Compressed Sensing

David L Donoho

Presented by: Nitesh Shroff

University of Maryland
Outline

1. Introduction
 - Compressed Sensing

2. Problem Formulation
 - Sparse Signal
 - Problem Statement

3. Proposed Solution
 - Near Optimal Information
 - Near Optimal Reconstruction

4. Applications
 - Example

5. Conclusion
Motivation

- Why go to so much effort to acquire all the data when most of the what we get will be thrown away?
Motivation

- Why go to so much effort to acquire all the data when most of the what we get will be thrown away?
- Can't we just directly measure the part that won't end up being thrown away?
Motivation

- Why go to so much effort to acquire all the data when most of the what we get will be thrown away?
- Can we just directly measure the part that won't end up being thrown away?
- Wouldn't it be possible to acquire the data in already compressed form so that one does not need to throw away anything?
A signal x is K sparse if its support is $i : x_i \neq 0$ is of cardinality less or equal to K.
A signal x is K sparse if its support is $i : x_i \neq 0$ is of cardinality less or equal to K.

Figure: 1 Sparse [richb]
Sparse Signal

Figure: 2 Sparse [richb]
Sparse Signal

Figure: 2 Sparse

Figure: 3 Sparse
Sparse Signal

- Have few non-zero coefficients.
Sparse Signal

- Have few non-zero coefficients.
- Sparsity leads to efficient estimators.
Sparse Signal

- Have few non-zero coefficients.
- Sparsity leads to efficient estimators.
- Sparsity leads to dimensionality reduction.
Sparse Signal

- Have few non-zero coefficients.
- Sparsity leads to efficient estimators.
- Sparsity leads to dimensionality reduction.
- Signals of interest are often sparse or compressible.
Sparse Signal

- Have few non-zero coefficients.
- Sparsity leads to efficient estimators.
- Sparsity leads to dimensionality reduction.
- Signals of interest are often sparse or compressible.
- Known property of standard images and many other digital content types.
Sparse Signal

- Have few non-zero coefficients.
- Sparsity leads to efficient estimators.
- Sparsity leads to dimensionality reduction.
- Signals of interest are often sparse or compressible.
- Known property of standard images and many other digital content types.

Transform Compression: The object has transform coefficients $\theta_i = \langle x, \Psi_i \rangle$ and are assumed sparse in the sense that, for some $0 < p < 2$ and for some $R > 0$:

$$||\theta||_p = \left(\sum_i |\theta_i|^p \right)^{1/p} \leq R$$
Compressive data acquisition

- When data is sparse/compressible, can directly acquire a condensed representation with no/little information loss through dimensionality reduction

\[y = \Phi x \]
Compressive data acquisition

- When data is sparse/compressible, can directly acquire a condensed representation with no/little information loss through dimensionality reduction

\[y = \Phi x \]

- Directly acquire compressed data
Compressive data acquisition

- When data is sparse/compressible, can directly acquire a condensed representation with no/little information loss through dimensionality reduction.

\[y = \Phi x \]

- Directly acquire compressed data

- \(n = O(\sqrt{m \log(m)}) \) measurements instead of \(m \) measurements.
Problem Statement

\[x \in \mathbb{R}^m \]
Problem Statement

- $x \in \mathbb{R}^m$
- Class X of such signals
Problem Statement

- \(x \in \mathbb{R}^m \)
- Class \(X \) of such signals
- Design an information operator \(I_n : X \rightarrow \mathbb{R}^n \) that samples \(n \) pieces of information about \(x \)
Problem Statement

- $x \in \mathbb{R}^m$
- Class X of such signals
- Design an information operator $I_n : X \rightarrow \mathbb{R}^n$ that samples n pieces of information about x
- Design an Algorithm $A : \mathbb{R}^n \rightarrow \mathbb{R}^m$ that offers an approximate reconstruction of x.
Problem Statement

- \(x \in \mathbb{R}^m \)
- Class \(X \) of such signals
- Design an information operator \(I_n : X \rightarrow \mathbb{R}^n \) that samples \(n \) pieces of information about \(x \)
- Design an Algorithm \(A : \mathbb{R}^n \rightarrow \mathbb{R}^m \) that offers an approximate reconstruction of \(x \).
- Here the information operator takes the form

\[
I_n(x) = (\langle \xi_1, x \rangle, \ldots, \langle \xi_n, x \rangle)
\]

where the \(\xi_i \) are sampling kernels
Problem Statement

- Nonadaptive sampling, i.e. fixed independently of x.
Problem Statement

- Nonadaptive sampling, i.e. fixed independently of x.
- A_n is an unspecified, possibly nonlinear reconstruction operator.
Problem Statement

- Nonadaptive sampling, i.e. fixed independently of x.
- A_n is an unspecified, possibly nonlinear reconstruction operator.
- Interested in ℓ^2 error of reconstruction

$$E_n(X) = \inf_{A_n, l_n^A} \sup_{x \in X} ||x - A_n(l_n(x))||_2$$
Problem Statement

- Nonadaptive sampling, i.e. fixed independently of x.
- A_n is an unspecified, possibly nonlinear reconstruction operator.
- Interested in ℓ^2 error of reconstruction

$$E_n(X) = \inf_{A_n, I_n} \sup_{x \in X} ||x - A_n(I_n(x))||_2$$

- Why not adaptive:
 For $0 < p < 1$

$$E_n(X_{p,m}(R)) \leq 2^{1/p} E_n(X_{p,m}^{Adapt}(R))$$

Adaptive information is of minimal help.
Outline

1. Introduction
 - Compressed Sensing

2. Problem Formulation
 - Sparse Signal
 - Problem Statement

3. Proposed Solution
 - Near Optimal Information
 - Near Optimal Reconstruction

4. Applications
 - Example

5. Conclusion
Information Operator I_n

- Ψ orthogonal matrix of basis elements ψ_i
Information Operator I_n

- Ψ orthogonal matrix of basis elements ψ_i
- $I_n = \Phi \Psi^T$
Information Operator I_n

- Ψ orthogonal matrix of basis elements ψ_i
- $I_n = \phi \psi^T$
- Assume Ψ to be identity for simplicity
Near Optimal Information

Information Operator I_n

- Ψ orthogonal matrix of basis elements ψ_i
- $I_n = \Phi \Psi^T$
- Assume Ψ to be identity for simplicity
- $J \subset \{1, 2, \ldots, m\}$
Information Operator I_n

- Ψ orthogonal matrix of basis elements ψ_i
- $I_n = \Phi \Psi^T$
- Assume Ψ to be identity for simplicity
- $J \subset \{1, 2, \ldots, m\}$
- Φ_J submatrix of Φ with columns J.
Information Operator I_n

- Ψ orthogonal matrix of basis elements ψ_i
- $I_n = \Phi \Psi^T$
- Assume Ψ to be identity for simplicity
- $J \subset \{1, 2, \ldots, m\}$
- Φ_J submatrix of Φ with columns J
- V_J denote range of Φ in \mathbb{R}^n
Near Optimal Information

CS conditions

- Structural conditions on an $n \times m$ matrix which imply that its nullspace is optimal.
CS conditions

- Structural conditions on an $n \times m$ matrix which imply that its nullspace is optimal.
- CS1: Minimal singular value of Φ_J exceeds $\eta_1 > 0$ uniformly in $|J| < \rho n / \log(m)$
CS conditions

- Structural conditions on an $n \times m$ matrix which imply that its nullspace is optimal.
- CS1: Minimal singular value of Φ_J exceeds $\eta_1 > 0$ uniformly in $|J| < \rho n / \log(m)$
 - This demands a certain quantitative degree of linear independence among all small groups of columns.
CS conditions

- Structural conditions on an $n \times m$ matrix which imply that its nullspace is optimal.
- CS1: Minimal singular value of Φ_J exceeds $\eta_1 > 0$ uniformly in $|J| < \rho n / \log(m)$
 - This demands a certain quantitative degree of linear independence among all small groups of columns.
- CS2: On each subspace V_J we have the inequality
 $$\|v\|_1 \geq \eta_2 \cdot \sqrt{n} \cdot \|v\|_2 \forall v \in V_J$$
 uniformly in $|J| < \rho n / \log(m)$
CS conditions

- Structural conditions on an \(n \times m \) matrix which imply that its nullspace is optimal.

- **CS1**: Minimal singular value of \(\Phi_J \) exceeds \(\eta_1 > 0 \) uniformly in \(|J| < \rho n / \log(m) \)
 - This demands a certain quantitative degree of linear independence among all small groups of columns.

- **CS2**: On each subspace \(V_J \) we have the inequality
 \[
 \| v \|_1 \geq \eta_2 \sqrt{n} \| v \|_2 \forall v \in V_J
 \]
 uniformly in \(|J| < \rho n / \log(m) \)
 - This says that linear combinations of small groups of columns give vectors that look much like random noise, at least as far as the comparison of \(\ell^1 \) and \(\ell^2 \) norms is concerned.
CS conditions

- Structural conditions on an \(n \times m \) matrix which imply that its nullspace is optimal.

- **CS1**: Minimal singular value of \(\Phi_J \) exceeds \(\eta_1 > 0 \) uniformly in \(|J| < \rho n / \log(m) \)
 - This demands a certain quantitative degree of linear independence among all small groups of columns.

- **CS2**: On each subspace \(V_J \) we have the inequality
 \[
 \|v\|_1 \geq \eta_2 \cdot \sqrt{n} \cdot \|v\|_2 \forall v \in V_J
 \]
 uniformly in \(|J| < \rho n / \log(m) \)
 - This says that linear combinations of small groups of columns give vectors that look much like random noise, at least as far as the comparison of \(\ell^1 \) and \(\ell^2 \) norms is concerned.
 - Every \(V_J \) slices through the \(\ell^1_m \) in such a way that the resulting convex section is actually close to spherical.
CS conditions

- Family of quotient norms on \mathbb{R}^n.

\[Q_{J_c}(v) = \min \| \theta \|_{\ell^1(J_c)} \text{ subject to } \Phi_{J_c} \theta = v \]

These describe the minimal ℓ^1 norm representation of v achievable using only specified subsets of columns of Φ.
CS conditions

- Family of quotient norms on \mathbb{R}^n.

$$Q_J^c(v) = \min ||\theta||_{\ell^1(J^c)} \text{ subject to } \Phi_J^c \theta = v$$

These describe the minimal ℓ^1 norm representation of v achievable using only specified subsets of columns of Φ.

- CS3: On each subspace V_J

$$Q_J^c(v) \geq \eta_3 / \sqrt{\log(m/n)} ||v||_1, v \in V_J$$

uniformly in $|J| < \rho n / \log(m)$
CS conditions

- Family of quotient norms on \mathbb{R}^n.

$$Q_{Jc}(v) = \min \|\theta\|_{\ell^1(Jc)} \text{ subject to } \Phi_{Jc} \theta = v$$

These describe the minimal ℓ^1 norm representation of v achievable using only specified subsets of columns of Φ.

- CS3: On each subspace V_J

$$Q_{Jc}(v) \geq \eta_3 / \sqrt{\log(m/n)} \|v\|_1, \ v \in V_J$$

uniformly in $|J| < \rho n/\log(m)$.

- This says that for every vector in some V_J, the associated quotient norm Q_{Jc} is never dramatically better than the simple ℓ_1 norm on $(R)^n$.

Near Optimal Information
CS conditions

- Family of quotient norms on \mathbb{R}^n.

$$Q_{Jc}(v) = \min \| \theta \|_{\ell_1(Jc)} \text{ subject to } \Phi_{Jc} \theta = v$$

These describe the minimal ℓ_1 norm representation of v achievable using only specified subsets of columns of Φ.

- CS3: On each subspace V_J

$$Q_{Jc}(v) \geq \frac{\eta_3}{\sqrt{\log(m/n)}} \| v \|_1, \ v \in V_J$$

uniformly in $|J| < \rho n / \log(m)$

- This says that for every vector in some V_J, the associated quotient norm Q_{Jc} is never dramatically better than the simple ℓ_1 norm on $(\mathbb{R})^n$.

- Matrices satisfying these conditions are ubiquitous for large n and m.

Near Optimal Information

- Introduction
- Problem Formulation
- Proposed Solution
- Applications
- Conclusion
Near Optimal Information

CS conditions

- Family of quotient norms on \mathbb{R}^n.

$$Q_{J^c}(v) = \min ||\theta||_{\ell^1(J^c)} \text{ subject to } \Phi_{J^c} \theta = v$$

These describe the minimal ℓ^1 norm representation of v achievable using only specified subsets of columns of Φ.

- CS3: On each subspace V_J

$$Q_{J^c}(v) \geq \frac{\eta_3}{\sqrt{\log(m/n)}} ||v||_1, \ v \in V_J$$

uniformly in $|J| < \rho n / \log(m)$

- This says that for every vector in some V_J, the associated quotient norm Q_{J^c} is never dramatically better than the simple ℓ_1 norm on $(\mathbb{R})^n$.

- Matrices satisfying these conditions are ubiquitous for large n and m.

- Possible to choose η_i and ρ independent of n and of m.
Ubiquity

Theorem: Let \((n, m_n)\) be a sequence of problem sizes with \(n \to \infty\), \(n < m_n\), and \(m \sim A.n^\gamma\), \(A > 0\) and \(\gamma \geq 1\). There exist \(\eta_i > 0\) and \(\rho > 0\) depending only on \(A\) and \(\gamma\) so that, for each \(\delta > 0\) the proportion of all \(n \times m\) matrices \(\Phi\) satisfying CS1-CS3 with parameters \((\eta_i)\) and \(\rho\) eventually exceeds \(1 - \delta\).
Near Optimal Information

Φ matrix

• Random Projection Φ
Near Optimal Information

Φ matrix

- Random Projection Φ
- Not full rank $n \times m$ where $n < m$
Near Optimal Information

Φ matrix

- Random Projection Φ
- Not full rank $n \times m$ where $n < m$
- Loses information, in general
ϕ matrix

- Random Projection $Φ$
- Not full rank $n \times m$ where $n < m$
- Loses information, in general
- But preserves structure and information in sparse signals with high probability.
Near Optimal Information

Φ matrix

- Random Projection Φ
- Not full rank $n \times m$ where $n < m$
- Loses information, in general
- But preserves structure and information in sparse signals with high probability.
- Generated by randomly sampling the columns, with different columns iid random uniform on S^{n-1}
Reconstruction Algorithm

- Least norm solution

\[
\min \|\theta(x)\|_p \text{ subject to } y_n = l_n(x) (P_p)
\]
Reconstruction Algorithm

- Least norm solution

\[\min \| \theta(x) \|_p \text{ subject to } y_n = l_n(x) \ (P_p) \]

- Drawbacks:
Reconstruction Algorithm

- Least norm solution

\[
\min \| \theta(x) \|_p \quad \text{subject to} \quad y_n = l_n(x) (P_p)
\]

- Drawbacks:
 - \(p \) should be known
Reconstruction Algorithm

- Least norm solution

\[\min \| \theta(x) \|_p \text{ subject to } y_n = l_n(x) \ (P_p) \]

- Drawbacks:
 - \(p \) should be known
 - \(p < 1 \) is a nonconvex optimization problem.
Reconstruction Algorithm

- Least norm solution

\[\min \| \theta(x) \|_p \text{ subject to } y_n = l_n(x) (P_p) \]

- Drawbacks:
 - \(p \) should be known
 - \(p < 1 \) is a nonconvex optimization problem.
 - Solving \(\ell^0 \) norm requires combinatorial optimization.
Near Optimal Reconstruction

Basis Pursuit

- Let $A_{n \times 2m} = [\Phi - \Phi]$
Near Optimal Reconstruction

Basis Pursuit

- Let $A_{n \times 2m} = [\Phi - \Phi]$
- Linear Program

$$\min_z 1^T z \text{ subject to } Az = y_n, \ x \geq 0.$$
Near Optimal Reconstruction

Basis Pursuit

- Let $A_{n \times 2m} = [\Phi - \Phi]$
- Linear Program

$$\text{min}_z 1^T z \text{ subject to } Az = y_n, \ x \geq 0.$$

- has solution $z^* = [u^* v^*]$
Near Optimal Reconstruction

Basis Pursuit

- Let $A_{n \times 2m} = [\Phi - \Phi]$
- Linear Program

 $\min_z 1^T z \text{ subject to } Az = y_n, \ x \geq 0.$

- has solution $z^* = [u^* \ v^*]$
- $\theta^* = u^* - v^*$
Near Optimal Reconstruction

Basis Pursuit

- Fix $\epsilon > 0$
Near Optimal Reconstruction

Basis Pursuit

- Fix $\epsilon > 0$
- x such that $||\theta||_1 \leq cm^\alpha$, $\alpha < 1/2$.
Near Optimal Reconstruction

Basis Pursuit

- Fix $\epsilon > 0$
- x such that $||\theta||_1 \leq cm^\alpha$, $\alpha < 1/2$.
- Make $n \sim C_\epsilon \cdot m^{2\alpha} \log(m)$ measurements.
Near Optimal Reconstruction

Basis Pursuit

- Fix $\epsilon > 0$
- x such that $||\theta||_1 \leq cm^\alpha$, $\alpha < 1/2$.
- Make $n \sim C_\epsilon . m^{2\alpha} \log(m)$ measurements.

$$||x - \hat{x}_{1,\theta}||_2 << \epsilon . ||x||_2$$
Reconstruction Algorithm

- When P_0 has a solution, P_1 will find it.
Near Optimal Reconstruction

Reconstruction Algorithm

- When P_0 has a solution, P_1 will find it.
- Theorem: Suppose that Φ satisfies CS1-CS3 with given positive constants $\rho, (\eta_i)$. There is a constant $\rho_0 > 0$ depending only on ρ and (η_i) and not on n or m so that, if θ has at most $\rho_0 n / \log(m)$ nonzeros, then (P_0) and (P_1) both have the same unique solution.
When P_0 has a solution, P_1 will find it.

Theorem: Suppose that Φ satisfies CS1-CS3 with given positive constants ρ, (η_i). There is a constant $\rho_0 > 0$ depending only on ρ and (η_i) and not on n or m so that, if θ has at most $\rho_0 n/\log(m)$ nonzeros, then (P_0) and (P_1) both have the same unique solution.

i.e., Although the system of equations is massively undetermined, ℓ^1 minimization and sparse solution coincide when the result is sufficiently sparse.
Outline

1. Introduction
 - Compressed Sensing

2. Problem Formulation
 - Sparse Signal
 - Problem Statement

3. Proposed Solution
 - Near Optimal Information
 - Near Optimal Reconstruction

4. Applications
 - Example

5. Conclusion
Parial Fourier Ensemble

- Collection of $n \times m$ matrices made by sampling n rows out of the $m \times m$ Fourier matrix,
Partial Fourier Ensemble

- Collection of $n \times m$ matrices made by sampling n rows out of the $m \times m$ Fourier matrix,
- Concrete examples of Φ working within the CS framework
Partial Fourier Ensemble

- Collection of $n \times m$ matrices made by sampling n rows out of the $m \times m$ Fourier matrix,
- Concrete examples of Φ working within the CS framework
- Allows ℓ^1 minimization to reconstruct from such information for all $0 < p < 1$
Images of Bounded Variation

- $f(x), x \in [0, 1]^2$.
Images of Bounded Variation

- $f(x), \ x \in [0, 1]^2$.
- Bounded in absolute value $\|f\|_{\infty} \leq B$.
Images of Bounded Variation

- \(f(x), \ x \in [0, 1]^2 \).
- Bounded in absolute value \(\|f\|_\infty \leq B \).
- The wavelet coefficients follow \(\|\theta(j)\|_\infty \leq C.B.2^{-j} \).
Images of Bounded Variation

- $f(x), \ x \in [0, 1]^2$.
- Bounded in absolute value $\|f\|_\infty \leq B$.
- The wavelet coefficients follow $\|\theta(j)\|_\infty \leq C.B.2^{-j}$
- Fix finest scale j_1
Images of Bounded Variation

- $f(x)$, $x \in [0, 1]^2$.
- Bounded in absolute value $\|f\|_\infty \leq B$.
- The wavelet coefficients follow $\|\theta(j)\|_\infty \leq C.B.2^{-j}$
- Fix finest scale j_1
- Take $j_0 = j_1/2$
Images of Bounded Variation

- $f(x)$, $x \in [0, 1]^2$.
- Bounded in absolute value $\|f\|_\infty \leq B$.
- The wavelet coefficients follow $\|\theta(j)\|_\infty \leq C.B.2^{-j}$
- Fix finest scale j_1
- Take $j_0 = j_1/2$
- CS takes 4^{j_0} resume coefficients and $n \leq c4^{j_0}(\log)^2(4^{j_1})$ samples for detail coefficients.
Images of Bounded Variation

- $f(x), x \in [0, 1]^2$.
- Bounded in absolute value $\|f\|_{\infty} \leq B$.
- The wavelet coefficients follow $\|\theta(j)\|_{\infty} \leq C.B.2^{-j}$
- Fix finest scale j_1
- Take $j_0 = j_1/2$
- CS takes 4^{j_0} resume coefficients and $n \leq c4^{j_0}(\log)^2(4^{j_1})$ samples for detail coefficients.
- Total of $c.j_1^2.4^{j_1/2}$ pieces of measured information.
Images of Bounded Variation

- $f(x)$, $x \in [0, 1]^2$.
- Bounded in absolute value $\|f\|_\infty \leq B$.
- The wavelet coefficients follow $\|\theta(j)\|_\infty \leq C.B.2^{-j}$
- Fix finest scale j_1
- Take $j_0 = j_1/2$
- CS takes 4^j_0 resume coefficients and $n \leq c4^j_0(\log)^2(4^j_1)$ samples for detail coefficients.
- Total of $c.j_1^2.4^{j_1/2}$ pieces of measured information.
- Error of the same order of linear sampling with 4^j_1 samples:

 $$\|f - \hat{f}\| \leq c2^{-j_1}$$

 with c independent of f.
Example

Piecewise C^2 Images with C^2 edges

- $C^2,2(B,L)$ of piecewise smooth $f(x)$, $x \in [0,1]^2$.
Piecewise C^2 Images with C^2 edges

- $C^{2,2}(B, L)$ of piecewise smooth $f(x)$, $x \in [0, 1]^2$.
- Bounded in absolute value, first and second partial derivative by B.
Piecewise C^2 Images with C^2 edges

- $C^{2,2}(B, L)$ of piecewise smooth $f(x), x \in [0, 1]^2$.
- Bounded in absolute value, first and second partial derivative by B.
- Curves total length $\leq L$.

Piecewise C^2 Images with C^2 edges

- $C^{2,2}(B,L)$ of piecewise smooth $f(x)$, $x \in [0,1]^2$.
- Bounded in absolute value, first and second partial derivative by B.
- Curves total length $\leq L$.
- Fix finest scale j_1
Piecewise C^2 Images with C^2 edges

- $C^{2,2}(B, L)$ of piecewise smooth $f(x), x \in [0, 1]^2$.
- Bounded in absolute value, first and second partial derivative by B.
- Curves total length $\leq L$.
- Fix finest scale j_1.
- Take $j_0 = j_1/4$.
Piecewise C^2 Images with C^2 edges

- $C^{2,2}(B, L)$ of piecewise smooth $f(x), x \in [0, 1]^2$.
- Bounded in absolute value, first and second partial derivative by B.
- Curves total length $\leq L$.
- Fix finest scale j_1
- Take $j_0 = j_1/4$
- CS takes 4^{j_0} resume coefficients and $n \leq c4^{j_0}(\log)^{5/2}(4^{j_1})$ samples for detail coefficients.
Piecewise C^2 Images with C^2 edges

- $C^{2,2}(B, L)$ of piecewise smooth $f(x)$, $x \in [0, 1]^2$.
- Bounded in absolute value, first and second partial derivative by B.
- Curves total length $\leq L$.
- Fix finest scale j_1
- Take $j_0 = j_1/4$
- CS takes 4^{j_0} resume coefficients and $n \leq c4^{j_0}(log)^{5/2}(4^{j_1})$ samples for detail coefficients.
- Total of $c.j_1^{5/2}.4^{j_1/4}$ pieces of measured information.
Piecewise C^2 Images with C^2 edges

- $C^{2,2}(B, L)$ of piecewise smooth $f(x), x \in [0, 1]^2$.
- Bounded in absolute value, first and second partial derivative by B.
- Curves total length $\leq L$.
- Fix finest scale j_1
- Take $j_0 = j_1/4$
- CS takes 4^{j_0} resume coefficients and $n \leq c4^{j_0}(\log)^{5/2}(4^{j_1})$ samples for detail coefficients.
- Total of $c.j_1^{5/2}.4^{j_1}/4$ pieces of measured information.
- Error of the same order of linear sampling with 4^{j_1} samples:

$$||f - \hat{f}|| \leq c2^{-j_1}$$

with c independent of f.
Outline

1. Introduction
 - Compressed Sensing

2. Problem Formulation
 - Sparse Signal
 - Problem Statement

3. Proposed Solution
 - Near Optimal Information
 - Near Optimal Reconstruction

4. Applications
 - Example

5. Conclusion
Conclusion

- Framework for compressed sensing of objects $x \in \mathbb{R}^m$
Conclusion

- Framework for compressed sensing of objects $x \in \mathbb{R}^m$
- Conditions on Φ CS1-CS3
Conclusion

- Framework for compressed sensing of objects $x \in \mathbb{R}^m$
 - Conditions on Φ CS1-CS3
 - Information Operator $I_n(x) = \Phi \psi^T x$
Conclusion

- Framework for compressed sensing of objects $x \in \mathbb{R}^m$
 - Conditions on Φ CS1-CS3
 - Information Operator $I_n(x) = \Phi \psi^T x$
 - Random sampling yields near optimal I_n with overwhelmingly high probability.
Conclusion

• Framework for compressed sensing of objects $x \in \mathbb{R}^m$
 • Conditions on Φ CS1-CS3
 • Information Operator $I_n(x) = \Phi \psi^T x$
 • Random sampling yields near optimal I_n with overwhelmingly high probability.
 • Reconstructed x by solving ℓ^1 convex optimization.
Conclusion

- Framework for compressed sensing of objects $x \in \mathbb{R}^m$
 - Conditions on Φ CS1-CS3
 - Information Operator $I_n(x) = \Phi \Psi^T x$
 - Random sampling yields near optimal I_n with overwhelmingly high probability.
 - Reconstructed x by solving ℓ^1 convex optimization.
 - Exploits a priori signal sparsity information. [richb]
Thank You!