College of Information Studies

, ~
éﬂ:‘!ﬁ 'I..E"“-::‘ University of Marvland Hormbake Library Building College Park, MD 20742-4343

Encryption

INST 346, Section 0201
April 3, 2018

Goals for Today

Symmetric Key Encryption
Public Key Encryption
Certificate Authorities

Secure Sockets Layer

SimEIe encryption scheme

substitution cipher: substituting one thing for another
* monoalphabetic cipher: substitute one letter for another

plaintext: abcdefghijklmnopgrstuvwxyz

|

ciphertext: mnbvcxzasdfghjklpoiuytrewq

e.g.. Plaintext: bob. 1 love you. alice
ciphertext: nkn. s gktc wky. mgsbc

@= Encryption key: mapping from set of 26 letters
to set of 26 letters

Stream and Block Ciphers

= n substitution ciphers, M|,M,,...,M_
= cycling pattern:
e eg., n=4: M,M;,M,M;,M,; M, ,M;;M,M;,M,;
e random initialization
* for each new plaintext symbol, use subsequent
substitution pattern in cyclic pattern
* dog: d from M|, o from M;, g from M,

Encryption key: n substitution ciphers, and cyclic
pattern

AES: Advanced Encryption Standard

= symmetric-key NIST standard, replaced DES
(Nov 2001)

" processes data in 128 bit blocks
= |28, 192, or 256 bit keys

" brute force decryption (try each key) taking | sec
on DES, takes 149 trillion years for AES

Public Key Crxgtograghx

symmetric key crypto — public key crypto

" requires sender, receiver
know shared secret key

" radically different
approach [Diffie-

* Q: how to agree on key in Hellman76, RSA78]
first place (partlcularly if
never “met”)? = sender, receiver do not

share secret key

" public encryption key
known to all

" private decryption key
known only to receiver

Public key crxgtograghx

e = * Bob’ s public
KB key

K" Bob’ s private
B key

¥

11 .I' -!' |'_
,ﬁ,-_fff-'“'
b
£

\4 v
' encryption i ' '
plaintext yp ciphertext decryptlon Qlalntext
message, m [Reuefeliialy K* (m) algorithm ERESELE
B

m = K (K (m))

L

s
“———===3

1
.

Public key encryption algorithms

requirements:

@ need K;(-) and KI'B(.) such that
- 4+
KK (m) = m

@ given public key Kg, It should be
Impossible to compute private
key Kl'3

RSA: Rivest, Shamir, Adelson algorithm

RSA: Creating public/private key pair

|. choose two large prime numbers p, q.
(e.g., 1024 bits each)

2.compute n = pq, z = (p-1)(g-1)

3. choose e (with e<n) that has no common factors
with z (e, z are “relatively prime”).

4. choose d such that ed-| is exactly divisible by z.
(in other words:ed mod z = [).

5. public key is (n,e). private key is (n,d).
public key is (n,e). private key is (n,d)

+ -

KB Kg

RSA: encryption, decryption

0. given (n,e) and (n,d) as computed above

|.to encrypt message m (<n), compute

c=m®€mod n

2. to decrypt received bit pattern, ¢, compute
d

m=cYYmod n

m = (m® mod n)dmod n

C

RSA example:

Bob chooses p=5, qg=7. Then n=35, z=24.

e=5 (so e, z relatively prime).
d=29 (so ed-1 exactly divisible by z).

encrypting 8-bit messages.

e e

bit pattern M m c=m-mod n
encrypt: | T - v
0000I000 12 24832 17
d d

C C =
decrypt: —— @ o Ny~ © Ymod n,

17 281968572106750915091411825223071697 12

RSA: an important property

= + _ . + -
KB(K B(m)) =m = K B(K ém))
use public key first, use private key
followed by first, followed by
private key public key

result is the same!

Why is RSA secure!

= suppose you know Bob’ s public key (n,e). How
hard is it to determine d?

= essentially need to find factors of n without
knowing the two factors p and g

e fact: factoring a big number is hard

RSA in practice: session keys

= exponentiation in RSA is computationally
Intensive

= DES is at least 100 times faster than RSA

= use public key crypto to establish secure
connection, then establish second key —
symmetric session key — for encrypting data

session key, K
* Bob and Alice use RSA to exchange a symmetric key K
= once both have K, they use symmetric key cryptography

Digital signatures

cryptographic technique analogous to hand-written
sighatures:

= sender (Bob) digitally sighs document, establishing
he is document owner/creator.

= verifiable, nonforgeable: recipient (Alice) can prove to
someone that Bob, and no one else (including Alice),
must have signed document

Digital signatures

simple digital signature for message m:

"= Bob signs m by encrypting with his private key K3,
creating “signed” message, Ky(m)

Bob’ s message, m @—:9 K _ Bob's private m.K _(m)
B key ™ B

Dear Alice ,
oh how 1 o o Bob’s message,
, NOW ave misse P | .
you. | think of you all the dolie .ey m, signed :
encryption (encrypted) with

time! ...(blah blah blah)
Bob algorithm his private key

In practice, this is done more efficiently on message digests

Digital signatures

= suppose Alice receives msg m, with signature: m, Kz(m)

= Alice verifies m signed by Bob by applying Bob’ s public key K;
to Kq(m) then checks Kg(Ka(m)) = m.

= If K;(Kg(m)) = m, whoever signed m must have used Bob’ s
private key.

Alice thus verifies that:

= Bob signed m

" no one else signed m

= Bob signed mand not m"
non-repudiation:

v" Alice can take m, and signature Kg(m) to court and
prove that Bob signed m

Message digests e m

message
m

goal: fixed-length, easy- l
to-compute digital H(m)
“fingerprint”
= apply hash function H to Hash function properties:

m, get fixed size message = many-to-|

digest, H(m).

" produces fixed-size msg
digest (fingerprint)
" given message digest X,

computationally infeasible to
find m such that x = H(m)

TCP checksum: poor crypto hash function

Internet checksum has some properties of hash function:

* produces fixed length digest (16-bit sum) of message
" |S many-to-one

But given message with given hash value, it is easy to find another
message with same hash value:

message ASCII format message ASCII format
IOU 1 49 4F 55 31 lOU9 49 4F 55 39
00.9 30 30 2E 39 00.1 30 30 2E 31
9BOB 3942 D2 42 OBOB 3942 D2 42

but identical checksums!

Widely used hash functions

= MD5 (RFC 1321) has known vulnerabilities

e computes |28-bit message digest in 4-step process

= SHA-I is widely used but is deprecated
e US standard [NIST, FIPS PUB 180-1]
e |60-bit message digest
e Collision attack with 1000 GPUs in a month

= SHA-2 and SHA-3 are now available
e Also standardized by NIST
* More secure, but slower (in software)

Certification authorities

= certification authority (CA): binds public key to particular
entity, E.

= E (person, router) registers its public key with CA.
 E provides “proof of identity” to CA.

e CA creates certificate binding E to its public key.

* certificate containing E's public key digitally signed by CA — CA
says this is E’ s public key”

Bob’s @& digital +7
public | ™., signature KB
key K (encrypt) >
Bob’ privftﬁ EO_ certificate for
S g K , .
identifying key '~ CA Bob' s public key,

information g signed by CA

Certification authorities

= when Alice wants Bob' s public key:
 gets Bob' s certificate (Bob or elsewhere).

 apply CA’s public key to Bob' s certificate, get Bob' s
public key

T digital @.}gBob’ S
,KB amd Signature -> —_ public
(decrypt) Kg key

Secure Sockets Layer

Application Application
SSL
TCP
TCP
IP P
normal application application with SSL

= SSL provides application programming interface
(API) to applications

SSL record format

1 byte 2 bytes 3 bytes
content _
type SSL version length
data
MIC

Message Integrity Code (MIC) is a cryptographic hash
Data and MIC use symmetric encryption

SSL cipher suite

= cipher suite

, , common SSL symmetric
e public-key algorithm

ciphers

= DES - Data Encryption
. Standard: block
= SSL supports several Clphel" = 3DES - Triple strength: block

e symmetric encryption algorithm
e MIC algorithm

suites = RC2 — Rivest Cipher 2: block

" npegotiation: client, server " RC4 —Rivest Cipher 4: stream
agree on cipher suite SSL Public key encryption
* client offers choice = RSA

* server picks one

SSL overview

" handshake: Alice and Bob use their certificates,
private keys to authenticate each other and
exchange shared secret

= key derivation: Alice and Bob use shared secret to
derive set of keys

" data transfer: data to be transferred is broken up
into series of records

= connection closure: special messages to securely
close connection

SSL: Setup (“handshake™)

|. Server authentication

e client sends list of algorithms it supports, along with client
nonce (a random number, used only once)

* server chooses algorithms from list; sends back: choice +
certificate + server nonce

2. Crypto negotiation
 client verifies certificate, extracts server’ s public key

. ’
e generates pre_master_secret, encrypts with server s
public key, sends to server

3. Establish keys

e Client and server independently compute encryption and
MIC keys from pre_master_secret and nonces

4. Authentication
e client sends a MIC of all the handshake messages
e server sends a MIC of all the handshake messages

SSL: handshake authentication

last 2 steps protect handshake from tampering

= client typically offers range of algorithms, some
strong, some weak

" man-in-the middle could delete stronger algorithms
from list

" |ast 2 steps prevent this
* last two messages are encrypted

Key derivation

= client nonce, server nonce, and pre-master secret input
into pseudo random-number generator.
¢ produces master secret

" master secret and new nonces input into another
random-number generator: “key block”

= key block is then sliced and diced:
e client MIC key
e server MIC key
* client encryption key
e server encryption key
 client initialization vector (IV)
 server initialization vector (V)

SSL —handshake: Clenttielo

. handshake: ServerHe\\o
C O n n e Ctl O n handshake: Certificate
ﬁ
handshake: ServerHe\\oDone
handshake: ClientKeyExchange
Changec,'ph erSpec

everything handshake: Finisheq

henceforth

IS encrypted \ ChangeCipherspec
handshake'. F'm'\shed

application datq
app\ication_data

Alert: warning, close_notify
TCP FIN follows

	Encryption
	Goals for Today
	Slide Number 3
	Simple encryption scheme
	Stream and Block Ciphers
	AES: Advanced Encryption Standard
	Public Key Cryptography
	Public key cryptography
	Public key encryption algorithms
	RSA: Creating public/private key pair
	RSA: encryption, decryption
	RSA example:
	RSA: an important property
	Why is RSA secure?
	RSA in practice: session keys
	Digital signatures
	Digital signatures
	Digital signatures
	Message digests
	TCP checksum: poor crypto hash function
	Widely used hash functions
	Certification authorities
	Certification authorities
	Secure Sockets Layer
	SSL record format
	SSL cipher suite
	SSL overview
	SSL: Setup (“handshake”)
	SSL: handshake authentication
	Key derivation
	SSL�connection

