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Abstract
Adults struggle to learn non-native speech categories in many experimental settings (Goto, Neuropsychologia, 9(3), 317–323
1971), but learn efficiently in a videogameparadigmwhere non-native speech sounds have functional significance (Lim&Holt,
Cognitive Science, 35(7), 1390–1405 2011). Behavioral and neural evidence from this and other paradigms point toward the
involvement of reinforcement learningmechanisms in speech category learning (Harmon, Idemaru, &Kapatsinski,Cognition,
189, 76–88 2019; Lim, Fiez, & Holt, Proceedings of the National Academy of Sciences, 116, 201811992 2019). We formalize
this hypothesis computationally and implement a deep reinforcement learning network to map between environmental input
and actions. Comparing to a supervised model of learning, we show that the reinforcement network closely matches aspects
of human behavior in two experiments – learning of synthesized auditory noise tokens and improvement in speech sound
discrimination. Both models perform comparably and the similarity in the output of each model leads us to believe that there
is little inherent computational benefit to a reward-based learning mechanism. We suggest that the specific neural circuitry
engaged by the paradigm and links between striatum and superior temporal areas play a critical role in effective learning.

Keywords Speech perception · Category learning · Computational modeling · Reinforcement learning

Introduction

Language learners need to map a continuous, multidimen-
sional acoustic signal to discrete abstract speech categories.
The complexity of this mapping poses a difficult learn-
ing problem, particularly for second-language learners who
struggle to acquire the speech sounds of a non-native lan-
guage, and almost never reach native-like ability. A common
example used to illustrate this phenomenon is the distinc-
tion between /r/ and /l/ (Goto, 1971). While these sounds are
distinct in English, and native English speakers easily dis-
tinguish the two sounds, native Japanese speakers find this
difficult, as the sounds are not contrastive in their language.
Even with much explicit training, Japanese speakers do not
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seem to be able to reach native-like ability (Logan, Lively, &
Pisoni, 1991; Lively, Logan, & Pisoni, 1993).

A particularly effective strategy for learning speech cat-
egories as an adult, however, is through implicit learning
within a video game paradigm (Wade&Holt, 2005). In these
experiments, participants control a spaceship at the center of
a screen with aliens entering from various locations. Partic-
ipants must shoot or capture these aliens and increase their
score every time they do so. Auditory tokens are presented
before each alien enters and are sampled from a category
that corresponds to the aliens’ location and color, providing
an early cue for identifying which direction the participant
should face. As the experiment progresses, aliens begin to
move faster and it becomes increasingly difficult to turn and
shoot or capture without attending to the auditory informa-
tion. Improved performance for the recognition of categories
between the start and end of gameplay is observed for var-
ious types of stimuli – both synthesized noise (Lim et al.,
2019) and speech tokens (Lim & Holt, 2011). In the latter
experiment, adults show as much improvement in the dis-
crimination of non-native speech sounds after 2 h of video
game training as they do during 10 h of explicit training over
a period of 2–4 weeks (Logan et al., 1991). Various follow-
up experiments show that implicit learning paradigms of this
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sort can be effective in auditory category learning generally
(Gabay, Dick, Zevin, & Holt, 2015; Roark & Holt, 2018;
Roark, Lehet, Dick, & Holt, 2022), and that implicit learning
might play a unique role in the learning of categories such as
speech sounds that require integration of information across
dimensions (Chandrasekaran, Yi, & Maddox, 2014; Chan-
drasekaran, Koslov, & Maddox, 2014).

A clue to the mechanisms behind this paradigm could lie
in its engagement of reward-based learning. When undergo-
ing learning in this environment, neural activity is observed
in the dorsal striatum (Lim, Fiez, & Holt, 2014; Lim et al.,
2019). This region is considered to play an important role
in reward prediction through the activation of dopaminer-
gic circuits. Activation of these circuits during a category
learning task is not restricted to the domain of speech: in
vision, corticostriatal connections are one ofmany neural cir-
cuits not only involved in perception but specifically category
learning (Seger & Miller, 2010). While studies on the stria-
tum often discuss reward prediction in this region in general
terms, recent studies have proposed that the basal ganglia
could specifically implement reinforcement learning – one
particular reward-learning algorithm (Kawagoe, Takikawa,
& Hikosaka, 1998; Joel, Niv, & Ruppin, 2002; Cohen &
Frank, 2009; Dabney et al., 2020).

What is special about this reward-based circuit that poten-
tially leads to particularly effective category learning in some
situations?Why does a paradigm in which category informa-
tion is presented implicitly result in at least as good perfor-
mance as one where categories are explicitly given to the par-
ticipants? The inherent computational properties of a reward-
based algorithm that is implemented by the dorsal striatal
implicit learning systemcould distinguish it fromother learn-
ing systems, resulting in differences in the rate and quality
of category learning when each system is activated. Alter-
natively, the algorithm deployed by reward learning circuits
may not in itself provide a privileged role in category learn-
ing, and anydifferences in learningmay come from the neural
properties of circuits engaged by this learning paradigm.

In this paper, we provide new computational evidence that
bears on this question. We show explicitly that a reinforce-
ment implementation of reward-based learning provides a
good model of human behavior in the video game paradigm
proposed byWade and Holt (2005) across two experiments –
learning noise categories (Lim et al., 2019) and speech sound
categories (Lim&Holt, 2011). We compare our models with
a simulation of supervised learning and show that in the noise
category experiment, reinforcement learning captures one
specific aspect of human data which a supervised learning
model does not. In the speech sound learning experiment,
supervised learning and reinforcement learning provide a
similar match to human behavior.

Our work provides the first algorithmic account of video
game training for category learning and provides the first
computational evidence that a reinforcement mechanism
may be used during video game training. Our supervised

algorithm is intended to provide a baseline to which we can
compare reinforcement learning, however it also bears some
resemblance to explicit category learning paradigms. While
the reinforcement model shows a marginally closer model fit
to human data in some contexts, the benefit of the algorithm
is minimal, suggesting that any differences in effectiveness
between the two learning paradigms may not lie in the algo-
rithm but in the neural circuitry involved.We argue that since
the learning signal in the video game paradigm comes in the
form of a reward, rather than simple category information,
specific feedback loops are activated which better enables
humans to update category representations. This raises new
questions about the role of reinforcement learning in phonetic
learning more generally. Our models also provide one of the
first formal frameworks for further studying computational
properties of implicit learning that could lead to particular
learning outcomes in this paradigm.

The remainder of the paper is organized as follows. We
first provide background on reinforcement learning and its
applications to this paradigm and describe the models we use
in our work. In our first simulation, we implement our rein-
forcement learning algorithm in amodel of theWade andHolt
(2005) video gameparadigmwhere synthesized noise sounds
are presented anddemonstrate that it reflects a specific pattern
in human data better than a supervised algorithm. In this sim-
ulation, we do not build in prior representations to the model,
allowing it to form representations solely from the input dur-
ing training. Our second simulation shows that the algorithm
can overcome native language knowledge and improves in
discrimination of non-native speech sounds. Here, listeners
possess pre-existing perceptual category mapping from their
native language, and we build this prior knowledge into our
model, before observing how it can change after training.We
discuss the implications of these results and what may give
rise to the effectiveness of the video game paradigm, sug-
gesting that the specific neural circuitry engaged during the
task may contribute to learning in this paradigm.

Background

Reinforcement learning vs. supervised learning

Reinforcement learning (Sutton & Barto, 1998) is a specific
implementation of reward-based learning. In reinforcement
learning, an agent takes actions within an environment and
receives a reward upon reaching a favorable outcome.At each
timestep, the agent receives information about the state of the
environment and predicts the value of each action available
to it. The agent then takes an action, observes the reward
received, and updates its parameters according to the mis-
match between the predicted and observed reward value. This
process is iterative, enabling the agent to take actions that lead
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to reward in the future. Even if the agent does not receive a
reward immediately, it will still take actions that put it in a
better position to receive a reward at another timestep.

While other reward-based learning algorithms exist
(Rescorla & Wagner, 1972), the construction of the video
game paradigm has components which lend itself clearly
to an implementation of reinforcement learning. A partici-
pant receives information about the state of the environment
(visual and auditory cues within the video game), takes an
action within that environment (turning and shooting aliens),
and receives a reward for correct actions (increases in score).
The paradigm itself has been used in many experiments and
results in robust learning across different variations of stim-
uli.

We can contrast reinforcement learning with the much
more commonly used algorithm of supervised learning.
In supervised learning, a function is created which maps
between input and a corresponding output – in this setting,
a function which maps auditory input directly to abstract
perceptual categories. For any input, the model generates a
corresponding output and receives the ground truth value of
the output. Themodel can directly compare the predicted out-
put from the model with the ground truth output and update
its parameters so that its predicted output will be closer to
the ground truth in the future. We make a clear distinction
between these two algorithms, where reinforcement learn-
ing is given a reward signal, and the supervised algorithm
is given specific category information. These are different
learning signals – we consider that a reinforcement learning
agent is only told when it performs correctly, but is not told
the correct actionwhen it does not. In contrast, the supervised
network receives information about the correct decision on
each trial. We introduce supervised learning, not because we
believe it is a particularly strong model of a specific task,
but because it provides a baseline to consider the computa-
tional properties of reinforcement learning. However, since
the supervised model receives direct feedback about correct
categorizations, itmost closely resembles an explicit learning
paradigm, where participants are asked to categorize sounds
and receive feedback on the correct category after every trial.

Reinforcement learning in speech

Previous findings have indicated that reinforcement learning
might be utilized in human sound category learning, motivat-
ing our choice of algorithm in this paper. When participants
take part in the video game paradigm, neural regions typ-
ically associated with reinforcement and reward prediction
are engaged [ie. (Lim et al., 2014; Lim et al., 2019)]. In
Lim et al. (2019), participants play a video game where non-
speech auditory categories are presentedwhile activitywithin
subcortical areas is measured using fMRI. When these cat-
egories are correlated with rewarding actions in the game,

participants show increased activity in the striatum – specif-
ically the caudate body and putamen – a subarea of the basal
ganglia. This region of the brain has long been thought to
play an important role in reward, through the activation of
dopaminergic circuits and recent studies have suggested that
the striatum could implement reinforcement learning specifi-
cally (Kawagoe et al., 1998; Joel et al., 2002; Cohen&Frank,
2009; Dabney et al., 2020).

The striatum, however, is not a monolith, and the Dual
Learning Systems (DLS) Model of auditory category learn-
ing specifically proposes a split between two different
systems used during learning (Chandrasekaran, Yi, & Mad-
dox, 2014; Chandrasekaran, Koslov, & Maddox, 2014),
taking inspiration frommodels of category learning in vision
(Ashby, Alfonso-Reese, Turken, &Waldron, 1998; Ashby &
Maddox, 2011). This model posits that humans have avail-
able two distinct learning systems, which perform better at
learning different category types. The reflective system is
most similar to supervised learning and is recruited where
a category boundary is clearly defined over one dimension.
These are considered to be ‘rule-based’ categories and this
system engages primarily the anterior regions of the stria-
tum. Alternatively, categories that require the integration of
cues from various categories are proposed to use the reflexive
system. These categories are classified as ‘information inte-
gration’ categories and are proposed to engage the caudate
body and tail, and putamen, which are active during implicit
learning tasks.

Given evidence from implicit learning tasks such as the
video game which appear to give rise to particularly effec-
tive category learning, as well as evidence from dual systems
experiments, where experimental manipulations push par-
ticipants towards one learning system or the other (Yi &
Chandrasekaran, 2016), it has been proposed that the learn-
ing of speech categories is reflexive-optimal. Because speech
categories tend to require the integration of a variety of dif-
ferent acoustic cues, learning phonetic categories as an adult
potentially benefits from the involvement of the reflexive
learning system. The DLS model of category learning pro-
poses that the posterior caudate and putamen – and therefore
the reward-based algorithms that are thought to be imple-
mented by these regions – are particularly important for
second-language sound category learning.

Implicit learning has also been expanded to use the
SMART task, a paradigm designed to engage the same
implicit systems as the video game paradigm, but with
less complexity (Gabay et al. 2015). Experiments with this
paradigm indicate that learning only occurs when the actions
that a participant must make are aligned directly with the
auditory categories in the input, suggesting thatmotor actions
are important and an alignment to statistical input is required
for learning to occur (Roark et al., 2022). Listeners cannot be
simply mapping visual and auditory cues by seeing a specific
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alien appear after a specific sound, but instead are relying on
a motor response to make this connection. This implies that
participants are not using an unsupervised learning mecha-
nism, where discrimination increases by passively listening
to the stimuli. This fact is important for the simulations we
present in this paper, as we simulate learning by modeling
the actions that an agent takes when presented with auditory
input.

While there are differences between implicit and explicit
learning, it may not be the case that implicit learning is
always more effective than explicit learning (Roark & Holt,
2018; Barrett et al., 2022). The closest comparison in the
auditory domain between the two learning paradigms comes
from Roark and Holt (2018), where explicit learning leads
to better learning outcomes and implicit learning. However,
the effectiveness seen in some papers (Lim & Holt, 2011;
Lim et al., 2014, 2019), alongside the evidence posited by
the DLS model outlined above, suggest that there are differ-
ences between implicit and explicit learning and we aim to
shed light on any computational differences in this paper.

Computational models

We implement two computational models that take inspi-
ration from a theoretical framework of auditory category
learning in dorsal striatal regions during the video game
paradigm, originally proposed by Lim et al. (2014). First, we
implement a reward-based algorithm where an agent maps
between state and action, and a learning signal is generated
as the difference between expected and received reward. This
kind of learning is described by Lim et al. (2014) as an ‘indi-
rect reward prediction error’ signal, where feedback only
updates auditory space indirectly through the visual domain.
Our model differs in that the reward signal is simultaneously
backpropagated to auditory and visual networks as described
below. However, the feedback is still ‘indirect’, as network
outcomes that the learning signal operates over are actions
within the game environment and not directly mapped to
auditory categories.

The second model we implement is a supervised learning
algorithm, which can be considered a network that imple-
ments ‘direct reward prediction error’ where a feedback
signal directly alters the category output of the model. Our
model is a computational implementation aligned closely
with the direct model discussed in Lim et al. (2014), where
the outcome of the network is the auditory categories them-
selves.

Reinforcement learning

We define the reinforcement framework formally as a
Markov decision process where the environment is given by

a set of states S = {s1, s2, s3, ...}, one of which is presented
to the agent at each time step t . The agent then has a set of
actions A = {a1, a2, a3, ...} that it can take. At each timestep,
the agent receives information about the state, chooses an
action, and receives a reward rt before the environment tran-
sitions to the next state. The transition between states can
depend on both the actions of the agent and external factors
of the environment. The goal of the agent is to find a policy
mapping between states and actions (s, a) that will maxi-
mize the total reward for this and future steps, by updating
its parameters depending on the reward it receives.

In this paper, we use model-free reinforcement learning,
where the policy of the agent is determined by theQ-function,
defined as follows.

Q(st , at ) = rt + γ ∗ max Q(st+1, at+1) (1)

This function outputs the maximum possible reward for
a specific action, by summing the reward at the current
timestep, rt , plus the maximum possible reward from the
next timestep, max Q(st+1, at+1), multiplied by a discount
parameter γ . This function is iterative since the maximum
value at the next timestepwill apply the same function, allow-
ing the model to account for future reward. The result of Eq.
1 (i.e., the ‘value’ of a state/action pairing including current
and future reward) is not directly observable for the agent, and
so it must estimate the value of each action at each state by
approximating this function.While there are variousmethods
for performing this approximation, we use a specific imple-
mentation of deep Q learning (Mnih et al., 2015) to build a
deep neural network that represents the Q-function (a DQN).

This network takes state information as input and outputs
a distribution of values over all actions the agent can take.
During training, transitions between states, the action taken,
and reward received are stored in memory. At each timestep,
we sample a batch of transitions, calculate the error across
this batch using a Smooth L1 loss function to calculate the
difference between expected and actual reward, and update
parameters using stochastic gradient descent. Our simu-
lations implement a model-free reinforcement algorithm,
where the agent does not have explicit knowledge of tran-
sition probabilities, and instead must learn the action-reward
mapping without this knowledge. The selection of model-
free over model-based reinforcement learning is unlikely to
have a large impact in our specific case, where the relevant
state transitions during each trial are deterministic and the
number of learning trials is large relative to the number of
states and possible actions.

The agent’s decisions in this model follow an ε-greedy
algorithm to allow for a trade-off between exploring the envi-
ronment to discover patterns and choosing the most optimal
action to receive a reward. Throughout training, the agent
will choose a random action with probability ε and choose
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the optimal outcomewith probability 1−ε, where the optimal
outcome is the actionwith the highest value, as determined by
the network. The parameter decays during training to ensure
that the agent has enough time to explore the full spectrum
of state-action pairings at the start of the simulation, before
starting to behave more optimally.

In the experimental paradigm (Lim & Holt, 2011; Lim
et al., 2019), the player receives both auditory and visual cues
as they can see the location/color of the alien and hear the
corresponding sound. Over time, the game speed increases
and in order to have a chance at shooting the alien, the partic-
ipant must rely increasingly on the auditory cues as these are
presented before the alien enters the screen. In our simula-
tions, we present the agent with one repetition of an auditory
token on each timestep, as well as the current direction the
spaceship is facing. We do not present visual information
identifyingwhere the alien is situated, meaning that the agent
does not have grounding for the correspondence between
alien locations and the auditory category. This would be like
a human playing a version of the game where they can see
the direction that the spaceship is facing, but cannot see the
location of any aliens. In theory, this should make the task
more difficult, as the agent cannot bootstrap the learning
of auditory categories from any visual information present.
This ensures that any success from our model is due to the
exploration of the reinforcement algorithm and the reward
received, rather than simple correlation between visual and
auditory signals.

We discretize the continuous nature of the game, where
the participant can take actions at any time, into timesteps
where at each step the participant receives information about
their location and environment and selects one action out of
those available to them. Actions consist of turning left or
right, or shooting an alien. The reward is derived from the
increase in score by correctly performing these actions.

The environment for the video game in our simulations is
constructed with eight different directions in which the agent
can face (N, NE, E, SE, S, SW,W, NW), where a left or right
action turns the agent by 45◦. Aliens can enter from four
directions (N, E, S, and W), and each of these is associated
with a different category. Each timestep consists of the pre-
sentation of one auditory token and one action by the agent.
If the agent is facing the opposite direction to the location
of a newly presented alien, it will need a minimum of five
actions to turn toward and successfully shoot it. To allow
enough time for this to happen, each stimulus is presented
eight times. If the agent does not shoot correctly within this
time, then the alien disappears without the agent receiving
any reward and the next stimulus is presented. During train-
ing, there are four tokens within each category presented
during training and the agent has three actions available to
it: Turn Left, Turn Right, or Shoot. The agent receives
one point of reward for every alien it shoots (unlike the origi-

nal study, our simulations do not have a ‘capture’ mechanic).
Location information is presented to the model as a one-
hot vector of length 8 – i.e., the value for the corresponding
direction where the agent is facing is equal to 1 with all other
values set to 0. This is not visual information per se, as it
simply instills knowledge of the direction that the agent is
facing into the model and does not encode any visual infor-
mation about the location of the alien, making our model
slightly different to the theoretical framework proposed by
Lim et al. (2014). However, we conceptualize this similarly
to the ‘visual’ component in that framework.

Supervised learning

For this algorithm, we use identical structure for initial net-
work layers, however we do not include location information
and instead of outputting an action, the network outputs a cat-
egory directly. Throughout training, the network is presented
with a batch of inputs and predicts the corresponding cate-
gory for each. These predicted categories are compared to the
ground truth categories for each input, and themodel updates
its parameters using this difference. We use a Smooth L1
loss function, which provides a squared loss at small error
values and an L1 loss elsewhere, meaning it is less sensi-
tive to outlier data points than a squared loss, to avoid the
issue of exploding gradients (Girshick, 2015). This signal is
backpropagated and parameters are updated using stochastic
gradient descent.

For each of our comparisons, we aim to make the amount
of data presented to the reinforcement and supervised learn-
ing models as close as possible. We keep the batch size and
number of presentations of each stimulus constant between
the two simulations, although the exact number of presenta-
tions for each token in the reinforcement learning model will
vary as it will take the agent different numbers of timesteps
to face and shoot the alien. As the reinforcement algorithm
outputs actions and not categories, the architecture of the two
models cannot be identical, however we keep the architecture
of the initial layers of each model constant.

Simulation 1 - synthesized sounds

Our first simulation models the results of Lim et al. (2019)
and demonstrates that a reinforcement learning algorithm is
able to reflect human behavior in discrimination of audi-
tory noise categories with simple boundaries. We simulate
human experiments by training a reinforcement learning net-
work to map between states and actions within a video game
environment and a supervised model which is directly given
category labels. We evaluate the models by observing how
much reward the reinforcement agent receives for various cat-
egories of stimuli andhowmany trials the supervised network
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can correctly identify. A comparison between the outcomes
of the behavioral results across various token types shows
that reinforcement learning better models human generaliza-
tion to novel tokens and the impact of specific variability in
the input over supervised learning.

Methods

We use stimuli constructed following the parameters from
Lim et al. (2019), with offset and onset categories created
across an experimental and control condition (Fig. 1). Offset
categories are consistent across the two conditions and can
be identified by just one dimension – the trajectory of change
after 150 ms – where onset categories are constructed differ-
ently between the two conditions. In the original experiment,
onset and offset categories also differ in the type of wave a
noise carrier versus a sawtooth carrier. In the experimental
condition, one must attend to both the trajectory of change
during the first 150 ms of the stimulus and the starting fre-
quency in order to identify the correct token. In the control
condition, onset tokens are randomized and have no identi-
fiable category boundary.

The construction of stimuli in thiswayyields three types of
category boundaries, whichwe refer to asSimple,Complex,
and Incoherent. Offset categories in both conditions have
a Simple boundary, as these can be distinguished along only

one dimension. Onset categories have a Complex boundary
in the experimental condition due to the two-dimensional
nature of the category boundary, whereas onset categories in
the control condition are Incoherent as there is no category
boundary available.

We simulate the synthesized sounds in this experiment
by using a Gaussian distribution centered around each fre-
quency peak at each timestep. This means that the simulation
does not differentiate the offset and onset stimuli by wave
type, requiring it to discover specific patterns in the pseudo-
acoustic signal. Each Gaussian distribution has a peak of 10
and a variance of 150 Hz. For each of the four categories,
11 tokens are synthesized with four presented during train-
ing and the remaining seven withheld for testing. Results
for both learning types are averaged over ten model runs.
To simplify the presentation of tokens for the incoherent
boundary condition in this simulation, four specific tokens
are presented, rather than a range of randomized tokens as in
the original experiment.

Our reinforcement network (Fig. 2) combines the auditory
representation with the location information and outputs a
value assigned to each action using a deepQ network, trained
with the algorithm outlined above. The network is trained
over a total of 1000 episodes, each consisting of 128 tokens
and tested on an additional 500 episodes of 176 tokens with
weights frozen. We define performance by looking at the

Fig. 1 Frequency profiles (left) and onset category structure (right) for simulation 1 noise categories in the experimental (top) and control (bottom)
condition. Profiles from Lim et al. (2019)
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Fig. 2 Network diagrams for Simulation 1

proportion of total possible reward the agent receives for
each category type during this test phase.

The supervised network (Fig. 2) uses solely the audi-
tory representation and is trained to predict the category
associated with each input, where each node in the output
vector corresponds to one category. It is trained similarly over
128,000 tokens (equaling the 128 tokens per 1000 episodes
for reinforcement learning) and evaluated by taking the node
with the highest value as the predicted category for a specific
stimulus. This is taken for each of the 11 tokens and averaged
over different model runs.

Results

As expected, both models perform successfully in the
paradigm, receiving a high proportion of the reward that is
available (results are shown in Fig. 3). Like the humans, both
models exhibit better performance for tokens presented dur-
ing training than novel tokens, but this effect is much more
pronounced for the models than the humans. The networks’
generalization to new tokens allows us to observe its patterns
of performance without these ceiling effects, which likely
occur due to over-fitting to the data presented during training,
a commonoccurrencewith neural networks.Results show the
performance of the simulated model on novel data during the
testing phase closely aligns with the post-test categorization
responses of humans from the original experiment.

As with humans, higher performance is observed for off-
set tokens than onset tokens for both models. This is because
the boundary between categories has lower dimensionality in

the offset condition than in the onset condition: onset tokens
have a more complex boundary, being defined by both the
frequency trajectory and the steady-state frequency. As we
present four specific tokens for the Incoherent boundary,
rather than a range of randomized tokens as in the original
experiment, our model has a higher success rate for these
tokens than the original experiments. As there is no bound-
ary to generalize, however, we see that performance for novel
tokens is low across both models – mirroring the human
results.

For eachmodel, we treat the average values for each token
type across models as the mean of a distribution reflecting
performance andmeasure how close this is to themean of the
performance distribution of human experiments using cross-
entropy.1 A high number (i.e., a negative number closer to
zero) indicates that themodels’ distribution is closer to that of
the original results. These values (Table 1) demonstrate that
a reinforcement learning model captures human data better

1 Weuse cross entropy to calculatemodel fit here—wecannot calculate
log-likelihoods as we do not have access to the original experimental
data and the exact number of data points for each token. Furthermore,
the parameters in our models are not fit to the experimental data but
rather are learned during a simulated learning process. However, if there
were an equal number of trials between the experimental data and our
models, then the cross entropy values shown here would be proportional
to the log-likelihoods. We calculate cross entropy with the formula:
C = ∑

i xi ∗ log(x̂i ), where xi is a probability distribution representing
the experimental data (themeanvalue presented in the original paper), x̂i
is the estimate of this value produced by our model, and

∑
i indicates

the sum over both successes and failures. We subtract 0.01 from the
performance of each model to avoid undefined values by calculating
log(0).
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A
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B

Fig. 3 Simulation 1 Results: A Experimental results from Lim et al. (2019). B Reinforcement learning results. C Supervised learning results with
95% confidence intervals

across multiple conditions and token types, including novel
offset tokens across both conditions. The supervised model
better captures data for only onset tokens in the control con-
dition. Summing over these values we get an overall cross
entropy of −9.73 for the reinforcement learning model and
−10.51 for the supervised model, showing that that rein-
forcement learning overall reflects human results better than
supervised learning.

Qualitatively, where supervised and reinforcement learn-
ing models diverge is the difference in generalization for
simple stimuli between the two conditions for novel tokens.

Despite the fact that these tokens are the same, humans
are worse at discriminating between simple (offset) stim-
uli in the control condition than they are at discriminating
between them in the experimental condition. This suggests
that the noise provided by the incoherent tokens is enough
to decrease generalization across the board, and not just
for the onset tokens themselves. To test whether each of
our models gives rise to this specific pattern, we compare
the difference between experimental and control conditions
in generalization to offset tokens across the two models,
performing an ANOVA with condition and model as inde-

Table 1 Cross entropy values
comparing our two models to
experimental data for each type
of token

Offset tokens Onset tokens
Experimental Control Experimental Control
Trained Novel Trained Novel Trained Novel Trained Novel

Reinforcement learning −1.47 −0.72 −2.35 −0.77 −1.95 −0.71 −1.10 −0.64

Supervised learning −1.47 −0.86 −2.35 −1.25 −1.95 −0.79 −1.24 −0.60

Reinforcement learning captures the results better for novel off set tokens in both conditions and trained onset
tokens in the control condition

123



Psychonomic Bulletin & Review (2025) 32:139–155 147

pendent variables and proportion of successful trials as
the dependent variable. We found a main effect of both
condition (F(1, 36) = 11.55, p < 0.001) and training
(F(1, 36) = 62.48, p < 0.001) along with a significant
interaction (F(1, 36) = 9.36, p = 0.004). Tests of simple
effects revealed a significant difference between successfully
identifying these categories in the experimental condition
versus the control condition for the reinforcement learning
network (t(18) = 4.22, p < 0.001), but not the supervised
learning network (t(18) = 0.26, p = 0.79). This sug-
gests that for this specific behavioral finding, a reinforcement
learning algorithm better captures human data than super-
vised learning.

We do not perform a hyperparameter sweep, however we
do test the model across a range of parameters. For the rein-
forcement learning model, we test learning rates between
0.01 and 0.09, and a γ value of 0.9 – values typical to Deep
Q Networks. We also test a variety of game types, including
where the agent receives many attempts to shoot the alien,
andwhere it receives only one attempt. The supervisedmodel
does not have these parameters, but we match learning rates
to those used in the reinforcement learning model. Data pre-
sented here use a learning rate of 0.05, however, results are
consistent across these simulations.

This simulation demonstrates that it is possible to gather
implicit knowledge about auditory categories through a rein-
forcement signal, giving rise to human-like behavior, and
one specific pattern in the experimental data – namely the
difference between learning of offset categories between the
two conditions – is mirrored by a reinforcement model, but
not a supervised model. The reinforcement learning algo-
rithm successfully discovers the structure of input present
through the reward function and actions within the environ-
ment. Having shown that a reinforcement learning algorithm
is able to use perceptual information within this task, the next
step is to show that the same algorithm can overcome native
language knowledge and will simulate human performance
in its improvement in discrimination of non-native speech
categories.

Simulation 2 - Speech sounds

Our second simulation models a learning experiment where
Japanese and English speakers participate in the video game
with English speech tokens presented throughout play (Lim
& Holt, 2011). For native Japanese speakers, discrimination
between English [r] and [l] sounds can be challenging, as
these sounds are distinguished primary by the F3 cue, where
Japanese speakers only have one sound along this acoustic
dimension. Participants in the Wade and Holt (2005) video
game paradigm hear tokens of [ra], [la], [da], and [ga] before
each alien enters and Japanese speakers show improvement

on [r]/[l] discrimination after 5 days of training without
reaching native-level performance, as measured on an iden-
tification task presented before and after the training period.
We once again compare a supervised learning algorithm to a
reinforcement learning algorithm in this paradigm to inves-
tigate how each algorithm overcomes native knowledge to
improve on discrimination between the auditory categories
presented. This simulation consists of two parts: native lan-
guage training where we model the knowledge of a native
Japanese speaker, and non-native training, where we expose
this native model to either the video game environment or
supervised learning.

Methods

We model native language knowledge by training a super-
vised phoneme classifier on Japanese speech. This is a simple
and efficientway to instill native language knowledge into the
model. The network takes acoustic parameters as input and
outputs a distribution over phonemes, indicating the identity
of the phone at the center of the input window. Training data
consist of auditory tokens sampled from labeled corpora as
described below. The model is presented with a window of
speech and a corresponding vector indicating the phone at the
center of the window and is trained using stochastic gradient
descent over the network’s parameters. We do not mean this
supervised training to be an accurate model of first language
acquisition, but rather, a way to quickly create networks that
have knowledge of a “native” language. We similarly train
an English model to use as a native language control. In
this experiment, we use real speech tokens sampled from
spoken corpora – stimuli which are inherently noisier than
controlled lab-prepared stimuli. Using this more naturalistic
data for both training and testing demonstrates that themodel
can deal with variability and is not sensitive only to stimuli
created specifically for this experiment.

The native network (shaded in Fig. 4) consists of 3 con-
volutional and batch normalization layers followed by 1
linear layer. Data for native language training is derived from
the Wall Street Journal Corpus for English (Paul & Baker,
1992) and the GlobalPhone Japanese Corpus (Schultz, Vu,
& Schlippe, 2013) for Japanese. The model is presented with
19.5 hours of speech and training occurs for 25 epochs.

For subsequent video game training we sample sounds in
each category ([r], [l], [d], and [g]) from theWall Street Jour-
nal Corpus with each category reflecting a different location
of the alien.We expose our native language model to training
in the video game paradigm, where phonetic information is
combined with the location vector into a linear layer as in
Simulation 1 (unshaded in Fig. 4) and the model once again
outputs its expected value of each action. We add two new
nodes to the phoneme layer to mirror the supervised model
and allow themodel tomap new information at this layer. The

123



148 Psychonomic Bulletin & Review (2025) 32:139–155

Fig. 4 Example network
diagram for Simulation 2. The
shaded area represents layers
used for native language training
and supervised learning. The
entire network is used for
reinforcement learning. The
phoneme layer size is 36 for
native Japanese training, 39 for
native English training, and 38
for non-native training (both
reinforcement and supervised)
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training signal is allowed to backpropagate through all layers
of the network and can change the initial parameters relat-
ing to the phone classification native language training. The
environment and presentation of stimuli in the video game
occurs as described in experiment 1, over 1500 episodes con-
sisting of 128 tokens (32 for each category). As our primary
goal in this experiment is seeing the outcome of video game
training when there is some native knowledge already in the
system, we simply attach the reinforcement learning to the
output of this model at the phoneme layer.

The supervised learning models are presented with only
examples of /r/ and /l/ sounds - the same tokens used in
the video game training. Since the native model does not
include nodes representing /r/ and /l/, we add two nodes to
the phoneme layer corresponding to these two phonemes.
We then continue training the model as a phoneme classi-
fier with the same /r/ and /l/ input as in the reinforcement
learning model. The model updates its parameters using the
difference between its prediction of the phoneme category
and the ground truth category (either /r/ or /l/). This is pre-
sented as a one-hot vector, except its length is two larger
than in the native training, where the new /r/ or /l/ value is
set to 1 and the other values, including those correspond-
ing to categories learned during training, is set to 0, hence
other than this increase in vector size by two, the architecture
of the supervised model is virtually identical to that of the
native pretraining. We aim to make the amount of training
data equivalent between the reinforcement and supervised
learning models. The reinforcement learning model makes a
parameter update over a batch of 32 tokens every timestep.
We present the supervised model with 1500 epochs of 64

datapoints – 32 from each of the /r/ and /l/ categories. We do
not present /d/ and /g/ tokens as part of the supervised model
as, even if they are acoustically different, these phonemes
already exist in Japanese and are presented during the native
training.

Neural networks often require large sets of data to train,
so we train two different versions of each model. The first
includes four tokens of each speech category as in the original
experiment. These stimuli are those that the English native
language training successfully categorizes and are kept con-
stant throughout the simulation. In the second version of each
model,we sample a large number of tokens during non-native
training. Instead of sampling only four tokens of each cate-
gory,we instead present a new token from the training portion
of the Wall Street Journal corpus at each training step.

Acoustic input during all training is given as Mel fre-
quency cepstral coefficients (MFCCs) (Mermelstein, 1976),
which are designed to describe the overall shape of the acous-
tic at any one point in time. We take 13 coefficients and first-
and second-order derivatives, giving 39 total dimensions. A
200-ms speech window is segmented into frames that are
25 ms wide at 10-ms intervals and zero-padded, yielding a
total of 21 frames.

Neural networks are known to suffer from an issue known
as catastrophic forgetting, where performance on one task is
greatly reduced after training on a second task. This issue is
relevant for our paradigm as we first train on a native lan-
guage classification task before presenting the network with
the video game training – two taskswhich output quite differ-
ent outputs.We are specifically focused on the discrimination
ofL2 contrasts in thiswork anduse the native languagemodel
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only as a starting point for second-language learning. While
we are not concerned with the continued perception of the
native language, allowing the network to update all parame-
ters in an unconstrained waywouldmake the native language
knowledgewe instill irrelevant. For this reason, we add a reg-
ularization term during training which aims to find a solution
to the second task (the non-native sound learning) which
also performs well on the native language training (Kirk-
patrick et al., 2017; Aljundi, Babiloni, Elhoseiny, Rohrbach,
& Tuytelaars, 2018). This term penalizes parameters as the
move away from the parameters learned during native lan-
guage training and is implemented for both supervised and
reinforcement networks.

We simulate the [r]/[l] pre- and post-test discrimination
tasks from the original experiment as well as measure per-
formance on the native language using a machine ABX test,
which is a parameter-free method of measuring the distance
between model representations (Schatz et al., 2013; Schatz,
2016). We take a vector of activations for a presented token
at the ‘phone’ layer of the model. Two tokens, A and X, are
taken from one category and a third token, B, is taken from a
different category. We take the Euclidean distance between
vectors A and X, and B and X and determine which distance
is shorter. If X is determined to be closer to A, then the trial
is a success, if X is closer to B, then the trial has failed.
The ABX success rate is defined as the probability of suc-
cess for two tokens from these categories selected at random
from the corpus. An ABX success of 1 indicates perfect dis-
crimination, with 0.5 being chance performance. We run the
ABX task over approximately 9 million samples of [r] and
[l] drawn from a portion of the WSJ and GPJ corpora with-
held for testing, including 143 different speakers. Training
and evaluation sets are completely independent and no token
or speaker used during training is present during evaluation.
For the ABX task used in our experiments, A, B, and X are
all sampled from the same speaker, where X is sampled from
a different ‘context’ (i.e., surrounding phonemes) than A and
B. An ABX score is calculated by averaging the correct tri-
als across all pairs within a specific context, before averaging
performance across all contexts. All results are averaged over
6 model runs.

Results

Pre- and post-training ABX success rates are shown in Fig.
52 for both versions of our training – presentation of four
exemplars during training, and presentation of a wide array

2 These figures show ABX scores computed at the ‘phoneme’ layer.
In response to a reviewer’s comment, we also computed ABX scores
at earlier layers, but these did not change substantially during training
in either the reinforcement learning or the supervised learning model,
suggesting that most learning occurred at the phoneme layer.

of tokens sampled from the corpus. For models presented
with only four tokens per category, the Japanese nativemodel
improves in [r]/[l] discrimination ability after non-native
training across both supervised (t(5) = 5.37, p = 0.002)
and reinforcement learning (t(5) = 8.72, p < 0.001)models
when presented with only four tokens. This improvement is
small but significant for bothmodels and neither performance
reaches that of the native English model. This is consistent
with results from Japanese native speakers who participated
in the experiment who show increased [r]/[l] discrimination
performance but do not reach native-level performance. We
note a statistically significant (t(5) = 3.07, p = 0.014), but
very small difference between the performance of the super-
vised and reinforcement learning models after training (two
tailed t-test), with reinforcement learning exhibiting slightly
higher performance than supervised learning.

For the alternate version of our training with models pre-
sented with a large number of tokens sampled from the
English corpus, the size of the improvement before and
after video game training is much larger for both supervised
(t(5) = 24.01, p < 0.001), and reinforcement training
(t(5) = 70.83, p < 0.001). This model does not have
an experimental counterpart, but the similar performance
between supervised and reinforcement learning models is
consistent over this different input. There is not a significant
difference between the supervised and reinforcement trained
models for this input (t(5) = 1.93, p = 0.111). We cal-
culate cross entropy to compare our results to experimental
data (Table 2). Presented results are for a learning rate of 0.1
over training, and a γ of 0.9, however, once again the results
observed are consistent over various parameter settings of
the network including varying learning rates learning rate
(0.01 − 0.9) and game types as in simulation 1.

These results show that in principle, a reinforcement sig-
nal is enough to alter speech representations and enable an
agent to improve its discrimination of ‘non-native’ speech
sounds, providing additional evidence that that video game
paradigm results arise due to the use of reinforcement learn-
ing. For training with limited tokens which mirrors the
original experiment of Lim and Holt (2011) there is a sta-
tistically significant, but small difference in discrimination
after training between the two models, where reinforcement
learning shows slightly better performance than supervised
learning. For training with a large number of tokens sam-
pled from the corpus, supervised and reinforcement learning
models perform equally well. Our results overall demon-
strate that a reinforcement learning agent set within a video
game paradigm can overcome native language knowledge.
The reinforcement algorithm can use the category informa-
tion implicitly provided through action and reward pairings
to uncover structure in the stimuli to at least the same extent
as an algorithm that takes explicit category information. This
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Fig. 5 Simulation 2 Results:AExperimental results fromLim andHolt
(2011). B Simulation results run with only four tokens of each category
presented during training. Reinforcement Learning Results (left) and

Supervised Learning Results (right) with 95% confidence intervals. C
Simulation results from run with large variety of token from each cate-
gory presented during training

provides a specific account that can explain how humans are
able to learn sound categories in the video game environment.

General discussion

Simulations in this paper show that a reinforcement learning
network can model human behavior in the Wade and Holt
(2005) video game paradigm and capture specific facets of
human data better than a supervised learning algorithm. Our
proposed model of the video game environment consists of a

deep Q network – a reinforcement learning algorithm which
maps an input of locations and auditory tokens to actions,
learning at each timestep through a reward signal. In our first
simulation, we demonstrate that while both algorithms are
able to learn synthesized sound categories, reinforcement
learning provides a better model of one specific aspect of
experimental data than supervised learning. This shows that
reward-based learning could bewhat is driving learning in the
video game paradigm. In our second simulation, we build a
model of a native Japanese andEnglish speaker before expos-
ing the Japanese-trained model to the video game paradigm

Table 2 Cross entropy values comparing our two models trained on limited tokens (as in original experiments) to experimental data

Native language training Limited token video game training All tokens video game training
English Japanese Japanese Japanese

Reinforcement learning −0.23 −0.68 −0.58 −0.64

Supervised learning −0.60 −0.68
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– again comparing this with supervised learning. We show
that both the reinforcement and supervised networks per-
form similarly and reflect the improvement that humans show
when learning /r/ and /l/ sounds.

In prior experiments, it has been shown that reward-
learning systems in the striatum are active during incidental
learning tasks and a high degree of functional connectivity
is observed between these regions and the speech perceptual
system in superior temporal gyrus (Lim et al., 2014, 2019).
Taken alongside this evidence, the fact that in our simula-
tions, reinforcement learning – a specific implementation of
reward-based learning – successfully captures some quali-
tative aspects of the data better than a supervised algorithm
supports the idea that usage of these circuits is important in
adult speech category acquisition. It also demonstrates that
corticostriatal loopsmay provide a particular role in updating
perceptual representations.

Our model is similar to the framework proposed by Lim
et al. (2014), and our reinforcement learning algorithm simi-
larly generalizes acrossmodes (vision and audition). One key
difference is that both our reinforcement learning and super-
vised learning models in Simulation 2 include a layer that is
intended to correspond to category information, whereas in
the previous framework, this layer is only included in super-
vised learning. We choose to formulate our model in this
way so we can instill phoneme category knowledge during
native language training via a phoneme classification task.
This also allows a fair comparison with supervised learning
as both models are closely aligned in architecture and can be
tested at the same layer.

Implications for second-language phonetic learning

While the model we propose in this paper shows a statis-
tically significant difference compared to the performance
of a supervised algorithm in some scenarios, the effect size
is generally minimal. Behaviorally, the supervised learning
simulation could be considered similar to a situationwhere an
L2 learner recognizes there are two additional categories to
learn and immediatelymatches any new information to one of
those categories before receiving explicit feedback at the end
of each trial. Previous work has given conflicting evidence
on whether implicit learning is better than explicit learning.
According to Lim and Holt (2011), 5 days of training in the
video game paradigm appears to be more effective than 2–4
weeks of explicit training of this sort (Lively et al., 1993),
although Roark and Holt (2018) show better learning out-
comes for explicit learning for non-speech categories. The
implicit learning paradigm is clearly effective though, and
there appear to be differences in the category types that can be
learned through training that engaged dorsal striatal circuits
rather than frontal and anterior striatal circuits, as proposed
by theDual Learning Systemsmodel (Chandrasekaran, Yi,&

Maddox, 2014). What causes this difference? If we consider
that supervised learning couldmodel explicit paradigms, then
why do our models show very similar results and what could
give rise to the differences seen in prior literature?

We suggest that differences between these paradigmsmust
arise from differences in the neural circuitry recruited in each
task. Neural imaging of the video game paradigm not only
shows activation of the striatum during category learning,
but participants who exhibit learning show strong functional
connectivity between the striatum and the superior temporal
sulcus (STS) – the primary cortical center of speech process-
ing (Liebenthal, Binder, Spitzer, Possing, & Medler, 2005).
This suggests that the basal ganglia are using reward informa-
tion to update auditory perceptual networks via corticostriatal
loops. When the noise stimuli are randomized in the experi-
mental counterpart to our Simulation 1 (such that the aliens
do not correspond to distinct auditory categories), functional
connectivity between STS and striatum is not predictive of
category learning performance in the control conditionwhere
category identity is not discernable (Lim et al., 2019). This
means that the connectivity is directly related to learning
information about categorymembership of the stimuli. If this
functional connectivity plays an important role in category
learning, then the effectiveness of reinforcement paradigms
could lie in the engagement of these specific reward circuits.
When the basal ganglia are active, connections to the STS
allow for effective learning; when the basal ganglia are less
active, or not engaged at all, updates to the perceptual system
in STS are reduced.

The neural signatures observed in initial video game
experiments are also seen in other category learning paradigms
(Golestani & Zatorre, 2004). These show that when learning
is effective in explicit learning paradigms, greater activation
is also seen in the basal ganglia. Basal ganglia activation
may be particularly important for effective speech category
learning in a wide range of situations.While explicit learning
paradigms are able to activate these neural circuits required
for effective learning, the video game by its nature and setup
as a reward-based learning paradigm, may engage basal gan-
glia circuits more specifically and effectively. The fact that
feedback in the video game paradigm comes as a reward sig-
nal, rather than simple category information, activates the
reward-based circuits in this region.

However, this still leaves open the question ofwhy updates
induced by the basal ganglia are particularly effective. What
is special about activating these circuits?We suggest the pos-
sibility that a frontal systemmay perform separate updates to
the striatal system activated through reward-based learning.
These circuits may have particular properties that modulate
their effectiveness for speech sound learning.

One difference between the systems could arise from
more rapid plasticity induced by basal ganglia feedback
circuits. Theories in visual category learning propose that
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different feedback loops may result in plasticity on different
timescales. As one example, Seger and Miller (2010) sug-
gest that the striatum forms rapid representations of reward
predictions that can gate updates to cortex. Under this the-
ory, striatal areas are responsible for forming the connection
between specific cues and actions and frontal areas are
responsible for generalization and identifying the properties
that are consistent across categories. Within this framework,
the effectiveness of the implicit learning paradigm would
arise because – even though both striatal and frontal neural
circuitry update the perceptual system in the same way – the
striatal circuitry causes faster plasticity in perceptual regions.

Alternatively, our work conforms with the Dual Learning
Systems (DLS) model for speech category learning recently
proposed by Chandrasekaran, Koslov, and Maddox (2014).
This theory builds on two system models in vision literature
and posits that a reflective system generates category bound-
aries by forming explicit rule-based updates and a reflexive
system generates implicit associations between tokens. A
neurobiological split between the systems is similar to that
proposed in vision research is suggested (Ashby et al., 1998;
Ashby & Maddox, 2011), where the reflective system uses
frontal circuits and and the anterior striatum, and the reflexive
system using circuitry in the dorsal striatum. The framework
is supported byboth behavioral (Chandrasekaran,Yi,&Mad-
dox, 2014), and neural studies (Feng et al., 2021).

The models presented in this paper could be considered
to approximately equate with the two systems in this frame-
work. Our reinforcement algorithm closely aligns with the
reflexive systemwhich engages reward circuits and our super-
vised algorithm could be considered to be more akin to the
reflective system. Under the initial two systems models it
is assumed that the more successful system will dominate
at a given time (Ashby et al., 1998). If explicit rules are
best suited to describing the task, the reflective system will
dominate learning and if the boundary between categories
is better described as an integration problem over multiple
cues the reflexive system will dominate. Chandrasekaran, Yi,
and Maddox (2014) propose that speech category learning
is reflexive-optimal, due to the resources needed to generate
rules to capture categories in such a highly multidimensional
space. Under this assumption, in the video game paradigm
the reflexive system gives rise to better learning outcomes
and dominates over the reflective system. The results in
our study are consistent with this idea as the reinforcement
learning model, which closely aligns with the expected com-
putations of the reflexive system, aligns more closely with
human outcomes in specific situations. In our paper, we do
not model the interaction between these systems, only the
outputs that might be given by each. Future work should look
more directly at the competition between the two systems.

Interestingly, the optimality of the reflexive system for
speech could coincide with recent work in infant category

learning which indicates that learning dimensions of an audi-
tory perceptual space could be a separate process from the
formation of specific categories during infancy (Feldman,
Goldwater, Dupoux, & Schatz, 2021). We speculate one pos-
sibility that the reason the reflexive system is particularly
effective in humans, could be because it targets an earlier
stage of the mapping to phonetic categories – i.e., it targets
the warping of perceptual space, from which phonetic cat-
egories can be built, as opposed to the stage which forms
phonetic categories.

Our modeling results add to the growing body of evi-
dence that reinforcement learning plays a role in speech
category learning in adults. Previous modeling work outside
of implicit learning, indicates that reinforcement learning
provides a better model of human behavior than other algo-
rithms. Many speech sound learning algorithms posit that
learning occurs through gathering statistical information
about one’s environment, however Nixon (2020) shows that
these algorithms cannot predict particular cue-outcome rela-
tionships. In humans, a learned informative cue which is
associated with a specific outcome will block the learning
of any other cues to the same outcome, and while statisti-
cal learning cannot account for this effect, error-prediction
algorithms related to reinforcement learning can. Reward-
based algorithms also predict ordering effects of cue and
outcome (Nixon, 2020) aswell as other cue-weighting effects
(Harmon et al., 2019). The results we present in this paper,
alongside these previous studies, point towards reinforce-
ment learning as a mechanistic account of speech category
learning in adults.

Infant phonetic learning

In the future, we hope to expand this algorithm to model
native language learning in infants more generally, as they
appear to acquire speech sound categories in a passive
environment without direct feedback. Studies on auditory
category learning show that adult listeners can learn one-
dimensional stimuli through passive exposure, however they
usually require explicit feedback to learn auditory stimuli
that vary on more than one dimension (Goudbeek, Swing-
ley, & Smits, 2009; Yi & Chandrasekaran, 2016). When
infants learn the sounds of their native language, how-
ever, they are not told what specific sounds belong in what
phoneme categories. While they receive little to no direct
cstill becomes attuned to the speech sounds of their native
language at a young age (Werker, Polka, & Pegg, 1997; Kuhl
et al., 2006). Many theories posit that they may accumulate
statistical information about their acoustic environment (Val-
labha & McClelland, 2007), although there are some effects
that purely statistical learning cannot account for (Nixon
& Tomaschek, 2021). The idea of ‘intrinsic reward’ within
reinforcement learning literature posits algorithms where
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rewards come from within the system, rather than from the
external environment (Singh, Lewis, Barto, & Sorg, 2010).
For example, an algorithm that explores a wide area of the
solution spacemay receive a reward for doing just that, even if
it does not take rewarding actions (Eysenbach, Gupta, Ibarz,
& Levine, 2018). These ideas could perhaps be applied to
infant phonetic learning, where rewards are provided from
higher levels of cognition, such as being able to form cate-
gories that allow for successful word and pattern recognition.
Thiswould contribute towards an explanation of how they are
able to learn speech sound categories effectively at a young
age without explicit feedback.

Reinforcement learningmay also provide a goodmodel of
experimental paradigms that are typically used with infants.
A common infant testing procedure is the conditioned head-
turn (CHT) paradigm, where an infant on a caregiver’s lap
is trained to turn their head to a toy whenever they notice
a change in a stimulus. When they do this correctly, they
are rewarded with the toy lighting up and making a sound.
This very easily fits as a reinforcement learning algorithm
where the learning signal during the experiment that the
infant receives comes in the formof a reward for good actions.
While these paradigms are typically thought to reflect pre-
existing knowledge that the infant has, the effectiveness of
a reward-based paradigm in adults may lead us to consider
that infants learn during the experiment as well.

Conclusions and future directions

Next steps require identifying the specific range of tasks that
appear to activate the corticostriatal pathways recruited in this
paradigm. Harmon et al. (2019) demonstrate that reinforce-
ment learning reflects human behavior over other algorithms
in a paradigm where the down-weighting of a phonetic cue
will occur only if there is a more informative cue present.
This task may be another which selectively activates basal
ganglia circuits. There are, however, few additional exam-
ples in which we know that the basal ganglia are recruited
or that specific predictions differ between reinforcement and
supervised learning.

As discussed above, we have focused on learning to per-
ceive L2 contrasts in this work, and have assumed that
learning starts fromnative language speech perception. Since
we do not model the continued perception of speech in the
first language, we are agnostic with regard to the extent
to which the first and second-language speech systems are
shared or separate. For this reason, we do not discuss the
ability of the system to discriminate native language con-
trasts after [r]/[l] training. Our regularization term ensures
that the network uses native knowledge during non-native

training, however both models that we study in this paper
would show catastrophic forgetting for the native language
tokens. Thus, for the present paper, we assume we are mod-
eling an L2 perceptual system that is simply initialized to be
identical to the L1.

Our framework opens avenues to investigating the flex-
ibility of representations of speech and future work can
manipulate which layers of the network can be influenced
by the reinforcement learning signal, and how those weight
updates occur. Our model could provide a basic framework
to test whether there are particular parts of the processing
system that are less flexibly updated, or not updated at all,
during second-language learning. Further exploration of the
regularization term as a way to constrain the plasticity of the
system is also an interesting direction for future modeling
work.

In the future ourmodel could also be augmented to include
varying levels of motivation as part of the simulation. Moti-
vation and engagement could be manipulated by changing
the amount of reward that the agent receives for taking cor-
rect actions, the precise actions for which the agent receives
reward, or the probability by which the agent receives a
reward for taking a correct action (i.e., the agent only receives
a reward for the correct action 80% of the time). In the poten-
tial extension to infant phonetic learning, intrinsicmotivation
can be incorporated into the model, where the reward func-
tion accounts for actions that explore the entire action or
reward space (an example of such a computational model is
Eysenbach et al., 2018).

Finally, the simulations in this paper have implications for
second-language teaching pedagogy. Learning the sounds of
a second language has always been challenging, particularly
when those sounds do not match up with one’s native lan-
guage phonology. Our work reinforces the idea that implicit
learning can provide an effective strategy for learning non-
native speech sounds. Understanding why this paradigm is
effective will allow us to consider other tasks and activi-
ties that could lead to successful learning. Many people use
mobile game-like applications to learn foreign languages,
which often include a level system where learners receive
rewards such as cosmetic upgrades, items, or points for a
leaderboard system. This work raises questions about the
exact role that these rewards play within second-language
learning. Reinforcement learning – where improvement is
motivated through rewards – is a particularly relevant topic
and further simulations on the impact of rewards could poten-
tially benefit second-language education.
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