data can be built

and searched separately for efficiency reasons, but also for scale purposes. A virtual index can be grown

to an unprecedented size because it is “built up” from smaller more efficient components. Further, it

can be transported from one location to another, and then “added in” to a matter as the user sees fit.

Earlier in this document the example of remote office local collection with the data being transported

with the appropriate indices to a data center. This is possible because of the virtual index. Such an index

can also grow arbitrarily large. The virtual index component of software can “open” the parts of a virtual

16

index that matter to a case at a certain point in time. This makes searching more efficient and also it

allows the virtual index to grow or shrink as necessary. Also, the “pieces” of a virtual index can be

repaired if they become corrupt for some reason. The ideal system retains “manifests” of documents

that comprise a given portion of the virtual index and from these the component indices can be rebuilt if

necessary.

The user may want to just look at file system Meta data and characteristics of content stored within an

enterprise. For that a straight forward file system Meta data index (basically POSIX-level Meta data) will

satisfy the need. This type of index only requires about 4% of the original data size for storage. A full

content index (on average) consumes between 25-30% of the original data size. The full-content index

will require more storage than the Meta data variety of index, and it will take longer to build.

 If the user needs to understand the application (MS Word, PDF) Meta data or that and the full content

of documents for keyword search, they will be willing to wait for the extra processing (full content

indexing) to complete and are likely willing to consume extra storage. If the user is not sure if all the

available content meets the criteria that their search may require, they may want to use the POSIX Meta

data indexing technique initially to identify what content should be fully indexed (before committing to

extra time and storage resources).

One key aspect of the ideal system is that the Meta data index is separate and stands alone from the

content index that supports it. The system presents one index for a given corpus of documents, but

beneath this construct is at least a Meta data index. If a corpus is represented as a full content index, the

corpus has a Meta data and a full content index component. The two indices are logically connected but

physically separate. The virtual index software layer “binds” them together. Please see Figure Five for an

illustration of a virtual index and its components. This virtual index approach makes the index more

scalable; it allows it to be searched more rapidly and makes it resilient against potential corruption.

 In addition to the full content inverted index construct, the corpus of documents can be further

represented by analytic feature descriptors (where each “word” or “token” is represented as a feature

of the document). These feature descriptors for single documents can be combined as “models” where

complex relationships between the words or tokens are stored. These analytic descriptors are separate

data structures that support document similarity operations, clustering and near-duplicate analysis.

They do not depend upon the inverted index that is used for keyword searching; they are separate data

structures and are used independently of the index.

17

Figure Four: Analytic Meta Data

Analytic Meta Data – Supporting user-specific
TAGGING/Classification and Management

Service Manager

Analytics
Engine

Application Access

T

a

g

C

M

D

Tag Actions and Results from
Analytic Operations
(Classification) can be retained
with the data descriptions set by
a user

Working Set

DocID
DocID

DocID
DocID

Analytic Meta

Data

Tag
Groups

Tag
Groups

Class
Groups

Class
Groups

User can kick-off
a number of
actions using
combinations of :
1. Search ops
2. Classification
3. Tag labeling

S

e

a

r

c

h

C

l

a

s

s

if

y

Virtual Index

Figure Five: Virtual Index Illustration

Virtual Index Explained

April 19, 2011Confidential22

DR Content
Index

Analytic
Model

Virtual Index SW Layer

Analytic Representation
Abstraction Layer

Analytic
Repository

Index/Query Abstraction
Layer

DR Meta
Data Index DR Content

Index
DR Meta

Data Index Content
Index

Meta Data
Index

Analytic
Meta Data

MD and Content
Inverted Indices

User tags, Class views
(Clusters, etc.)

Doc. Structures
Freq. Structures

Statistical
Models

Analytic Operations Agent (AOA)

Job Requests

View
Handle

Operand

18

Figure Six: Virtual versus Monolithic indices

Current Products – Monolithic Index

• Monolithic – effective index of around 7 TB of content

– After more documents than this: bad things happen

• Ideal Product: build it as large as you would like

– Build an incrementally sized Virtual Index

– Pieces can be added as required to grow the view into a set of
document collections

16

Competitor
7 TB of content

Virtual
Index

Virtual
Index

Virtual
Index

Virtual Index Layer Grow as neededCapped in Size –
cannot grow

Searchable View

Figure Seven: Virtual Indexing in Action

Virtual Index - Operation

April 19, 2011Confidential23

DR Content
Index

Analytic
Model

Virtual Index SW Layer

Analytic Representation
Abstraction Layer

Analytic
Repository

Index/Query Abstraction
Layer

DR Meta
Data Index DR Content

Index
DR Meta

Data Index Content
Index

Meta Data
Index

Analytic
Meta Data

MD and Content
Inverted Indices

User tags, Class views
(Clusters, etc.)

Doc. Structures
Freq. Structures

Statistical
Models

Analytic Operations Agent (AOA)

Job Requests

View
Handle

Operand
View

Results

Query

19

Figure Eight: Virtual Indexing plus Grid Architecture

Distributed Archit. – Virtual Index

MS Exchange
or Lotus Notes

NTFS

CIFS

DR “Intelligent
Connectors”

MS
SharePoint

R
o

b
u

st C
o

n
n

ecto
r Fram

ew
o

rk

Service Manager

Analytics
Engine

Service Tier/Policy Engine

Virtual
Index

Analytics
Engine

Analytics
Engine

Secure AD/LDAP Environment

Virtual
Index

Virtual
Index

Data
Sources

Index built
incrementally

R
elevan

ce A
d

ju
stm

ent Layer

Results

Results

Results

Virtual
Index
(multiple
Indices
searched
as one)

Q
u
e
r
y

AOA

AOA

AOA

Query

Query

Query

Summary of Architectural Concepts
Now that we understand how the unique architecture of the ideal system solves several issues around

Discovery, we can talk about some important types of processes which we will refer to as “analytics”

and their importance to the overall process. The prior sections of this document explained how:

1. The grid architecture allows very large collections to be represented as indices in record time.

Before this architecture became available, the Ediscovery process could not analyze the

extremely large collections of documents that have become common in legal matters. These

collections were either not analyzed, or they were analyzed in pieces, leading to human error

and inconsistency of results.

2. The virtual index constructs let the user select various levels of index representation

a. File Meta data only

b. Application Meta data

c. Full Content

d. Analytic Descriptions (document feature attributes)

e. Models and Profiles (example content in feature-attribute form)

3. The virtual index also lets the document collections that are represented grow to

unprecedented size and still remain usable and efficient

a. The virtual index lets the user add to the collection at any time as the virtual index is

really a multi-index construct within the product

4. Monolithic Indices can be problematic

a. Monolithic indices can grow in size and be very inefficient to search and manage

20

b. Monolithic indices can become corrupt at a certain size and become unusable

c. Monolithic indices can take long periods of time to construct in the first place

5. Virtual Indices Supply Several Key Advantages

a. In a virtual index Meta data only searches work on smaller absolute indices and

complete more rapidly

b. In a virtual index Meta data and full content searches actually execute in parallel

increasing efficiency and scale while providing results more rapidly than from classical

monolithic indices

c. Virtual indices can support similarity operations like “search by document” that expose

relevant documents that are meaningful to a human reviewer

d. Virtual Indices can be repaired efficiently without requiring entire document collections

to be re-processed and re-represented.

21

Analytics
Analytic processes in EDiscovery present distinct advantages to human reviewers. In this section,

analytic processes are described that can aid the legal review process. Discussion is presented about

why they can be of help during that process. In addition, aspects of these approaches are presented and

compared and advantages and disadvantages of each are explored. This is to give the reader a sense of

how competing products in the discovery space compare. This is intended to help the reader value each

and determine when one technique needs to be applied with others to be effective in a legal review

process.

Major Categories of Analytic Processing
It is easy to become confused by all of the techniques that are available to aid human reviewers of

electronic documents. These techniques fall into three main categories:

1. Unsupervised classification or categorization (often referred to as “clustering”)

2. Supervised classification or categorization

3. Specific types of analysis

a. Near-duplicate analysis

b. Duplicate identification or analysis

c. Conversational analysis (who spoke to whom)

Unsupervised Classification

This is often referred to as “clustering” because one wants to form document groups that “belong

together” because they “mean the same things”. The main idea behind this kind of analysis is that the

human reviewer does not have to know anything about the data in advance. The reviewer can just

“push the button” and find out what belongs where in a dataset and see folders or ordered lists of

documents that are related somehow.

See Figure Twenty Two (below) for a screenshot of a product that identifies documents according to

their similarity to one another. This particular system uses a series of algorithms to perform its work; but

the end result is folders of documents that are related to one another. Close inspection of the diagram

will show that the foreign language documents end up in the same containers or folders. The

predominantly foreign language documents get grouped together in a folder that is labeled with foreign

language “concepts” to make the review process more efficient. Other advantages of this technique will

be explained in later sections of this document. This is an example of a multi-level algorithm that

accounts for language differences. Some unsupervised classification algorithms do not account for the

language differences of documents and they can produce results that appear “confusing” in some

circumstances. This phenomenon will be discussed later in the document.

Most of these unsupervised techniques culminate in some kind of “conceptual” clustering or conceptual

mining and analysis of the data they represent. As each specific technique is described in later sections

22

of this document the reader will be informed about how the technique relates to conceptual analysis of

documents being analyzed.

Supervised Classification

Supervised classification means that a user “supervises” the process by providing at least some

examples of documents that are similar to what they want the algorithm to find for them in a larger

population of documents. These documents are usually put into what is called a “model” and they

“attract” other documents that belong “closely” to them. Please see Figure Twenty Four for an

illustration of supervised classification.

Examples of supervised approaches:

1. Seed-model “nearest neighbor example” type clustering.

2. Support Vector Machines (see reference [6]) – the user must supply “known positive” and

“known negative” examples of documents that the system can use to “compute the differences”

between for purposes of classifying new documents.

3. Bayesian Classifiers (see section below and reference [3]) – the user must supply “good” and

“bad” examples so that the algorithm can compute a “prior” distribution that allows it to mark

documents one way or the other.

4. Statistical Concept Identifiers that arrange documents based on the characteristics of words and

topics in a set of “training data” (documents that have been selected from a larger population of

documents but that have not been reviewed by a user)

5. Linguistic Part of Speech (POS) models where certain patterns of a specific language are noted

within a linear classification model and new documents are “matched” against it based on their

linguistic characteristics.

Specialized Analysis

There are specialized analytic techniques such as:

1. Near-duplicate detection (finding things that should be consider versions of other documents)

2. Email conversational analysis (threads of conversations between specific parties)

Mathematical Framework for Data Analysis
In the preceding discussion of the ideal architecture the concept of representing data as an index for

searching or as a mathematical model for analysis was presented. This section contains a description of

how data is represented mathematically. There are many ways to represent data for mathematical

analysis; the technique being described below is one way. This is not intended to be an exhaustive

review of all available text representation techniques; it is offered to help the reader visualize methods

that are not the same as an inverted index that can be used as a basis for document analysis.

Basic Overview of Document Analysis Techniques

The basics of how documents are compared to one another relies on representing them as “units of

information” with associated “information unit counts”. This is intended to give the reader context to

understand some of the terminology that follows. The goal of this is to support a mathematical process

23

that can analyze document contents: the “vector space model” *7+. The vector space model was

developed by a team at Cornell University in the 1960’s *8+ and implemented as a system for

information retrieval (an early search engine). The “pros” and “cons” of the vector space model are

discussed in the references, but since it is a good way to understand how to think about documents in

an abstract and mathematical way it is explained initially. When we refer to this in general it will refer to

the document-term representation model where documents can be thought of as vectors.

The term Vector Space Model would imply that in all cases we mean that the vectors are compared with

cosine angular measurements after their “term frequency-inverse document frequency” attributes are

computed. In the context below I discuss how that is possible but I don’t explain “tf-idf” in detail. The

reader can consult [7] and [8] for information on computing similarity with tf-idf techniques.

Furthermore, I am offering the model as an example of how documents can be represented for

comparison. Other techniques than tf-idf used for cosine similarity comparisons use the vector concept

so I want to make sure the reader understands the context in which this discussion is offered.

The Vector Space Model (VSM) is often referred to not just as a data representation technique but as a

method of analysis. Some of the techniques mentioned in the sections that follow utilize this vector type

model in some way (for representation; but their mathematical approaches are different). Not all of the

techniques discussed use the vector space model, but it is presented to give the reader a grasp on how a

document can be analyzed mathematically. Some form of vector is used in many cases to describe the

document content. Some of the techniques just need some data structure that represents the words in

a document and how often they occur. This is often constructed as a vector even if the vector space

calculations are not used to analyze the data the vector represents.

24

Representing Text Documents for Mathematical Analysis – Vector Space Model

The “Vector Space Model” is a very well known structure within the field of information theory and

analysis. It allows documents and their words or “tokens” to be represented along with their

frequencies of occurrence. Documents are represented by a “document identifier” that the system uses

to refer to it during analytic operations or so that it can be retrieved for a user. The overall combination

of document identifier and the token frequency information is referred to as a “document descriptor”

because it represents the information with the document and provides a “handle” to use to grab the

document when necessary.

Figure Nine: Vector Document term Frequency Structures

Document Term Structures

Doc ID t1 t2 tn

10117 22 47 77

Terms ->

Frequencies ->

Document Descriptor ->

Doc

ID1

t1 t2 t3 t4 t5 tn

Doc

IDm

t1 t2 t3 t4 t5 tn

Document Matrix

N=#total

docs.

dfn=#docs. Containing tn

tfn
(term

freq.)

25

Figure Ten: Documents in a Matrix

Notice that when documents are represented as document-term structures the documents are like

“rows” in a matrix. The “columns” of the matrix are the terms, and the columns can be the frequencies

of the given terms that are found to occur in the documents. The term positions can be fixed (per term)

and labeled with some integer with the actual string of the word/token being kept in a separate

dictionary or some other means can be used to “keep track” of what the terms mean. The

representation of a document will be the document being an entire row of terms with the columns

representing the frequency of occurrence of any given term within a specific row or document.

Vector Space Documents Matrix

Representation and Queries

docs t1 t2 t3 RSV=Q.Di

D1 1 0 1 4

D2 1 0 0 1

D3 0 1 1 5

D4 1 0 0 1

D5 1 1 1 6

D6 1 1 0 3

D7 0 1 0 2

D8 0 1 0 2

D9 0 0 1 3

D10 0 1 1 5

D11 1 0 1 3

Q 1 2 3

q1 q2 q3

D1

D2

D3

D4

D5

D6

D7

D8

D9

D10

D11

t2

t3

t1

26

Comparing Documents to One Another or Queries

With the vector-space model of vector comparison, each document is treated as a “vector” in a

dimensional space. The number of dimensions equals the number of terms in the largest document. If a

document has a given term in a row of the matrix, the value in the matrix is equal to that document’s

frequency for the given term. If the document does not have that given term, the column in the row of a

given document is zero. To compare two documents, a “similarity calculation” is undertaken and a

“score” is computed between the documents. The score represents the cosine of the angle between the

two documents, or their “distance apart” in the “n-dimensional vector space”. This can be visualized in

two-dimensions below. A query can be represented as a document so a query entered by a user can be

compared to documents and the closest ones can be retrieved as results.

Figure Eleven: Cosine Similarity

Computing Similarity Scores

2

1 1D

Q
2D

98.0cos

74.0cos

)8.0 ,4.0(

)7.0 ,2.0(

)3.0 ,8.0(

2

1

2

1

Q

D

D

1.0

0.8

0.6

0.8

0.4

0.60.4 1.00.2

0.2

The basics of the vector space model are that the cosine angle can be computed between any two

vectors in the document-term matrix [7]. This number is guaranteed to be between zero and one and it

shows that a document is identical to another document (score equals one) or the document has a zero

score (nothing in common with the reference document) or something in between. The closer that the

score is to the number one, the more similar two documents are in the “vector space” or “semantic

space” of the documents. This model gives the reviewer some idea of how similar two documents are. It

is useful in this respect; but it has some limitations. The reader can review the references for more detail

27

on the mathematics, but the basic idea is that documents are: 1) the same; 2) totally unrelated; 3)

somewhere in between.

Problems with Vector Space Model (VSM)

The problems that arose using the vector space model included:

• synonymy: many ways to refer to the same object, e.g. car and automobile

• polysemy: most words have more than one distinct meaning, e.g. model, python, chip

• Vectors are still sparse and there is a lot of extra computation involved with analyzing them

Figure Twelve – Illustrative Behavior Vector Space Model

Comparisons VSM

• Example: Vector Space Model

auto

engine

bonnet

tyres

lorry

boot

car

emissions

hood

make

model

trunk

make

hidden

Markov

model

emissions

normalize

Synonymy

Will have small cosine

but are related

Polysemy

Will have large cosine

but not truly related

As can be seen above, the VSM puts things together that have the same (literal) words. It is efficient to

compute and gives an intuitive basis for understanding what is literally similar. What it does not help

with is in finding documents that “mean” the same things. In the example above, one document with

“car” and another with “auto” would not be grouped together using this technique. This is because the

technique cannot account for synonyms or polyesters (these are explained in [5] within the references);

polyesters are words that have more than one meaning (“Java meaning coffee” and “Java meaning the

island of Java”, or “Java the programming language”).

There are ways to improve the behavior of the vector-space model and it is still used and proves very

useful for many operations in data analysis. For conceptual analysis of data however, there are other

methods that can be used that don’t suffer from these drawbacks.

28

VSM: Historical Significance

The VSM as one of the first techniques to model documents in a mathematical context and present

them in a fashion that is conducive to analytic review. It is not perfect, but it represents a lot of value to

folks trying to find similar documents and it paved the way for researchers to use a common model for

thinking about document analysis. The techniques that were subsequently put forward used this

representation method but applied very different mathematical techniques to the matrix model of

viewing document collections.

There are ways to improve the behavior of the vector-space model and it is still used and proves very

useful for many operations in data analysis. For conceptual analysis of data however, there are other

methods that can be used that don’t suffer from the drawbacks of VSM. These techniques perform

dimensionality reduction on the data sets at hand, and expose “latent relationships” in data that are

hard to find otherwise. Before moving on to techniques, some discussion of reducing the dimensionality

of data sets is presented.

Some More Basics

Before we discuss the various techniques at our disposal for legal discovery analytics; we have to discuss

a general concept in language theory: “dimensionality”. Dimensionality is the number of words or the

number of things that we have to account for in a language model.

Analyzing Text Documents – “The Curse of Dimensionality”

The problem with text is that with most languages there are so many words to choose from. Documents

vary in their vocabulary so much that it is hard to build one mathematical model that contains all the

possibilities of what a document might “mean”. Language researchers and computer scientists refer to

this problem as “the curse of dimensionality” and many information analysis approaches seek to reduce

the number of dimensions (words) that their models have to contain.

In the matrix above, if this represented a “real” collection of documents, the columns of the matrix

would be much more numerous and for many of the documents the columns would not have an entry.

This is what is meant by “sparse data” within a “document-term matrix”. Many approaches are aimed at

identifying what words in a document or set of documents represent “enough” of the total so that

others can be ignored. Information theorists refer to this as removing “noisy data” from the document

model. This concept revolves around choosing enough of the attributes (words) within the documents

to yield a meaningful representation of their content. Other techniques are used to actually remove

words from the documents before they are analyzed.

Stop Word Removal

Certain words (such as “a”, “and”, “of”) that are not deemed “descriptive” in the English language can

be removed from a document to eliminate the number of dimensions that an algorithm needs to

consider. This may be helpful in some contexts and with some algorithms; it does reduce the numbers of

dimensions that need to be considered by an analysis algorithm. When these are removed it can be hard

to determine specific phrases that might carry meaning to a legal reviewer however. A search engine

that can find phrases may not consider the difference between two documents with similar phrases:

29

Document #1:“We agree on the specific language outlined below…”

And:

Document #2: “We agree to pursue a process where we agree on a specific language to describe….”

In these two documents many search engines would produce both documents; each with clearly

different meanings in response to a phrase search of: “agree on the specific language”. This may not be

a problem to a reviewer because both documents are likely to be returned; but the reviewer will have to

read both documents and discard the one that is not specific enough for the case at hand. In this

instance, stop word removal would yield results that are less specific than a reviewer might want. The

searches with this type of index may produce more documents, but the cost will be that they may not be

as specific to the topic at hand.

Stemming of Language

 With most languages, there are ways to find the “stems” or “root meanings” of many words through an

algorithm pioneered by Martin Porter [9] that has been named: “Porter Stemming”. This technique has

been used widely and is often referred to simply as: “stemming”. Any serious language theorist

recognizes the term “Porter Stemming”. The algorithms were initially released for English language

analysis but have been extended for many other languages. See the reference (again [9]) for more

discussion of the techniques and the languages supported.

The idea with porter stemming is to reduce words with suffix morphologies to their “root” meaning. The

root of “choosing” is “choose” and would show up in some stemmers as: “choos”. The roots of many

common words can change after stemming to common “roots”:

alter

alteration

altered

become:

alter

alter

alter

This reduces the number of tokens that a document has to account for and the argument for using this

technique is that the meaning of the words is “about the same” so the corresponding behavior this

induces in the mathematics will not be deleterious to any given analysis technique.

The theory behind using stemming for search is that more documents of “about the same meaning” will

be produced for a given query. In a legal review context documents that are not specific to a query could

be returned with stemmed collections. This is similar to the situation that could exist when stop-words

are removed from a collection. For analytic approaches, the same thing can occur. The algorithms that

group documents together could produce results that are less specific than might be desired by a human

reviewer.

30

For analytic approaches, the designer of an algorithm must consider this trade-off between precision

and recall. The benefits of having fewer things to keep track of in the model may outweigh any lack of

clarity around usage that the token suffixes may have conveyed. In a legal discovery “clustering” context

this may not be true (as we will discuss), but stemming is an important attribute of a collection of

documents that should be considered when preparing documents for legal review purposes. It can help

immensely and it can make other things less specific (which it was designed to do) than one might want

for a legal discovery application. The designer of the analysis system should consider how the

documents need to be prepared for the optimal performance inside the algorithms the system will

implement.

Higher-Order Mathematical Techniques
To this point, we have seen how a legal discovery platform must include many different pieces of

functionality and respect both Meta data and full content search at great scale. We have also seen how

analytics can be important to legal discovery professionals. We have set the framework for how to

represent documents in a way that allows mathematical operations to be defined on abstract

representations of their content.

We reviewed the vector space model and how document matrices have many “dimensions” that impact

analytical performance for legal review purposes. We have discussed how to reduce dimensions by

removing certain words from a collection or by reducing certain words to their “root forms” so that they

can be considered more generally with fewer burdens being placed on the modeling technique. These

techniques can reduce the specificity of results returned by the system. This may or may not be

acceptable for a legal review application. For conceptual analysis of data, there are other methods that

can be used that perform dimensionality reduction on the data sets at hand in a different manner.

One of the first solutions to this problem that was proposed was Latent Semantic Indexing (or Analysis)

by a team or researchers at Bell Laboratories in 1988. Before these are explored, some of the commonly

used techniques are listed and discussed. This is not intended to be an exhaustive review of every

technique available for language analysis. It is not a critique of any technique or vendor implementation.

This is a discussion of some common techniques that have been used within legal discovery products

and presents a “pro” and “con” set of considerations for the reader.

Commonly Used NLP Techniques
 Within legal discovery, there are some NLP techniques that have become commonly known within the

industry. These have been championed by vendors who have had success in providing them as pieces of

various edicovery products. These are:

1. Latent Semantic Analysis/ Indexing (LSA/LSI) – this is an unsupervised classification technique

used in a popular review platform and some other products

2. Probabilistic Latent Semantic Indexing or Analysis (PLSI; sometimes referred to as PLSA) – this is

a supervised learning technique that has been implemented within search engine products

3. Bayesian Modeling (this is described below; the term “Bayesian” is commonly understood for

SPAM filtering and other knowledge based products)

31

4. Discrete Finite Language Models (companies with these technologies have used linguists to build

a “rules based” engine of some sort based on the “Parts of Speech” found in a text collection)

these are included as “linguistic models and algorithms” that they use to help find keywords for

search and to “understand“ collections. These probably are useful in some contexts; generally

these are specific to a given language and will not provide much value to other languages

without tuning by the authors of the model.

Techniques Discussed/Analyzed

Each of these techniques will be discussed briefly in the context of their use within legal review. All of

these are of course useful in the appropriate context. Their usefulness in certain situations and what

needs to be added to them to make them an integral part of the legal review process is noted below.

Their behavior at a certain scale can become problematic for each technique; this will be discussed

below.

Latent Semantic Analysis
Latent Semantic Analysis (sometimes referred to as Latent Semantic Indexing or “LSI”) was invented by a

team of researchers at Bell Laboratories in the late 1980’s. It uses principles of linear algebra to find the

“Singular Value Decomposition” (see reference *10+) of a matrix which represents the sets of

independent vectors within the matrix that exhibit the best correlations between term members of the

documents it represents. Notice that documents represented as “vectors” in a matrix make this

technique available in the same way that vector space calculations are (as described earlier) available

for VSM similarity operations. With LSI/LSA the terms that emerge from the document-term matrix are

considered “topics” that relate to the documents within the matrix. These topics are referred to as the

“k” most prevalent “topics” or words in the matrix of document terms.

LSA – “The Math”

From reference [11] (Wikipedia page on LSI):

“A rank-reduced, Singular Value Decomposition is performed on the matrix to determine

patterns in the relationships between the terms and concepts contained in the text. The SVD

forms the foundation for LSI.
[15]

 It computes the term and document vector spaces by

transforming the single term-frequency matrix, A, into three other matrices— a term-concept

vector matrix, T, a singular values matrix, S, and a concept-document vector matrix, D, which

satisfy the following relations:

A = TSD
T

In the formula, A, is the supplied m by n weighted matrix of term frequencies in a collection of

text where m is the number of unique terms, and n is the number of documents. T is a computed

m by r matrix of term vectors where r is the rank of A—a measure of its unique dimensions ≤

http://en.wikipedia.org/wiki/Latent_semantic_indexing#cite_note-14

32

min(m,n). S is a computed r by r diagonal matrix of decreasing singular values, and D is a

computed n by r matrix of document vectors.

The LSI modification to a standard SVD is to reduce the rank or truncate the singular value

matrix S to size k « r, typically on the order of a k in the range of 100 to 300 dimensions,

effectively reducing the term and document vector matrix sizes to m by k and n by k

respectively. The SVD operation, along with this reduction, has the effect of preserving the most

important semantic information in the text while reducing noise and other undesirable artifacts of

the original space of A. This reduced set of matrices is often denoted with a modified formula

such as:

A ≈ Ak = Tk Sk Dk
T

Efficient LSI algorithms only compute the first k singular values and term and document vectors as

opposed to computing a full SVD and then truncating it.”

This technique lets the algorithm designer select a default number of topics which will be “of interest”

to them (the default value is usually between 150-300 topics). There is research to indicate that around

100-150 topics is the “best” or “optimum” value to configure when using LSA. This sparks debate among

language theorists but has been discussed in other documents (see reference [4] and [11]).

The topics generated via LSA SVD decomposition are referred to as the “k-dimensional topic space”

within the new matrix. This is because there are k (100-150-300) topics or terms that now “matter”

(instead of the thousands of individual terms in a set of documents before the dimensionality reduction

has occurred). So the original matrix that could have contained thousands of unique terms is now

represented by a much smaller matrix with terms that are highly correlated with one another. Figure

Thirteen outlines some of the mathematical concepts that apply with Latent Semantic Analysis.

33

Figure Thirteen: LSA Matrix Illustrations

LSA: One of the First Solution

• Singular Value Decomposition

{A}={U}{S}{V}T

• V and U forms an orthonormal basis

for input and output space: A*A, AA*

In the diagram it can be seen that the large matrix has been “reduced” to the smaller dimensional area

and “important” terms are represented in the matrix. What the “mathematics removed” were topics or

terms that did not appear strongly in relation to the terms that “survived” the operations that reduced

the larger matrix. So it seems like this is a great idea (it was; it just is not perfect).

LSA Practical Benefits

To help the reader see the benefits of LSI, and how it can find correlations in data, an actual example is

provided from a blog maintained by Alex Thomo [mailto:thomo@cs.uvic.ca]. This example was used in an

earlier section of the paper to illustrate how LSA as a technique is very valuable. Here we delve into it a bit more

and explain its “pros” and “cons”:

>>

> An Example

>

> Suppose we have the following set of five documents

>

> d1 : Romeo and Juliet.

> d2 : Juliet: O happy dagger!

> d3 : Romeo died by dagger.

mailto:thomo@cs.uvic.ca

34

> d4 : "Live free or die", that's the New-Hampshire's motto.

> d5 : Did you know, New-Hampshire is in New-England.

>

> and search query: dies, dagger.

>

> A classical IR system would rank d3 to be the top of the list since it

> contains both dies, dagger. Then, d2 and d4 would follow, each containing

> a word of the query.

>

> However, what about d1 and d5? Should they be returned as possibly

> interesting results to this query? A classical IR system will not return

> them at all. However (as humans) we know that d1 is quite related to the

> query. On the other hand, d5 is not so much related to the query. Thus, we

> would like d1 but not d5, or differently said, we want d1 to be ranked

> higher than d5.

>

> The question is: Can the machine deduce this? The answer is yes, LSA does

> exactly that. In this example, LSA will be able to see that term dagger is

> related to d1 because it occurs together with the d1's terms Romeo and

> Juliet, in d2 and d3, respectively.

>

> Also, term dies is related to d1 and d5 because it occurs together with

> the d1's term Romeo and d5's term New-Hampshire in d3 and d4,

> respectively.

>

> LSA will also weigh properly the discovered connections; d1 more is

> related to the query than d5 since d1 is "doubly" connected to dagger

> through Romeo and Juliet, and also connected to die through Romeo, whereas

> d5 has only a single connection to the query through New-Hampshire.

<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

>End Example from Blog

The example shows how the LSA technique can “link” together the concepts across the document collection. Even

though the query has nothing to do with New Hampshire; the state motto: “live free or die” associates the query

with the state. The power of the latent technique is obvious; it also can lead to obfuscation as we will also see in

the next section.

The Power

LSA provides a set of concepts that were “latent” or unobserved in the data from the original document

matrix. Due to the mathematical technique of computing linearly independent vectors that have

pronounced term correlations; things that “belong together” show up because they relate to common

linking words in certain ways. In a document collection, terms such as “astronaut” will be paired with

“rocket” and “space” and “travel” or “expeditions”. Terms such as “cosmonaut” will be related to the

same terms. The astronaut and cosmonaut term ascendancies are good examples of the benefits with

35

LSA. A human reviewer may not have thought about cosmonaut as a possibility for a keyword search

along with astronaut but after LSA reveals it as a latent concept the reviewer can include it in the

keyword list of a given matter.

For legal reviewers it is valuable to find latent terms that are non-obvious that can be included in with

obvious keyword selections. Other relationships in the data can be seen so that the legal reviewer can

consider unseen aspects of document collections for building their legal strategies. If the document set

is appropriately sized, the lawyer can receive “good ideas” from LSA operations that are run on data.

Another benefit to the technique is that new documents that arrive after LSA has been performed can

by “folded in” to an existing reduced matrix (with a vector multiplication operation). This is often

necessary as documents for a given case are often found as part of an iterative process where prior

review leads to a widening scope of collection. The technique can also have applicability across

languages as it may identify correlations in documents that are similar regardless of language [11]. This

is not universally true for all languages, but it can be seen in some instances. There can be drawbacks to

the LSA approach however.

The Problems: LSA Limitations

For large document collections, the computational time to reduce the matrix to its k important

dimensions is very great. On large document collections (100,000 – 200,000 documents) computing

SVD’s can take a month or more; even with large capable servers equipped with large memory

configurations. The technique does not distribute well over a large number of computers to allow the

computational burden to be shared.

Even if the computational burden is acceptable, the technique is difficult to use after a certain number

of documents because the data seems to put too many things in too few buckets. The terms that it

seems to correlate don’t always seem to make sense to human reviewers. This is due to a problem

statisticians call “over-fitting”. Too many wide-ranging topics begin to show up in the reduced matrix.

They are related somehow, but it is not clear why.

Some good examples: good correlations occur where the terms “astronaut” and “cosmonaut” are paired

with “rocket” and “space” and “travel”. This all makes sense, cosmonauts and astronauts engage in

space travel. But also included in the matrix are documents containing travel documentary reviews of

the Sahara desert, “camels”, “Bedouins” and “Lawrence” and “Arabia”. These don’t seem at all related

to the documents about space travel. This occurs because the correlation of these topics with the ones

about space travel relates to long journeys over harsh dry regions with little water, harsh temperatures

and environments forbidding or deadly to humans. This over-fitting occurs as more documents with

more topics exhibit these correlative effects. Soon there are too many associations to be crisp and

logical to a human reviewer. Even in the example with just a few documents, it does not make sense

that “New Hampshire” was introduced into the search results as “relevant” when the terms of the query

were: “dies” and “dagger”. If this were a murder case it would not have made sense to drag in

documents that are about the state of New Hampshire.

36

So the dimensionality of the matrix was reduced with LSA and there are fewer things for a human to

consider, but its discerning power was reduced as well. The results that emerge from the technique are

confusing and do not lead to crisp conclusions around what the document population “represents”. The

technique is a purely mathematical one; there is no syntactic knowledge imparted to the model to check

for consistencies with language usage. So it is clear that LSA is important, helpful under certain

circumstances and that also it can be a bit confusing. Across a large population of documents it can take

a long time to compute the relationships between documents and the terms they contain and the

results of all that computation can end up being confusing.

Probabilistic Latent Semantic Analysis

 Because of the discernment issue with LSA and as a result of other researchers looking at the problem

of conceptual mining in a new way, Probabilistic Latent Semantic Analysis, or PLSA was invented. The

reader is referred to [2] in the references section for a full discussion of the technique, but it is built on a

foundation from statistics where co-occurrences of words and documents are modeled as a mixture of

conditionally independent multinomial distributions.

Instead of using linear algebra to reduce a matrix, the PLSA technique looks at how often a certain topic

occurs along with a certain word. The following formula is from [2] and it basically says that for a given

class of documents, the word “w” occurs at a certain frequency or with a certain probability along with

the topic “z”. This is found by iterating over a training set of documents and finding the highest

correlations in the documents that contain both w and z. This is what they mean by a “multinomial

distribution” within the documents of the collection. This technique was invented by Thomas Hoffman

at Brown University (and others) and is referenced in [13].

P(w,d) = ∑ P(c)P(d | c)P(w | c) = P(d) ∑ P(c | d)P(w | c)

This may be easier to visualize with an illustration. It can be seen that the user picks a representative set

of documents and then the PLSA software finds the highest valued topics for each word. This is

accomplished with what is called an “Expectation-Maximization” algorithm that maximizes the

“logarithmic likelihood” that topic z occurs with word w for a given word document combination.

37

Figure Fourteen: PLSA Illustrated

The pLSI Model

Probabilistic Latent Semantic

Indexing (pLSI) Model

For each word of document d in

the training set,

 Choose a topic z according to a

multinomial conditioned on the

index d.

 Generate the word by drawing

from a multinomial conditioned

on z.

In pLSI, documents can have

multiple topics.

d

zd4zd3zd2zd1

wd4wd3wd2wd1

Benefits to PLSA

The benefits that PLSA has are that correlations can be found with a statistical basis from a document

population. One can say that there is a definite and certain “likelihood” that certain documents contain

certain optics. Each document can contain multiple topics as well.

Drawbacks to PLSA

This technique represents the topics among a set of training documents, but unlike LSA it does not have

a natural way of fitting new documents into an existing set of documents. It also is computationally

intensive and must be run on a population of documents selected by the user. Unlike LSA, it is a

supervised classification method; it relies on a set of documents identified by a user. If the population of

documents selected by the user is not representative of the entire collection of documents, then

comparisons to documents that have been analyzed previously are not necessarily valid. One cannot

take into account any prior knowledge of the statistics underlying a new unclassified data set.

PLSA (like LSA) also suffers from over-fitting. With PLSA several hand-selected parameters have to be

configured to allow it to perform acceptably. If these “tempering factors” are not set correctly, the same

issues with ambiguous topic identification can be seen with PLSA (as with LSA). Given that most users of

data analysis products don’t understand the impacts of hand-tuning parameters, let alone the

techniques being used (the mathematics involved) this concept of setting parameters in a product is

impractical at best. Therefore, PLSA is a statistically based and mathematically defensible solution for

concept discovery and search within a legal discovery product, but it can be quite complex to tune and

38

maintain. It is likely a very difficult technique to explain to a judge when a lawyer has to explain how

PLSA might have been used to select terms for search purposes.

Problems with Both LSA and PLSA

With both PLSA and LSA, a product incorporating these must still provide an inverted index and basic

keyword search capability. Therefore, if one just implemented PLSA or LSA, the problem of providing a

scalable keyword indexing and search capability would still exist for legal discovery users. All of the

problems that were presented in the first part of this document still exist with platforms supporting

these two analytic techniques.

Bayesian Classifiers

 Bayesian Classifiers are well known for their work in the area of SPAM detection and elimination.

Basically they find “good” examples and “bad” examples of data and compare new messages to these to

determine if a new message should be classified as one or the other. The mathematics behind this kind

of technology is discussed in *3+ and is based on “Bayes Theorem” of conditional probability:

“Bayes Theorem basically says that a document probability of belonging to a certain class (“C”

in the equation below) is conditional on certain features within the document. Bayesian theory

relies on the fact that these are all independent of one another. This “prior” probability is learned

from training data.

From [3]: “in plain English the above equation can be written as”:

These can be used in a legal discovery context and some companies employ these types of technologies

in their products. These kinds of classifiers are useful, they just have to be trained to accomplish their

work, and this requires a human to perform this prior classification.

Bayesian Benefits

When properly trained, they work quite well. They are surprisingly efficient in certain cases. Like all

tools, they are good at certain “jobs”.

Bayesian Classifier Drawbacks/Limitations

They sometimes have no idea what to do with unseen data; if there is no example to guide them, they

can make “bad choices”. They can take skilled humans to collect the data for the “models” that they

need to be effective. A lot of times this is not possible and can lead to unproductive behavior.

39

Natural Language Models: AKA Language Modeling

There are products that claim to have “proprietary algorithms” where “linguists” construct classifiers

based on part of speech tagging (POS tagging), or specific dictionary based approaches that they feel

“model” language. These often require professional services from the same companies that sell the

software implementing the models. This is because the linguist who constructed the model often has to

explain it to users. In a legal setting these approaches often require the linguist to become an expert

witness if the model results come under scrutiny. These are not stand-alone software tools that one can

run at the outset of a legal matter to “get some ideas” about the electronic information available for a

case.

 These models often require hand-tuning of the models given an initial keyword set produced by

attorneys who have some initial knowledge about a case and are therefore not tools to expose meaning

in language innately. They are more like “downstream” language classifiers that help identify documents

in a large collection that meet some well understood semantic criteria established by the keyword

analysis.

There are other products that use a combination of dictionaries and language heuristics to suggest

synonyms and polyesters [5] that an attorney could use for keyword searches given a well-understood

topic or initial list of keywords. These also may require that an expert explain some of the results if there

is a dispute over the keywords it may suggest.

Drawbacks to Linguistic Language Models

The drawbacks to these methods include:

1. They often require hand-tuning and are not general software packages that can organize and

classify data

2. They often require professional services and expert witness defense

3. They are very language specific (English, French, etc.) and do not scale across multi-lingual data

sets

Other Specialized Techniques

Near-duplicate Analysis

Often versions of documents that are measured to be within “some similarity measure” of reference or

example documents are very useful to identify. Knowing that a certain document has been edited in a

certain place and in a certain way can be very useful to a legal reviewer. Knowing when this is done on a

timeline basis is again a very crucial piece of many legal cases. Near-duplicate data identification

products perform this kind of analysis.

For two documents:

• A near-duplicate identification product would build efficient data structures to compare two

documents:

– “Mary had a little lamb” – document #1

40

– “Mary had a little white lamb” – document #2

• Yielding a “difference” of one word between the two documents; after “little” and before

“lamb”. So the difference would be defined as an “insertion” between “little” and “lamb”.

Mixing this kind of capability with the timeline that could be derived for when the edits occurred (by

analyzing the Meta data that should be stored with the documents) both can be used to expose

evidentiary facts about a case.

Email Conversational Analysis

Analyzing conversations within email and other message types is a very important part of legal

discovery. A full email conversational analysis tool must include the ability to see what individuals sent

messages on certain topics to others. In addition, it is important to have a tool that can display the full

list of email “domains” that a person used in a given time period. This explains the main sites or

companies contacted by a given individual over a specific period of time.

Figure Fifteen: Email Analysis

Email Conversational Graph Walking

April 25, 201147

Conversation:
Mary Joe@tl.com

Msg
1

Email thread starting with Mary@sk.com

Mary@sk.co
m

John@sk.com CEO@sk.com

Time

John@insidertrade.com

There are several approaches to email conversational analysis. The important aspect of this is allowing

the correct attributes (both Meta data (header) information and content) to be included in the

algorithm that constructs or follows the conversations.

Legal Discovery Processing Versus “Pure” Natural Language Processing
As we saw in the previous sections, there are a number of techniques that one can use to find

conceptual relationships across document collections. In a desire to use the latest computer science

41

techniques to discover information users of legal review technology have turned to Natural Language

Processing (NLP) and information analysis approaches that have been used in search engines and e-

commerce applications.

Unfortunately legal review professionals have often turned to vendors who confuse general NLP

techniques with sound legal discovery practice. The notion that a single mathematical technique will

identify everything within a data set that is relevant to a case and help produce all relevant documents

as a result is incomplete thinking. NLP techniques when applied correctly can be very helpful and

powerful; but like any tool they can only be used in the correct circumstances. Also, at certain

magnitudes of scale, the techniques break down, or experience limitations in their feasibility to produce

relevant results. Over-fitting can be a problem that obfuscates results and makes the burden of

computation a luxury for what the techniques provide in benefits to the review process.

This is why this paper started off with the full explanation of what a platform for legal discovery needs to

contain. If the user understands that multiple operations need to be supported to find all aspects of the

information relevant to a case (keyword data, Meta data, user-supplied Meta data, analytic associations)

then NLP techniques can be one of those operations and the user will have great results. If the system a

user selects relies on some specific NLP technique alone, the results it produces will not be complete

enough for legal review purposes.

Data Preparation is Important to Obtaining Appropriate Results

We saw in previous sections that the way documents are prepared and represented within a legal

discovery system is very important to obtaining good results. If data is not prepared correctly, certain

techniques will break down (such as phrase searching performance). With analytics, stemming may

reduce the dimensions an algorithm must analyze, but that may yield less specific results than one

would envision.

In legal discovery, it can be very important to find documents that say: “by taking the following action;

the party is choosing to violate the contract”. If the documents in a collection are prepared for “NLP”

approaches, more documents than one really wants will be returned when looking for the phrase shown

above or documents may be missed in the review phase. The near-duplicate mechanisms shown can

find too many items that are not true “near-duplicates” if stemming is utilized. So one-step approaches

must be carefully scrutinized if the most relevant results are to be obtained.

This can require extra human review and perhaps lead to human error during review. Many products

prepare their collections of documents one way (to support both NLP and keyword search approaches).

It is important to prepare documents specifically for the type of analysis (NLP or straight keyword-

phrase searching) they will undergo. For legal discovery, it is important to prepare collections that can

return results specific enough to save time in the initial collection reduction and the eventual legal

review portions of the process.

The total platform approach (with the virtual index) lets one prepare data for the analytic operations

that are important to each stage of a legal discovery process. This is possible because the virtual index

42

can represent the same data in multiple ways. Along with this, it is important to realize the benefits that

analytics can provide.

Aspects of Analysis Algorithms for Legal Discovery

Another aspect of processing data for legal discovery and utilizing NLP techniques is that language

characteristics of documents must be taken into account. Most NLP techniques use the statistical nature

of data (via token frequency or occurrence) to derive some sort of model that describes data of certain

types. If documents containing multi-lingual characteristics are combined with English-only documents,

the predictive power of the model will decrease.

If language is not properly accounted for, the predictive power can become even less precise than it

would be otherwise. Data preparation is very important to analytic performance in these types of

systems. Legal review requires more precision than other applications so it is especially important to be

precise with the preparation of data sets.

Benefits of Analytic Methods in Ediscovery
In an Ediscovery context, analytics are very important. They help the reviewer in several ways:

1. They can expose information about a collection of documents that is non-obvious but that can

help one understand the meaning of the information they contain. This can help a lawyer

understand what keywords would be relevant to a matter, and to select the ones that ultimately

get used to discover information about a legal matter.

2. They can identify relationships in data that reveal what information was available to the parties

to a lawsuit at certain points in time.

3. They can identify versions of documents and relate these to a timeline to make a reviewer

aware of how knowledge related to a lawsuit or regulatory matter has evolved over time.

4. They can be used to find the documents that relate to known example documents within a

collection. This helps a reviewer find all documents that are relevant and can also help a

reviewer find other relevant concepts that may not have been in an initial keyword search list.

Problems with Analytic Procedures in Ediscovery
As stated above in the introduction to this section of the document, a major problem with analytic

procedures in Ediscovery is that one technique is not appropriate in all circumstances. As vendors have

tended to champion one technology for their analytics, they tend to promote the over-use of one

technique that is available through the use of their particular technology. In their desire to find “the holy

grail” or identify the “magic bullet” for legal review users often grab on to technology pushed forward

from a certain vendor and then find that it is not the panacea that it was supposed to be.

Once they realize that this is an issue, some customers buy what they perceive as best of breed

products. For legal discovery this has historically meant multiple ones; some for analytics and others for

keyword search; perhaps a third or fourth for legal processing. Users typically try to use them

separately. Outside of a single platform these technologies lose some of their value because loading

data into and unloading data from various products introduces the chances of human and other error.

43

The introduction of one platform that can handle multiple analytic approaches is how one confronts the

fact that there is no single analytic technique that masters all problems with electronic discovery.

Related to this issue of multiple products is that the products on the market do not run at the scale

necessary to add value in even a medium sized legal matter. Because of this, analytic procedures are

(practically) run after a data set has been reduced in size. This can be appropriate, but it can also reduce

the useful scope and overall usefulness of the analytic technique in question. If some analytic

techniques are run on a very large data set they can take an inordinately long time to run, making their

value questionable. In addition, some techniques “break-down” after a certain scale and their results

become less useful than they are at lower document counts.

An Ideal Platform Approach
To combat these issues with analytics, the correct platform with a scalable architecture and the

appropriate “mix” of analytics is proposed as the answer. In the following sections a set of techniques

that have been developed to ameliorate most of the issues with well-known analytic approaches will be

shown.

The platform approach includes a “two-tier” ordering algorithm that first “sorts” data into related

categories so that deeper analysis can be undertaken on groups of documents that belong together (at

least in some sense). This helps the second-level algorithm run at appropriate scale and even avoid “bad

choices” when sampling documents for running analysis that can identify conceptual information within

documents. This is possible because of the grid architecture explained above and the correct mix of

analytic techniques.

Analytic Techniques in Context of a Legal Discovery “Ideal Platform”
So given the assertion that no single analytic technique is adequate on its own to provide legal discovery

analysis, this section discusses how a single platform using a combination of different analytic

techniques could be valuable. In addition, it shows how a platform implementing several techniques

allows the overall system to provide better results than if it had been implemented with one single

analytic technique.

The ideal discovery platform:

1. Uses a specific and powerful initial unsupervised classification (clustering) technique to organize

data into meaningful groups, and identifies key terms within the data groups to aid the human

reviewer. Other analytic processes can take advantage of this first order classification of

documents as appropriate

2. Uses a powerful multi-step algorithm and the grid architecture to organize data which has

semantic similarity; conceptual cluster groups are formed after accounting for language

differences in documents

3. Allows the user to select other analytic operations to run on the classification groups (folders)

built in the first unsupervised classification step. This allows other analytic algorithms to be run

at appropriate scale and with appropriate precision within the previously classified data folders

44

(LSA or PLSA for example) the benefit would be that the ideal platform could break the

collection down and then allow PLSA or LSA to run at an appropriate scale if a judge ordered

such an action

4. Allows the user to select documents from within the folders that have been created

a. Using keyword search

b. Using visual inspection of automatically applied document tags

c. Via the unsupervised conceptual clustering techniques

5. Allows the user to select documents from folders and use them as example documents

a. “Search by document” examples where the entire document is used as a “model” and

compared to other documents

b. Examples that can be used as “seed” examples for further supervised classification

operations

6. Allows the user to tag and otherwise classify documents identified from the stage one

classification or from separate search operations

7. Allows the user to identify predominant “language groups” within large collections of

documents so that they can be addressed appropriately and cost effectively (translation, etc.)

Conceptual Classification in the Ideal Platform
As we learned in an earlier section of this document, this is an analytic technique that answers the

question: “what is in my data”? It is designed to help a human reviewer see the key aspects of a large

document collection without having to read all the documents individually and rank them. In some

sense it also helps a reviewer deduce what the data “means”. In the context of this discussion, it should

be noted that the user of this functionality does not have any idea about what the data set contains and

does not have to supply any example documents or “training sets”.

Conceptual classification supports a number of uses within the ideal discovery product. These include:

1. Organizing the data into “folders” of related material so that a user can see what documents are

semantically related; also it builds a set of statistically relevant terms that describe the topics in

the documents

2. Presenting these folders so that search results can be “tracked back” to them. This allows a user

to use keyword search and then select a document in the user interface and subsequently see

how that document relates to other documents the unsupervised classification algorithm placed

with the one found from keyword search. This is possible because the virtual index contains the

document identifiers and the classification tags that show what related information exists for a

given document.

3. Allows other “learning algorithms” to use the classification folders to identify where to “sample”

documents for conceptually relevant information (explained below). This means that a first-

order unsupervised classification algorithm orders the data so that other analytic processes can

select documents for further levels of analysis from the most fruitful places in the document

group. This allows higher-order language models (LSA, PLSA or n-gram analysis) to be run on

them with a finer-grained knowledge of what the data set contains and to avoid sampling

documents and adding their content to a model of the data that might make it less powerful or

45

predictive. This allows the system to identify the best examples of information where higher-

level analysis can reveal more meaningful relationships within document content. Building

models of similar documents from a previously unseen set of data is a powerful function of a

system that contains analysis tools.

Unsupervised Conceptual Classification Explained

This technique solves the problems that were seen above with the single-technique approach

(LSA/PLSA) where over-fitting can become an issue and specificity of results is lost. This technique:

1. Orders the data initially into folders of related material using a linearly interpolated statistical

co-occurrence calculation which considers:

a. Semantic relationships of absolute co-occurrence

b. Language set occurrence and frequency

c. This stage of the algorithm does NOT attempt to consider polysemy or synonymy

relationships in documents; this is considered in the second stage of the algorithm

2. Performs a second-level conceptual “clustering” on the data where concepts are identified

within the scope of the first-level “Clusterings”. A latent generative technique is used to

calculate the concepts that occur in the first-level cluster groups. This portion of the algorithm is

where synonymy and polysemy are introduced to the analysis; “lists” of concepts are computed

per each first-level or first-order cluster group; these may be left alone or “merged” depending

on the results of the stage three of the algorithm

3. The “lists” of second-level conceptual cluster groups are compared; concepts from one folder

are compared to those computed from another. If they are conceptually similar (in cross-

entropy terms) they are combined into a “super-cluster”. If they are not similar, the cluster

groups are left separate and they represent different cluster groups within the product

4. The algorithm completes when all first-order clusters have been compared and all possible

super-clusters have been formed

Algorithm Justification

This algorithm allows the data to be fairly well organized into cluster groups after the first-level

organization. More importantly, it removes documents from clusters where they have nothing in

common, such as documents primarily formed from foreign language (different character set) data. This

is important because most latent semantic algorithms will consider information that can be irrelevant

(on a language basis) thus obfuscating the results of the concept calculations. This also localizes the

analysis of the conceptual computations. Secondly, the over-fitting problem is reduced because the

latent concept calculations are undertaken on smaller groups of documents. Since conceptual

relationships can exist across the first-level folder groups, the concept lists can be similar; denoting the

information in two folders is conceptually related. The third step of the algorithm allows these

similarities to be identified and the folders “merged” into a “super-folder” or “super-cluster” as

appropriate. Therefore the result is a set of data that is conceptually organized without undue over-

fitting and dilution of conceptual meaning.

46

The trick to unsupervised learning or classification is in knowing where to start. The algorithm for

unsupervised classification automatically finds the documents that belong together. The algorithm starts

by electing a given document from the corpus as the “master” seed. All subsequent seeds are selected

relative to this one. This saves vast amounts of processing time as the technique builds lists that belong

together and “elects” the next list’s seed automatically as part of the data ordering process.

Other algorithms randomly pick seeds and then try to fit data items to the best seed. Poor seed

selection can lead to laborious optimization times and computational complexity. With the ideal

platform’s linear ordering algorithm, the seeds are selected as a natural course of selecting similar

members of the data set for group membership with the current seed. There will naturally be a next

seed of another list which will form (until all documents have been ordered).

First-Order Classification

This seed-selection happens during the first-order organization of the data. The aim of this part of the

algorithm is to build “lists” of documents that belong together. These lists are presented to the users as

“folders” that contain “similar” items. The system sets a default “length” of each list to 50 documents

per list. The lists of documents may grow or shrink or disappear altogether (the list can “lose” all of its

members in an optimization pass); initially the list is started with 50 members however. Please see

Figure Sixteen for an illustration of the clustering technique.

Figure Sixteen: Unsupervised Classification

21-Apr-11
Proprietary and Confidential

Do Not Duplicate or Disclose
34

Similarity Algorithm Illustration

Candidate List of
documents (CL)

Bounded number of
cluster locations (m)

l1

l2

lp

k

Exception List of
documents (N or
smaller)

The algorithm starts with a random document; this becomes the first example document or “seed” to

which other documents are compared. The documents are picked from the candidate documents in the

collection being classified (candidate list; or every document in the corpus initially). There are “N” of

these documents in the collection. The lists are of length “m” as shown in the illustration (as stated the

47

default value of m is 50); the number of lists is initially estimated at k=N/m. The first document is a seed

and all other documents are compared to this document; the similarity calculation determines what

documents are ordered into the initial list (l1).

One key aspect of this technique is that initially all documents are available for selection for the initial

list. Each subsequent list only selects documents that remain on the candidate list however. This is a

“linear reduction” algorithm where the list selections take decreasing amounts of time as each list is

built. There is a second optimization step to allow seeds that did not have a chance to select items that

were put on preceding lists to select items that “belong” (are more similar to) them and their members.

Each document is compared to the initial seed. The similarity algorithm returns a value between 0 and 1;

a document with exact similarity to a seed will have a value of 1, a document with no similarity (nothing

in common) will have a value of zero. The candidate document with the highest similarity to the seed is

chosen as the next list member in l1. When the list has grown to “m” members the next document found

to be most similar to the seed S1 is chosen as the seed for the next list (l2). The list l2 is then built from

the remaining documents in the candidate list. Note that there are N-m members of the candidate list

after l1 has been constructed. This causes (under ideal conditions) a set of lists, with members that are

related to the seeds that represent each list, and with seeds that have something in common with one

another.

Similarity Calculation

This similarity calculation takes into account how often tokens in one document occur in another and

account for language type (documents that contain English and Chinese are “scored” differently than

documents that contain only English text). This is a linearly interpolated similarity model involving both

the distance calculation between data items and the fixed factors that denote language type. A

document that would have a similarity score of “0.8” relative to its seed (which has only English text),

based on its English text content alone, but that has a combination of English, Chinese and Russian text

will have a score that is “lower” than 0.8 because the semantic similarity score will be reduced by the

added attributes of the document having all three languages. This way the system can discern

documents that have very similar semantics but that have different languages represented within them.

The three language types are viewed as three independent statistical “events” (in addition to the

language co-occurrence events of the tokens in the two documents). All events that occur within the

document influence its overall probability of similarity with the seed document.

With some “language-blind” statistical scoring algorithms it is possible to have document scores which

represent a lot of commonality in one language (English) and where the presence of Chinese text does

not influence this much at all. If specific language types are not added into the calculation of similarity,

documents with three different languages will appear to be as significantly similar to a seed as those

which have only one language represented within their content.

Please see Figure Seventeen for an illustration of the first stage of the algorithm. Please see Figures

Seventeen through Figure Twenty Two for other aspects of the algorithm.

48

Figure Seventeen: “Normal Operation” (Step One)

21-Apr-11
Proprietary and Confidential

Do Not Duplicate or Disclose
35

Algorithm “Step One”

Si

Candidate List of
documents (N)Grab a document from

candidate list of items for
the initial seed

l1

l2

lp

Exception List of
documents (N or smaller)
initially emptyl5

l4

Calculate m given k there
will be a fixed number of
clusters and this defines
m; conversely; one can
start with a bounded size
(m) and compute k; in
either event; m=(N/k) is
the defining relation

Figure Eighteen: Normal Operation

21-Apr-11
Proprietary and Confidential

Do Not Duplicate or Disclose
38

Normal “Operation”

Si Si+1

Full list of items (m
items) no more than m

Si+1

l1

l2

Exception List of
documents (N or smaller)
(empty)

Chain members

Si+4
l4

Chain members

Si+5
l4

Candidate List (CL)
is empty

Each (k) List of
documents (cluster) has
“m” documents;
everything is wonderful

49

Figure Nineteen: List Formation

21-Apr-11
Proprietary and Confidential

Do Not Duplicate or Disclose
36

“List-building Behavior”

Tail
Item

Candidate List of
documents (CL; N in
number)

Full list of items (m
items) no more than m

l1

l2

lp

Exception List of
documents (N or smaller)

l5

l4 Select the most similar documents from the Candidate List
of documents (CL); select up to “m” documents and replace
any on the list with those from CL more similar to the ones
found first in the list. This builds a list of documents that are
“most similar” to the seed from the one on CL. Replace “end
of list” item as necessary; pushing items off the list and back
to CL

S1

Item “least similar” to
Seed

Replace

Figure Twenty: Linear Set Reduction

21-Apr-11
Proprietary and Confidential

Do Not Duplicate or Disclose
37

Linear Set Reduction Property

Si Si+1

Candidate List of
documents is reduced by
the list length (m) + 1 (or
more)

Full list of items (approx. m
items) can be more than m

l1

l2

lp

Exception List of
documents (N or smaller)

l5

l4

Select the most similar documents from the Candidate List
of documents (CL); select up to “m” documents and replace
any on the list with those from CL more similar to the ones
found first in the list. This builds a list of documents that are
“most similar” to the seed from the one on CL. The first
cluster list requires N-1 comparisons. The last document on
the list after all N-1 items have been compared is the
“candidate Seed” for the next cluster. Move the last item
from l1 to “head” of list l2; this is the candidate seed for list l2

Si+1

50

The lists which form under normal operation where there are documents with some similarity to a given

seed for a given list are as shown in Figure Eighteen. The seed of each new list is related to the seed of a

prior list and therefore has a transitive similarity relationship with prior seeds. In this respect each list

that has a seed related to a prior seed forms a “chain” of similarity within the corpus. The interesting

thing that occurs is when a seed cannot find any documents that are similar to it. This occurs when a

chain of similarity “breaks” and in many cases, a “new chain” forms. This is when a seed cannot find a

relationship in common with any remaining item on the candidate list. The document similarity of all

remaining members of the candidate list, relative to the current seed is zero. This causes the chain to

break and the seed selection process to begin again. Please see Figure Twenty One for an illustration of

this behavior.

When a seed in a prior list does not find any items on the candidate list which is “similar” to it the

algorithm selects an item from the candidate list as the next seed and the process starts over again. If

items that are similar to this newly selected seed document exist on the candidate list, they are selected

for membership in a new list (headed up by the newly selected seed) and the new list forms the head of

a new chain.

Figure Twenty One: Broken Chains

21-Apr-11
Proprietary and Confidential

Do Not Duplicate or Disclose
39

Broken“Chains”

Si Si+1

Full list of items (m
items) no more than m

Si+1

l1

l2

Documents similar to one
another for some reasonChain members

S1a
l4

Chain members

Si5a
l4

Documents that have
nothing in common with
the “first chain group”
but that do have
something in common
with this chain group

ALL ARABIC for example

In Figure Twenty One it is shown that the documents in the first chain group have no commonality with

documents in the second chain group. The documents in the second chain group do have some

commonality among themselves however. The second chain group is formed by selecting a new seed at

random from the candidate list when a seed from the first chain group finds no documents in the

candidate list with which it has attributes in common. This phenomenon indicates a major change in the

nature of the data set. This major change is often related to the document corpus having a set of

51

documents from a totally different language group than that represented in the first chain of lists and

documents. This occurs when the language of the documents in a given chain group are English and the

next chain group is Arabic for example. Figure Twenty Two is an actual screen shot from a product that

shows a “cluster” of documents that are composed of Arabic text. This same behavior can occur within

the same language group, but this is the most common reason that it occurs.

Figure Twenty Two: Chain Behavior Displayed in Classification Groups

April 4, 2011COMPANY CONFIDENTIAL40

In this example the folders labeled: “Case-Data 6”, “Case-Data 7” and “Case Data 8” contain Arabic text

documents. This occurred because the textual similarity of the documents had little to do with English

and were very much in common because of the Arabic text they contain. The similarity algorithm put

the Arabic documents together because the product evaluates each “token” of text as it is interpreted in

Arabic. The frequency of Arabic tokens in the documents compared with “English seeds” showed no

similarity with a given English document seed. An Arabic “chain” formed and attracted Arabic

documents to these particular folders. Similar assignments happened in these data for Spanish and

French documents.

Second-Order Classification

It was explained above, but with the benefit of the illustration it is clear that the conceptual calculations

are undertaken on the folders consecutively. They benefit from the fact that the overall calculation has

been broken into groups that bear some relationship to a seed document that leads the cluster. Even if

conceptual similarity spans two clusters, the third and final stage of the algorithm will “re-arrange” the

cluster membership to order the documents conceptually. Computing concepts on each individual

cluster from the first stage of the algorithm reduces the number of documents in the calculation and

thus over-fitting.

The technique used in the ideal platform at this stage is reviewing conditional probabilities with prior

statistical distributions. It is drawing an initial “guess” of how the terms in the documents are distributed

statistically by gathering information about the document classifications found in the first-order

classification step. It computes the likelihood of certain terms being “topics” within certain documents

52

and within the overall collection of documents. It orders topics and documents so that they can be

regarded as “topic labels” for the documents that are contained within the folders.

Third-Order Classification

This stage of the algorithm will re-order any documents into the final folder groups according to the

conceptual similarity of the concept lists computed in stage two of the algorithm. Documents which

“belong” to a “super cluster” are merged to be with the documents that are most similar to the concept

list computed for some number of second stage clusters. Concept lists for each second stage cluster are

compared and if their members are similar, the documents forming the lists are merged into a final

super cluster; otherwise the documents are left in the cluster they inhabit. This allows conceptually

similar folders to be merged together; the documents comprising folders with similar concept lists will

be re-organized into a super-cluster. The documents the folders represent “belong together” so the

folders are “merged”.

First-Order Classification Importance

As stated previously, when documents contain different languages, the algorithms that compute the

labels for document groups can lose precision. These algorithms look at the probabilities of certain

terms occurring with other terms and when multiple languages are involved their results can become

skewed. The first-order classification algorithm puts the documents with similar first-order language

characteristics together, which aids the performance of the second-order topic generation algorithm.

The two algorithms together are more powerful than either one is together. This also helps the third-

order classification algorithm as the folders that have similar characteristics tend to be “near” one

another in the folder list. Even if they are not, the concept clustering algorithm will find the conceptually

related information that “goes together” but merging is often possible early on in the “walking” of the

folder concept lists because of the first-order classification operation.

Second-Order and Final Classification Importance

With this technique, the topics that are latent are generated by the algorithm running on the folders of

pre-ordered documents themselves. This provides the benefits of LSA or PLSA on the pre-ordered sets of

data but with much less computation (by taking advantage of the classification from the first pass of the

algorithm). Without the first-order technique, more computation would be required to arrive at the

optimal generation of the topics. This would place a computational burden on the system unnecessarily.

The first-order classification of the documents assists the second algorithm and makes further analysis

much more “clear” as well. When the final check is done on the semantic label lists of the folders in the

collection, they allow for the documents that belong together conceptually to be re-clustered as

necessary.

Multi-lingual Documents

It is important to note that the algorithm still handles multi-language documents, and the concept

generation algorithm can find cross-correlations of terms in multiple languages. Terms that occur in a

document containing English and Arabic text will have conceptual lists that contain both Arabic and

English members. The first-order grouping of primarily Arabic or English documents together will still

53

allow for single language correlations to predominate but will not prohibit the generation of concepts

from documents containing both Arabic and English text.

Value of Classification
The value of classification like this is that a human reviewer can quickly identify document groups that

may be of interest. The “top reasons” or “top terms” that a folder contains (the predominant terms in

the documents it contains) is shown at the top of the folder in the screen shot contained in Figure

Twenty Two. The user of the product can determine if the documents are of any interest to him/her

quickly by reading the labels on each folder. Further, the reviewer does not have to open and read

documents that may be Arabic or Chinese (unless they want to read them). This folder based ordering of

documents allows a reviewer to avoid obviously irrelevant information such as documents in a language

that is of no interest to them. More importantly however, this pre-ordering first-stage classification

technique makes higher-order analysis of the data in the folders accurate and predictable and more

computationally efficient. The end-stage classification yields strong language semantics for members of

final classification groups.

Other Benefits of Document Classification

Other benefits are that any document found with a keyword search can be related back to the

classification groups. Since the documents in these classification folders are related to their seed, they

are very likely to be related to one another. This allows a reviewer to see what other documents are

similar to a given document found via keyword search where the reviewer knows that the reference

document contains at least agreed upon key terms. The conceptual organization past this step allows for

the final clusters to include semantically conceptual clustering relationships that can be related back to

keyword searches. The ideal system also allows one to use the pre-ordering classification for other

analysis techniques such as PLSA or LSA. Either would benefit from operating on pre-ordered data that is

smaller than the entire collection.

N-gram or Other Statistical Learning Models

For building language specific tools on top of the base classification engine, the pre-ordering technique

is especially useful. After the classification algorithm has ordered a collection, higher-order language

models can be built from samples within the larger collection. This may be beneficial for building n-gram

models for language specific functions like part of Speech (POS) tagging. Other tools that could benefit

from this would be learning models that support functions such as sentence completion for search

query operations. In these cases, knowing that a cluster group contains primarily Arabic textual

information would allow the n-gram model to select samples from an appropriate set of documents.

This can be important if one is building a model to handle specific functions such as these. The first-

order algorithm will “mark” the analytic Meta data for a certain cluster group to show that it represents

a predominant language. For a POS tagger, this would be important as many of these are highly sensitive

to the input model data and training them with appropriate samples is important. It would be counter-

productive to train an English language POS tagger with German training data for example. The first-

order algorithm allows one to select documents from the appropriate places within the larger collection

of documents for specific purposes. See Figure Twenty-Three for an illustration of this behavior.

54

Figure Twenty Three: Selecting from Pre-Classified Data for Higher-Order Models

Second-level Analysis Performed on Sub-sets

April 21, 2011COMPANY CONFIDENTIAL43

Class #1 Class #2

Sampling Function
selects training docs

Language Model

Sampling Function
selects training docs

Language Model

Concept
Calculation

N-gram
smoothing

Concept
Calculation

N-gram
smoothing

LDA/LSI

How Pre-Ordering Can Make Other Techniques Better

This first-order classification capability can reduce the amount of documents that any second order

algorithm has to consider. This can help other less-efficient algorithms run more effectively. As with the

concept calculation example (above) it may be desirable to run LSA or other tools on data that the

platform has processed. By utilizing the folder-building classification algorithm within the platform, the

large population of documents for a given case could be reduced to more manageable sized increments

that an algorithm like LSA can handle.

 If opposing counsel were to insist on running LSA or PLSA or some other tool from a select vendor on a

data set, the ideal platform could order and organize smaller folders of data that LSA or PLSA could

handle. This technique of pre-ordering the data will generate smaller sized related folders that these

other techniques could process at their more limited scale. The reduced size of the data set would help

focus the results of LSA because it would have fewer documents and find fewer concepts to fit into the

“buckets”. Therefore the platform could help reduce the LSA over-fitting issue. This would help PLSA in

this regard as well.

As mentioned in other sections of this document, LSA was envisioned and works best on collections of

documents that are “smaller” than those that are routinely found during current legal discovery

matters. In *4+ it is stated by the authors of the LSA algorithm that they envision “reasonable sized” data

sets of “five thousand or so” documents. In today’s cases, it is routine to see 100,000 to 200,000 or

more documents (millions are not uncommon).

55

With the combined platform approach a technique like LSA could be run on the documents from the

most likely “clusters” from the ideal platform so that the computation would be tractable. If a judge felt

comfortable with LSA as a technique due to prior experience with the algorithm he or she could see

better results by reducing the amount of documents that the algorithm has to address at any one time.

The use of the ideal platform would benefit a legal review team by making a previously used product

implementing LSA more effective at what it does.

Supervised Classification
Supervised Classification requires the user to provide some example data to which the system can

compare unclassified documents. If a user has some documents that they know belong to a certain

classification group, a system can compare documents to the examples and build folders of documents

that lie within a certain “distance” from the seeds (in terms of similarity).

Figure Twenty Four: Supervised (Example Based) Classification

21-Apr-11
Proprietary and Confidential

Do Not Duplicate or Disclose
45

Supervised Classification

Si

Pick your own seeds or select
documents for a model; model is used
to start seeds in profile case

Si+1

l1

l2

Exception List of
documents (N or smaller)
(empty if everything fits)

Chain members

Si+4
l4

Chain members

Si+5
l4

Candidate List (CL)
is empty when
“done”

Each (k) List of
documents (cluster) has
“m” documents

If the system has pre-ordered a lot of the data (using unsupervised techniques as before), then finding

examples is simplified for the user. They have some idea where to look for examples that they can use

to classify documents that will enter the case as new documents. Secondly, search results can be related

to document clusters that exist, then examples of the “strongest most similar” documents to the search

results can be located within a cluster folder, and then the supervised classification technique can

identify other documents that belong with pre-selected “seeds”. Again, documents added to a case can

be classified with examples using the supervised technique shown above. This continuous classification

56

of documents can help reviewers find the most relevant documents rapidly with more or less automated

means.

Email Conversational Analysis
Email conversational analysis is an important aspect of any legal review platform. Seeing what

conversations transpired between parties is important. This was discussed previously. With the ideal

platform approach of providing classification along with the email threading, these two techniques can

be used simultaneously to identify documents that are in a conversation thread, and that have similar

documents which may exist outside that thread. The existence of documents that are similar to those in

a thread will lead to the identification of email addresses that perhaps were outside the custodian list

but that should be included. Having the conversation analysis and the classification capability all within

one platform makes this “analytic cross-check” capability possible.

Near-Duplicate or Version Analysis
The version analysis mentioned above, combined with supervised clustering and Meta data search can

identify what documents were edited at certain times and by whom. Using near duplicate analysis can

allow the system to “tag” all members of a “near-dupe group” within a collection of documents (auto-

tagging of analytic Meta data). Using supervised clustering with a known seed (from the near dupe

group) a user can identify other versions within the collection of documents comprising a case. Using the

Meta data attributes to identify owners and import locations of documents that have been collected

exposes information about who owned or copied version of files at any time during the life cycle of the

case. This is a very powerful attribute of a platform that handles these combined sets of analytic

processes at large scale.

Summary
This paper attempted to display the value behind a comprehensive platform that handles various levels

of indexing for Meta data content and analytic structures. It exposed new concepts behind analysis and

storage of these constructs that implement high-speed indexing and analysis of data items within the

context of legal discovery. Further, it explored and discussed several aspects of large scale legal

discovery processing and analysis and how the correct architecture combined with indexing and search

capabilities can make legal discovery effective and productive relative to current single product

approaches.

The “ideal platform” approach (as it was called) presented both architecture and a set of capabilities

that remove risk of error from legal discovery projects. Examples of how this combination would reduce

cost and risk of error in legal discovery engagements were presented.

Finally, analytic approaches that are available from electronic discovery products today, how they work,

where they are effective and where they are not effective were presented. These were compared and

contrasted with one another and were discussed in relation to the ideal platform approach. The ideal

platform and its ability to pre-order and classify data at great scale, and then perform generative

concept and label generation to identify the “meaning” of content and assign it to “folders” of

57

documents within large cases was discussed. It was shown how the platform approach of pre-classifying

data and using a hierarchical model of classification algorithms could aid other products and techniques

such as those that utilize LSA and PLSA.

References
[1] Wikipedia description of Latent Semantic Analysis:

http://en.wikipedia.org/wiki/Latent_semantic_analysis

[2] Wikipedia description of Probabilistic Latent Semantic Analysis: http://en.wikipedia.org/wiki/PLSA

[3] Wikipedia description of Bayesian Classifiers: http://en.wikipedia.org/wiki/Bayesian_classification

 [4] Scott Deerwester, Susan T. Dumais, George W. Furnas, Thomas K. Landauer, Richard Harshman

(1990). "Indexing by Latent Semantic Analysis"

[5] Wikipedia page on Polysemy: http://en.wikipedia.org/wiki/Polysemy

[6] Wikipedia page on Support Vector Machines: http://en.wikipedia.org/wiki/Support_vector_machine

[7] Wikipedia page on Vector Space Model: http://en.wikipedia.org/wiki/Vector_space_model

[8] Wikipedia page on SMART system:

http://en.wikipedia.org/wiki/SMART_Information_Retrieval_System

[9] Web Page of Martin Porter: http://tartarus.org/~martin/PorterStemmer/

[10] Wiki entry on mathematical treatment of SVD:

http://en.wikipedia.org/wiki/Singular_value_decomposition

[11] Wiki entry on LSA/LSI: http://en.wikipedia.org/wiki/Latent_semantic_indexing

[12] Adam Thomo Blog: mailto:thomo@cs.uvic.ca] Blog entry for LSI example

[13] ^ Thomas Hofmann, Probabilistic Latent Semantic Indexing, Proceedings of the Twenty-Second

Annual International SIGIR Conference on Research and Development in Information Retrieval (SIGIR-

99), 1999

http://en.wikipedia.org/wiki/Latent_semantic_analysis
http://en.wikipedia.org/wiki/PLSA
http://en.wikipedia.org/wiki/Bayesian_classification
http://en.wikipedia.org/wiki/Scott_Deerwester
http://en.wikipedia.org/wiki/Susan_Dumais
http://en.wikipedia.org/wiki/George_Furnas
http://en.wikipedia.org/wiki/Thomas_Landauer
http://en.wikipedia.org/wiki/Richard_Harshman
http://lsi.research.telcordia.com/lsi/papers/JASIS90.pdf
http://en.wikipedia.org/wiki/Polysemy
http://en.wikipedia.org/wiki/Support_vector_machine
http://en.wikipedia.org/wiki/Vector_space_model
http://en.wikipedia.org/wiki/SMART_Information_Retrieval_System
http://tartarus.org/~martin/PorterStemmer/
http://en.wikipedia.org/wiki/Singular_value_decomposition
http://en.wikipedia.org/wiki/Latent_semantic_indexing
mailto:thomo@cs.uvic.ca
http://en.wikipedia.org/wiki/Probabilistic_latent_semantic_analysis#cite_ref-0
http://www.cs.brown.edu/~th/papers/Hofmann-SIGIR99.pdf
http://en.wikipedia.org/wiki/Special_Interest_Group_on_Information_Retrieval
http://en.wikipedia.org/wiki/Information_Retrieval

58

