
Encryption

INST 346, Section 0201
April 3, 2018

Goals for Today

• Symmetric Key Encryption

• Public Key Encryption

• Certificate Authorities

• Secure Sockets Layer

Simple encryption scheme
substitution cipher: substituting one thing for another
 monoalphabetic cipher: substitute one letter for another

plaintext: abcdefghijklmnopqrstuvwxyz

ciphertext: mnbvcxzasdfghjklpoiuytrewq

Plaintext: bob. i love you. alice
ciphertext: nkn. s gktc wky. mgsbc

e.g.:

Encryption key: mapping from set of 26 letters
to set of 26 letters

Stream and Block Ciphers

 n substitution ciphers, M1,M2,…,Mn

 cycling pattern:
• e.g., n=4: M1,M3,M4,M3,M2; M1,M3,M4,M3,M2; ..
• random initialization

 for each new plaintext symbol, use subsequent
substitution pattern in cyclic pattern
• dog: d from M1, o from M3, g from M4

Encryption key: n substitution ciphers, and cyclic
pattern

AES: Advanced Encryption Standard

 symmetric-key NIST standard, replaced DES
(Nov 2001)

 processes data in 128 bit blocks
 128, 192, or 256 bit keys
 brute force decryption (try each key) taking 1 sec

on DES, takes 149 trillion years for AES

Public Key Cryptography

symmetric key crypto
 requires sender, receiver

know shared secret key
 Q: how to agree on key in

first place (particularly if
never “met”)?

public key crypto
 radically different

approach [Diffie-
Hellman76, RSA78]

 sender, receiver do not
share secret key

 public encryption key
known to all

 private decryption key
known only to receiver

Public key cryptography

plaintext
message, m

ciphertextencryption
algorithm

decryption
algorithm

Bob’s public
key

plaintext
messageK (m)

B
+

K B
+

Bob’s private
key

K
B
-

m = K (K (m))B
+

B
-

Public key encryption algorithms

need K () and K () such that
B B
. .

given public key K , it should be
impossible to compute private
key K B

B

requirements:

1

2

RSA: Rivest, Shamir, Adelson algorithm

+ -

K (K (m)) = m
BB

- +

+

-

RSA: Creating public/private key pair

1. choose two large prime numbers p, q.
(e.g., 1024 bits each)

2. compute n = pq, z = (p-1)(q-1)

3. choose e (with e<n) that has no common factors
with z (e, z are “relatively prime”).

4. choose d such that ed-1 is exactly divisible by z.
(in other words: ed mod z = 1).

5. public key is (n,e). private key is (n,d).

K B
+ K B

-

RSA: encryption, decryption

0. given (n,e) and (n,d) as computed above

1. to encrypt message m (<n), compute
c = m mod ne

2. to decrypt received bit pattern, c, compute
m = c mod nd

m = (m mod n)e mod nd

c

RSA example:
Bob chooses p=5, q=7. Then n=35, z=24.

e=5 (so e, z relatively prime).
d=29 (so ed-1 exactly divisible by z).

bit pattern m me c = m mod ne

0000l000 12 24832 17
encrypt:

encrypting 8-bit messages.

c m = c mod nd

17 481968572106750915091411825223071697 12

cd
decrypt:

RSA: an important property

K (K (m)) = m
BB

- +
K (K (m))BB

+ -
=

use public key first,
followed by
private key

use private key
first, followed by

public key

result is the same!

Why is RSA secure?
 suppose you know Bob’s public key (n,e). How

hard is it to determine d?
 essentially need to find factors of n without

knowing the two factors p and q
• fact: factoring a big number is hard

RSA in practice: session keys
 exponentiation in RSA is computationally

intensive
 DES is at least 100 times faster than RSA
 use public key crypto to establish secure

connection, then establish second key –
symmetric session key – for encrypting data

session key, KS
 Bob and Alice use RSA to exchange a symmetric key KS

 once both have KS, they use symmetric key cryptography

Digital signatures

cryptographic technique analogous to hand-written
signatures:

 sender (Bob) digitally signs document, establishing
he is document owner/creator.

 verifiable, nonforgeable: recipient (Alice) can prove to
someone that Bob, and no one else (including Alice),
must have signed document

simple digital signature for message m:
 Bob signs m by encrypting with his private key KB,

creating “signed” message, KB(m)-
-

Dear Alice
Oh, how I have missed
you. I think of you all the
time! …(blah blah blah)

Bob

Bob’s message, m

Public key
encryption
algorithm

Bob’s private
key

K B
-

Bob’s message,
m, signed

(encrypted) with
his private key

m,K B
- (m)

Digital signatures

In practice, this is done more efficiently on message digests

-

Alice thus verifies that:
 Bob signed m
 no one else signed m
 Bob signed m and not m‘

non-repudiation:
 Alice can take m, and signature KB(m) to court and

prove that Bob signed m

-

Digital signatures
 suppose Alice receives msg m, with signature: m, KB(m)

 Alice verifies m signed by Bob by applying Bob’s public key KB

to KB(m) then checks KB(KB(m)) = m.

 If KB(KB(m)) = m, whoever signed m must have used Bob’s
private key.

-

--

+

+ +

Message digests

goal: fixed-length, easy-
to-compute digital
“fingerprint”
 apply hash function H to

m, get fixed size message
digest, H(m).

Hash function properties:
 many-to-1
 produces fixed-size msg

digest (fingerprint)
 given message digest x,

computationally infeasible to
find m such that x = H(m)

large
message

m

H: Hash
Function

H(m)

TCP checksum: poor crypto hash function

Internet checksum has some properties of hash function:
 produces fixed length digest (16-bit sum) of message
 is many-to-one

But given message with given hash value, it is easy to find another
message with same hash value:

I O U 1
0 0 . 9

9 B O B

49 4F 55 31
30 30 2E 39
39 42 D2 42

message ASCII format

B2 C1 D2 AC

I O U 9
0 0 . 1

9 B O B

49 4F 55 39
30 30 2E 31
39 42 D2 42

message ASCII format

B2 C1 D2 ACdifferent messages
but identical checksums!

Widely used hash functions
 MD5 (RFC 1321) has known vulnerabilities

• computes 128-bit message digest in 4-step process
 SHA-1 is widely used but is deprecated

• US standard [NIST, FIPS PUB 180-1]

• 160-bit message digest
• Collision attack with 1000 GPUs in a month

 SHA-2 and SHA-3 are now available
• Also standardized by NIST
• More secure, but slower (in software)

Certification authorities
 certification authority (CA): binds public key to particular

entity, E.
 E (person, router) registers its public key with CA.

• E provides “proof of identity” to CA.
• CA creates certificate binding E to its public key.
• certificate containing E’s public key digitally signed by CA – CA

says “this is E’s public key”

Bob’s
public

key K B
+

Bob’s
identifying

information

digital
signature
(encrypt)

CA
private

key K CA
-

K B
+

certificate for
Bob’s public key,

signed by CA

 when Alice wants Bob’s public key:
• gets Bob’s certificate (Bob or elsewhere).
• apply CA’s public key to Bob’s certificate, get Bob’s

public key

Bob’s
public

key K B
+

digital
signature
(decrypt)

CA
public

key
K CA

+

K B
+

Certification authorities

Secure Sockets Layer

Application

TCP

IP

normal application

Application

SSL

TCP

IP

application with SSL

 SSL provides application programming interface
(API) to applications

SSL record format

content
type SSL version length

MIC

data

1 byte 2 bytes 3 bytes

Message Integrity Code (MIC) is a cryptographic hash
Data and MIC use symmetric encryption

SSL cipher suite
 cipher suite

• public-key algorithm
• symmetric encryption algorithm
• MIC algorithm

 SSL supports several cipher
suites

 negotiation: client, server
agree on cipher suite
• client offers choice
• server picks one

common SSL symmetric
ciphers
 DES – Data Encryption

Standard: block
 3DES – Triple strength: block
 RC2 – Rivest Cipher 2: block
 RC4 – Rivest Cipher 4: stream

SSL Public key encryption
 RSA

SSL overview

 handshake: Alice and Bob use their certificates,
private keys to authenticate each other and
exchange shared secret

 key derivation: Alice and Bob use shared secret to
derive set of keys

 data transfer: data to be transferred is broken up
into series of records

 connection closure: special messages to securely
close connection

SSL: Setup (“handshake”)
1. Server authentication

• client sends list of algorithms it supports, along with client
nonce (a random number, used only once)

• server chooses algorithms from list; sends back: choice +
certificate + server nonce

2. Crypto negotiation
• client verifies certificate, extracts server’s public key
• generates pre_master_secret, encrypts with server’s

public key, sends to server
3. Establish keys

• Client and server independently compute encryption and
MIC keys from pre_master_secret and nonces

4. Authentication
• client sends a MIC of all the handshake messages
• server sends a MIC of all the handshake messages

SSL: handshake authentication

last 2 steps protect handshake from tampering
 client typically offers range of algorithms, some

strong, some weak
 man-in-the middle could delete stronger algorithms

from list
 last 2 steps prevent this

• last two messages are encrypted

Key derivation
 client nonce, server nonce, and pre-master secret input

into pseudo random-number generator.
• produces master secret

 master secret and new nonces input into another
random-number generator: “key block”

 key block is then sliced and diced:
• client MIC key
• server MIC key
• client encryption key
• server encryption key
• client initialization vector (IV)
• server initialization vector (IV)

SSL
connection

TCP FIN follows

everything
henceforth

is encrypted

	Encryption
	Goals for Today
	Slide Number 3
	Simple encryption scheme
	Stream and Block Ciphers
	AES: Advanced Encryption Standard
	Public Key Cryptography
	Public key cryptography
	Public key encryption algorithms
	RSA: Creating public/private key pair
	RSA: encryption, decryption
	RSA example:
	RSA: an important property
	Why is RSA secure?
	RSA in practice: session keys
	Digital signatures
	Digital signatures
	Digital signatures
	Message digests
	TCP checksum: poor crypto hash function
	Widely used hash functions
	Certification authorities
	Certification authorities
	Secure Sockets Layer
	SSL record format
	SSL cipher suite
	SSL overview
	SSL: Setup (“handshake”)
	SSL: handshake authentication
	Key derivation
	SSL�connection

