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Abstract

Adults struggle to learn non-native speech categories in many experimental settings (Goto,

1971), but learn efficiently in a video game paradigm where non-native speech sounds have

functional significance (Lim & Holt, 2011). Behavioral and neural evidence from this and

other paradigms point toward the involvement of reinforcement learning mechanisms in

speech category learning (Harmon, Idemaru, & Kapatsinski, 2019; Lim, Fiez, & Holt,

2019). We formalize this hypothesis computationally and implement a deep reinforcement

learning network to map between environmental input and actions. Comparing to a

supervised model of learning, we show that the reinforcement network closely matches

aspects of human behavior in two experiments — learning of synthesized auditory noise

tokens and improvement in speech sound discrimination. Both models perform comparably

and the similarity in the output of each model leads us to believe that there is little

inherent computational benefit to a reward-based learning mechanism. We suggest that the

specific neural circuitry engaged by the paradigm and links between striatum and superior

temporal areas play a critical role in effective learning.

Keywords: Speech Perception, Category Learning, Computational Modeling,

Reinforcement Learning
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Introduction

Language learners need to map a continuous, multidimensional acoustic signal to

discrete abstract speech categories. The complexity of this mapping poses a difficult

learning problem, particularly for second language learners who struggle to acquire the

speech sounds of a non-native language, and almost never reach native-like ability. A

common example used to illustrate this phenomenon is the distinction between /r/ and /l/

(Goto, 1971). While these sounds are distinct in English and native English speakers easily

distinguish the two sounds, native Japanese speakers find this difficult, as the sounds are

not contrastive in their language. Even with much explicit training, Japanese speakers do

not seem to be able to reach native-like ability (Logan, Lively, & Pisoni, 1991; Lively,

Logan, & Pisoni, 1993).

A particularly effective strategy for learning speech categories as an adult, however, is

through implicit learning within a video game paradigm (Wade & Holt, 2005). In these

experiments, participants control a spaceship at the center of a screen with aliens entering

from various locations. Participants must shoot or capture these aliens and increase their

score every time they do so. Auditory tokens are presented before each alien enters and are

sampled from a category that corresponds to the aliens’ location and color, providing an

early cue for identifying which direction the participant should face. As the experiment

progresses, aliens begin to move faster and it becomes increasingly difficult to turn and

shoot or capture without attending to the auditory information. Improved performance for

the recognition of categories between the start and end of gameplay is observed for various

types of stimuli — both synthesized noise (Lim et al., 2019) and speech tokens (Lim &

Holt, 2011). In the latter experiment, adults show as much improvement in the

discrimination of non-native speech sounds after 2 hours of video game training as they do

during 10 hours of explicit training over a period of 2-4 weeks (Logan et al., 1991). Various

follow-up experiments show that implicit learning paradigms of this sort can be effective in

auditory category learning generally (Gabay, Dick, Zevin, & Holt, 2015; Roark & Holt,
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2018; Roark, Lehet, Dick, & Holt, 2022), and that implicit learning might play a unique

role in the learning of categories such as speech sounds that require integration of

information across dimensions (Chandrasekaran, Yi, & Maddox, 2014; Chandrasekaran,

Koslov, & Maddox, 2014).

A clue to the mechanisms behind this paradigm could lie in its engagement of

reward-based learning. When undergoing learning in this environment, neural activity is

observed in the dorsal striatum (Lim, Fiez, & Holt, 2014; Lim et al., 2019). This region is

considered to play an important role in reward prediction through the activation of

dopaminergic circuits. Activation of these circuits during a category learning task is not

restricted to the domain of speech: in vision, corticostriatal connections are one of many

neural circuits not only involved in perception but specifically category learning (Seger &

Miller, 2010). While studies on the striatum often discuss reward prediction in this region

in general terms, recent studies have proposed that the basal ganglia could specifically

implement reinforcement learning - one particular reward-learning algorithm (Kawagoe,

Takikawa, & Hikosaka, 1998; Joel, Niv, & Ruppin, 2002; Cohen & Frank, 2009; Dabney et

al., 2020).

What is special about this reward-based circuit that potentially leads to particularly

effective category learning in some situations? Why does a paradigm in which category

information is presented implicitly result in at least as good performance as one where

categories are explicitly given to the participants? The inherent computational properties

of a reward-based algorithm that is implemented by the dorsal striatal implicit learning

system could distinguish it from other learning systems, resulting in differences in the rate

and quality of category learning when each system is activated. Alternatively, the

algorithm deployed by reward learning circuits may not in itself provide a privileged role in

category learning, and any differences in learning may come from the neural properties of

circuits engaged by this learning paradigm.

In this paper, we provide new computational evidence that bears on this question.
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We show explicitly that a reinforcement implementation of reward-based learning provides

a good model of human behavior in the video game paradigm proposed by Wade and Holt

(2005) across two experiments - learning noise categories (Lim et al., 2019) and speech

sound categories (Lim & Holt, 2011). We compare our models with a simulation of

supervised learning and show that in the noise category experiment, reinforcement learning

captures one specific aspect of human data which a supervised learning model does not. In

the speech sound learning experiment, supervised learning and reinforcement learning

provide a similar match to human behavior.

Our work provides the first algorithmic account of video game training for category

learning and provides the first computational evidence that a reinforcement mechanism

may be used during video game training. Our supervised algorithm is intended to provide

a baseline to which we can compare reinforcement learning, however it also bears some

resemblance to explicit category learning paradigms. While the reinforcement model shows

a marginally closer model fit to human data in some contexts, the benefit of the algorithm

is minimal, suggesting that any differences in effectiveness between the two learning

paradigms may not lie in the algorithm but in the neural circuitry involved. We argue that

since the learning signal in the video game paradigm comes in the form of a reward, rather

than simple category information, specific feedback loops are activated which better

enables humans to update category representations. This raises new questions about the

role of reinforcement learning in phonetic learning more generally. Our models also provide

one of the first formal frameworks for further studying computational properties of implicit

learning that could lead to particular learning outcomes in this paradigm.

The remainder of the paper is organized as follows. We first provide background on

reinforcement learning and its applications to this paradigm and describe the models we

use in our work. In our first simulation, we implement our reinforcement learning

algorithm in a model of the Wade and Holt (2005) video game paradigm where synthesized

noise sounds are presented and demonstrate that it reflects a specific pattern in human
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data better than a supervised algorithm. In this simulation, we do not build in prior

representations to the model, allowing it to form representations solely from the input

during training. Our second simulation shows that the algorithm can overcome native

language knowledge and improves in discrimination of non-native speech sounds. Here,

listeners possess pre-existing perceptual category mapping from their native language, and

we build this prior knowledge into our model, before observing how it can changes after

training. We discuss the implications of these results and what may give rise to the

effectiveness of the video game paradigm, suggesting that the specific neural circuitry

engaged during the task may contribute to learning in this paradigm.

Background

Reinforcement Learning vs. Supervised Learning

Reinforcement learning (Sutton & Barto, 1998) is a specific implementation of

reward-based learning. In reinforcement learning, an agent takes actions within an

environment and receives a reward upon reaching a favorable outcome. At each timestep,

the agent receives information about the state of the environment and predicts the value of

each action available to it. The agent then takes an action, observes the reward received,

and updates its parameters according to the mismatch between the predicted and observed

reward value. This process is iterative, enabling the agent to take actions that lead to

reward in the future. Even if the agent does not receive a reward immediately, it will still

take actions that put it in a better position to receive a reward at another timestep.

While other reward-based learning algorithms exist (Rescorla & Wagner, 1972), the

construction of the video game paradigm has components which lend itself clearly to an

implementation of reinforcement learning. A participant receives information about the

state of the environment (visual and auditory cues within the video game), takes an action

within that environment (turning and shooting aliens), and receives a reward for correct

actions (increases in score). The paradigm itself has been used in many experiments and
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results in robust learning across different variations of stimuli.

We can contrast reinforcement learning with the much more commonly used

algorithm of supervised learning. In supervised learning a function is created which maps

between input and a corresponding output—in this setting, a function which maps

auditory input directly to abstract perceptual categories. For any input, the model

generates a corresponding output and receives the ground truth value of the output. The

model can directly compare the predicted output from the model with the ground truth

output and update its parameters so that its predicted output will be closer to the ground

truth in the future. We make a clear distinction between these two algorithms, where

reinforcement learning is given a reward signal, and the supervised algorithm is given

specific category information. These are different learning signals — we consider that a

reinforcement learning agent is only told when it performs correctly, but is not told the

correct action when it does not. In contrast, the supervised network receives information

about the correct decision on each trial. We introduce supervised learning, not because we

believe it is a particularly strong model of a specific task, but because it provides a baseline

to consider the computational properties of reinforcement learning. However, since the

supervised model receives direct feedback about correct categorizations, it most closely

resembles an explicit learning paradigm, where participants are asked to categorize sounds

and receive feedback on the correct category after every trial.

Reinforcement Learning in Speech

Previous findings have indicated that reinforcement learning might be utilized in

human sound category learning, motivating our choice of algorithm in this paper. When

participants take part in the video game paradigm, neural regions typically associated with

reinforcement and reward prediction are engaged. (Lim et al., 2014, 2019) In Lim et al.

(2019), participants play a video game where non-speech auditory categories are presented

while activity within subcortical areas is measured using fMRI. When these categories are
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correlated with rewarding actions in the game, participants show increased activity in the

striatum—specifically the caudate body and putamen—a subarea of the basal ganglia.

This region of the brain has long been thought to play an important role in reward,

through the activation of dopaminergic circuits and recent studies have suggested that the

striatum could implement reinforcement learning specifically (Kawagoe et al., 1998; Joel et

al., 2002; Cohen & Frank, 2009; Dabney et al., 2020).

The striatum, however, is not a monolith, and the Dual Learning Systems (DLS)

Model of auditory category learning specifically proposes a split between two different

systems used during learning (Chandrasekaran, Yi, & Maddox, 2014; Chandrasekaran,

Koslov, & Maddox, 2014), taking inspiration from models of category learning in vision

(Ashby, Alfonso-Reese, Turken, & Waldron, 1998; Ashby & Maddox, 2011). This model

posits that humans have available two distinct learning systems, which perform better at

learning different category types. The reflective system is most similar to supervised

learning and is recruited where a category boundary is clearly defined over one dimension.

These are considered to be ‘rule-based’ categories and this system engages primarily the

anterior regions of the striatum. Alternatively, categories that require the integration of

cues from various categories are proposed to use the reflexive system. These categories are

classified as ‘information integration’ categories and are proposed to engage the caudate

body and tail, and putamen, which are active during implicit learning tasks.

Given evidence from implicit learning tasks such as the video game which appear to

give rise to particularly effective category learning, as well as evidence from dual systems

experiments, where experimental manipulations push participants towards one learning

system or the other (Yi & Chandrasekaran, 2016), it has been proposed that the learning

of speech categories is reflexive-optimal. Because speech categories tend to require the

integration of a variety of different acoustic cues, learning phonetic categories as an adult

potentially benefits from the involvement of the reflexive learning system. The DLS model

of category learning proposes that the caudate posterior caudate and putamen—and
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therefore the reward-based algorithms that are thought to be implemented by these

regions—are particularly important for second language sound category learning.

Implicit learning has also been expanded to use the SMART task, a paradigm

designed to engage the same implicit systems as the video game paradigm, but with less

complexity (Gabay et al., 2015). Experiments with this paradigm indicate that learning

only occurs when the actions that a participant must make are aligned directly with the

auditory categories in the input, suggesting that motor actions are important and an

alignment to statistical input is required for learning to occur (Roark et al., 2022).

Listeners cannot be simply mapping visual and auditory cues by seeing a specific alien

appear after a specific sound, but instead are relying on a motor response to make this

connection. This implies that participants are not using an unsupervised learning

mechanism, where discrimination increases by passively listening to the stimuli. This fact

is important for the simulations we present in this paper, as we simulate learning by

modeling the actions that an agent takes when presented with auditory input

While there are differences between implicit and explicit learning, it may not be the

case that implicit learning is always more effective than explicit learning (Roark & Holt,

2018; Barrett et al., 2022). The closest comparison in the auditory domain between the

two learning paradigms comes from Roark and Holt (2018), where explicit learning leads to

better learning outcomes and implicit learning. However, the effectiveness seen in some

papers (Lim & Holt, 2011; Lim et al., 2014, 2019), alongside the evidence posited by the

DLS model outlined above, suggest that there are differences between implicit and explicit

learning and we aim to shed light on any computational differences in this paper.

Computational Models

We implement two computational models that take inspiration from a theoretical

framework of auditory category learning in dorsal striatal regions during the video game

paradigm, originally proposed by Lim et al. (2014). First, we implement a reward-based
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algorithm where an agent maps between state and action, and a learning signal is

generated as the difference between expected and received reward. This kind of learning is

described by Lim et al. (2014) as an ‘indirect reward prediction error’ signal, where

feedback only updates auditory space indirectly through the visual domain. Our model

differs in that the reward signal is simultaneously backpropagated to auditory and visual

networks as described below. However, the feedback is still ‘indirect’, as network outcomes

that the learning signal operates over are actions within the game environment and not

directly mapped to auditory categories.

The second model we implement is a supervised learning algorithm, which can be

considered a network that implements ‘direct reward prediction error’ where a feedback

signal directly alters the category output of the model. Our model is a computational

implementation aligned closely with the direct model discussed in Lim et al. (2014), where

the outcome of the network is the auditory categories themselves.

Reinforcement Learning

We define the reinforcement framework formally as a Markov Decision Process where

the environment is given by a set of states S = {s1, s2, s3, ...}, one of which is presented to

the agent at each time step t. The agent then has a set of actions A = {a1, a2, a3, ...} that

it can take. At each timestep, the agent receives information about the state, chooses an

action, and receives a reward rt before the environment transitions to the next state. The

transition between states can depend on both the actions of the agent and external factors

of the environment. The goal of the agent is to find a policy mapping between states and

actions (s, a) that will maximize the total reward for this and future steps, by updating its

parameters depending on the reward it receives.

In this paper, we use model-free reinforcement learning, where the policy of the agent
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is determined by the Q-function, defined as follows.

Q(st, at) = rt + γ ∗ max Q(st+1, at+1) (1)

This function outputs the maximum possible reward for a specific action, by summing the

reward at the current timestep, rt, plus the maximum possible reward from the next

timestep, max Q(st+1, at+1), multiplied by a discount parameter γ. This function is

iterative since the maximum value at the next timestep will apply the same function,

allowing the model to account for future reward. The result of Equation (1) (ie. the ‘value’

of a state/action pairing including current and future reward) is not directly observable for

the agent, and so it must estimate the value of each action at each state by approximating

this function. While there are various methods for performing this approximation, we use a

specific implementation of deep Q learning (Mnih et al., 2015) to build a deep neural

network that represents the Q-function (a DQN). This network takes state information as

input and outputs a distribution of values over all actions the agent can take. During

training, transitions between states, the action taken, and reward received are stored in

memory. At each timestep, we sample a batch of transitions, calculate the error across this

batch using a Smooth L1 loss function to calculate the difference between expected and

actual reward, and update parameters using stochastic gradient descent. Our simulations

implement a model-free reinforcement algorithm, where the agent does not have explicit

knowledge of transition probabilities, and instead must learn the action-reward mapping

without this knowledge. The selection of model-free over model-based reinforcement

learning is unlikely to have a large impact in our specific case, where the relevant state

transitions during each trial are deterministic and the number of learning trials is large

relative to the number of states and possible actions.

The agent’s decisions in this model follow an ϵ-greedy algorithm to allow for a

trade-off between exploring the environment to discover patterns and choosing the most
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optimal action to receive a reward. Throughout training, the agent will choose a random

action with probability ϵ and choose the optimal outcome with probability 1 − ϵ, where the

optimal outcome is the action with the highest value, as determined by the network. The

parameter decays during training to ensure that the agent has enough time to explore the

full spectrum of state-action pairings at the start of the simulation, before starting to

behave more optimally.

In the experimental paradigm (Lim & Holt, 2011; Lim et al., 2019), the player

receives both auditory and visual cues as they can see the location/color of the alien and

hear the corresponding sound. Over time, the game speed increases and in order to have a

chance at shooting the alien, the participant must rely increasingly on the auditory cues as

these are presented before the alien enters the screen. In our simulations, we present the

agent with one repetition of an auditory token on each timestep, as well as the current

direction the spaceship is facing. We do not present visual information identifying where

the alien is situated, meaning that the agent does not have grounding for the

correspondence between alien locations and the auditory category. This would be like a

human playing a version of the game where they can see the direction that the spaceship is

facing, but cannot see the location of any aliens. In theory, this should make the task more

difficult as the agent cannot bootstrap the learning of auditory categories from any visual

information present. This ensures that any success from our model is due to the

exploration of the reinforcement algorithm and the reward received, rather than simple

correlation between visual and auditory signals.

We discretize the continuous nature of the game, where the participant can take

actions at any time, into timesteps where at each step the participant receives information

about their location and environment and selects one action out of those available to them.

Actions consist of turning left or right, or shooting an alien. The reward is derived from

the increase in score by correctly performing these actions.

The environment for the video game in our simulations is constructed with 8 different
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directions in which the agent can face (N, NE, E, SE, S, SW, W, NW), where a left or

right action turns the agent by 45°. Aliens can enter from 4 directions (N, E, S, and W),

and each of these is associated with a different category. Each timestep consists of the

presentation of one auditory token and one action by the agent. If the agent is facing the

opposite direction to the location of a newly presented alien, it will need a minimum of 5

actions to turn toward and successfully shoot it. To allow enough time for this to happen,

each stimulus is presented 8 times. If the agent does not shoot correctly within this time,

then the alien disappears without the agent receiving any reward and the next stimulus is

presented. During training, there are 4 tokens within each category presented during

training and the agent has 3 actions available to it: Turn Left, Turn Right or Shoot.

The agent receives one point of reward for every alien it shoots (unlike the original study,

our simulations do not have a ‘capture’ mechanic). Location information is presented to the

model as a one-hot vector of length 8—i.e., the value for the corresponding direction where

the agent is facing is equal to 1 with all other values set to 0. This is not visual information

per se, as it simply instills knowledge of the direction that the agent is facing into the

model and does not encode any visual information about the location of the alien, making

our model slightly different to the theoretical framework proposed by Lim et al. (2014).

However, we conceptualize this similarly to the ‘visual’ component in that framework.

Supervised Learning

For this algorithm we use identical structure for initial network layers, however we do

not include location information and instead of outputting an action, the network outputs

a category directly. Throughout training, the network is presented with a batch of inputs

and predicts the corresponding category for each. These predicted categories are compared

to the ground truth categories for each input, and the model updates its parameters using

this difference. We use a Smooth L1 loss function, which provides a squared loss at small

error values and an L1 loss elsewhere, meaning it is less sensitive to outlier data points
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than a squared loss, to avoid the issue of exploding gradients (Girshick, 2015). This signal

is backpropagated and parameters are updated using stochastic gradient descent.

For each of our comparisons, we aim to make the amount of data presented to the

reinforcement and supervised learning models as close as possible. We keep the batch size

and number of presentations of each stimulus constant between the two simulations,

although the exact number of presentations for each token in the reinforcement learning

model will vary as it will take the agent different numbers of timesteps to face and shoot

the alien. As the reinforcement algorithm outputs actions and not categories, the

architecture of the two models cannot be identical, however we keep the architecture of the

initial layers of each model constant.

Simulation 1 - Synthesized Sounds

Our first simulation models the results of Lim et al. (2019) and demonstrates that a

reinforcement learning algorithm is able to reflect human behavior in discrimination of

auditory noise categories with simple boundaries. We simulate human experiments by

training a reinforcement learning network to map between states and actions within a

video game environment and a supervised model which is directly given category labels.

We evaluate the models by observing how much reward the reinforcement agent receives for

various categories of stimuli and how many trials the supervised network can correctly

identify. A comparison between the outcomes of the behavioral results across various token

types shows that reinforcement learning better models human generalization to novel

tokens and the impact of specific variability in the input over supervised learning.

Methods

We use stimuli constructed following the parameters from Lim et al. (2019), with

offset and onset categories created across an experimental and control condition (Figure 1).

Offset categories are consistent across the two conditions and can be identified by just one

dimension—the trajectory of change after 150ms—where onset categories are constructed
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differently between the two conditions. In the original experiment onset and offset

categories also differ in the the type of wave a noise carrier versus a sawtooth carrier. In

the experimental condition, one must attend to both the trajectory of change during the

first 150ms of the stimulus and the starting frequency in order to identify the correct token.

In the control condition, onset tokens are randomized and have no identifiable category

boundary.

Figure 1. Frequency profiles (left) and onset category structure (right) for simula-

tion 1 noise categories in the experimental (top) and control (bottom) condition.

Profiles from Lim et al. (2019).

The construction of stimuli in this way yields three types of category boundaries,

which we refer to as Simple, Complex, and Incoherent. Offset categories in both

conditions have a Simple boundary, as these can be distinguished along only one
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dimension. Onset categories have a Complex boundary in the experimental condition due

to the two-dimensional nature of the category boundary, whereas onset categories in the

control condition are Incoherent as there is no category boundary available.

We simulate the synthesized sounds in this experiment by using a Gaussian

distribution centered around each frequency peak at each timestep. This means that the

simulation does not differentiate the offset and onset stimuli by wave type, requiring it to

discover specific patterns in the pseudo-acoustic signal. Each Gaussian distribution has a

peak of 10 and a variance of 150Hz. For each of the 4 categories, 11 tokens are synthesized

with 4 presented during training and the remaining 7 withheld for testing. Results for both

learning types are averaged over 10 model runs. To simplify the presentation of tokens for

the incoherent boundary condition in this simulation, 4 specific tokens are presented,

rather than a range of randomized tokens as in the original experiment.

Our reinforcement network (Figure 2) combines the auditory representation with the

location information and outputs a value assigned to each action using a deep Q network,

trained with the algorithm outlined above. The network is trained over a total of 1000

episodes, each consisting of 128 tokens and tested on an additional 500 episodes of 176

tokens with weights frozen. We define performance by looking at the proportion of total

possible reward the agent receives for each category type during this test phase.

The supervised network (Figure 3) uses solely the auditory representation and is

trained to predict the category associated with each input, where each node in the output

vector corresponds to one category. It is trained similarly over 128,000 tokens (equaling the

128 tokens per 1000 episodes for reinforcement learning) and evaluated by taking the node

with the highest value as the predicted category for a specific stimulus. This is taken for

each of the 11 tokens and averaged over different model runs.
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work Diagram for Simulation 1.

Results

Results are shown in Figure 4. As expected, both models perform successfully in the

paradigm, receiving a high proportion of the reward that is available. Like the humans,

both models exhibit better performance for tokens presented during training than novel

tokens, but this effect is much more pronounced for the models than the humans. The

networks’ generalization to new tokens allows us to observe its patterns of performance

without these ceiling effects, which likely occur due to over-fitting to the data presented

during training, a common occurrence with neural networks. Results show the performance

of the simulated model on novel data during the testing phase closely aligns with the

post-test categorization responses of humans from the original experiment. As with

humans, higher performance is observed for offset tokens than onset tokens for both

models. This is because the boundary between categories has lower dimensionality in the

offset condition than in the onset condition: onset tokens have a more complex boundary,
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being defined by both the frequency trajectory and the steady-state frequency. As we

present 4 specific tokens for the Incoherent boundary, rather than a range of randomized

tokens as in the original experiment, our model has a higher success rate for these tokens

than the original experiments. As there is no boundary to generalize, however, we see that

performance for novel tokens is low across both models - mirroring the human results.

For each model, we treat the average values for each token type across models as the

mean of a distribution reflecting performance and measure how close this is to the mean of

the performance distribution of human experiments using cross-entropy.1 A high number

(ie. a negative number closer to zero) indicates that the models’ distribution is closer to

that of the original results. These values (Table 1) demonstrate that a reinforcement

learning model captures human data better across multiple conditions and token types,

including novel offset tokens across both conditions. The supervised model better captures

data for only onset tokens in the control condition. Summing over these values we get an

overall cross entropy of −9.73 for the reinforcement learning model and −10.51 for the

supervised model, showing that that reinforcement learning overall reflects human results

better than supervised learning.

Qualitatively, where supervised and reinforcement learning models diverge is the

difference in generalization for simple stimuli between the two conditions for novel tokens.

Despite the fact that these tokens are the same, humans are worse at discriminating

between simple (offset) stimuli in the control condition than they are at discriminating

1 We use cross entropy to calculate model fit here — we cannot calculate log-likelihoods as we do not have
access to the original experimental data and the exact number of data points for each token. Furthermore,
the parameters in our models are not fit to the experimental data but rather are learned during a
simulated learning process. However, if there were an equal number of trials between the experimental data
and our models, then the cross entropy values shown here would be proportional to the log-likelihoods. We
calculate cross entropy with the formula: C =

∑
i xi ∗ log(x̂i), where xi is a probability distribution

representing the experimental data (the mean value presented in the original paper), x̂i is the estimate of
this value produced by our model, and

∑
i indicates the sum over both successes and failures. We subtract

0.01 from the performance of each model to avoid undefined values by calculating log(0).
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A

C

B

Figure 4. Simulation 1 Results: A) Experimental results from (Lim et al., 2019).

B) Reinforcement Learning Results and C) Supervised Learning Results with

95% confidence intervals.

Table 1

Cross Entropy values comparing our two models to experimental data for each type of
token. Reinforcement Learning captures the results better for novel off set tokens in both
conditions and trained onset tokens in the control condition.

Offset Tokens Onset Tokens

Experimental Control Experimental Control

Trained Novel Trained Novel Trained Novel Trained Novel

Reinforcement Learning -1.47 -0.72 -2.35 -0.77 -1.95 -0.71 -1.10 -0.64

Supervised Learning -1.47 -0.86 -2.35 -1.25 -1.95 -0.79 -1.24 -0.60
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between them in the experimental condition. This suggests that the noise provided by the

incoherent tokens is enough to decrease generalization across the board, and not just for

the onset tokens themselves. To test whether each of our models gives rise to this specific

pattern, we compare the difference between experimental and control conditions in

generalization to offset tokens across the two models, performing an ANOVA with

condition and model as independent variables and proportion of successful trials as the

dependent variable. We found a main effect of both condition (F (1, 36) = 11.55, p > 0.001)

and training (F (1, 36) = 62.48, p > 0.001) along with a significant interaction

(F (1, 36) = 9.36, p = 0.004). Tests of simple effects revealed a significant difference between

successfully identifying these categories in the experimental condition versus the control

condition for the reinforcement learning network (t(18) = 4.22, p > 0.001), but not the

supervised learning network (t(18) = 0.26, p = 0.79). This suggests that for this specific

behavioral finding, a reinforcement learning algorithm better captures human data than

supervised learning.

We do not perform a hyperparameter sweep, however we do test the model across a

range of paramters. For the reinforcement learning model, we test learning rates between

0.01 − 0.09, and an γ value of 0.9—values typical to Deep Q Networks. We also test a

variety of game types, including where the agent receives many attempts to shoot the alien,

and where it receives only one attempt. The supervised model does not have these

parameters, but we match learning rates to those used in the reinforcement learning model.

Data presented here use a learning rate of 0.05, however, results are consistent across these

simulations.

This simulation demonstrates that it is possible to gather implicit knowledge about

auditory categories through a reinforcement signal, giving rise to human-like behavior, and

one specific pattern in the experimental data—namely the difference between learning of

offset categories between the two conditions— is mirrored by a reinforcement model, but

not a supervised model. The reinforcement learning algorithm successfully discovers the
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structure of input present through the reward function and actions within the environment.

Having shown that a reinforcement learning algorithm is able to use perceptual information

within this task, the next step is to show that the same algorithm can overcome native

language knowledge and will simulate human performance in its improvement in

discrimination of non-native speech categories.

Simulation 2 - Speech Sounds

Our second simulation models a learning experiment where Japanese and English

speakers participate in the video game with English speech tokens presented throughout

play (Lim & Holt, 2011). For native Japanese speakers, discrimination between English [r]

and [l] sounds can be challenging, as these sounds are distinguished primary by the F3 cue,

where Japanese speakers only have one sound along this acoustic dimension. Participants

in the Wade and Holt (2005) video game paradigm hear tokens of [ra], [la], [da], and [ga]

before each alien enters and Japanese speakers show improvement on [r]/[l] discrimination

after 5 days of training without reaching native-level performance, as measured on an

identification task presented before and after the training period. We once again compare a

supervised learning algorithm to a reinforcement learning algorithm in this paradigm to

investigate how each algorithm overcomes native knowledge to improve on discrimination

between the auditory categories presented. This simulation consists of two parts: native

language training where we model the knowledge of a native Japanese speaker, and

non-native training, where we expose this native model to either the video game

environment or supervised learning.

Methods

We model native language knowledge by training a supervised phoneme classifier on

Japanese speech. This is a simple and efficient way to instill native language knowledge

into the model. The network takes acoustic parameters as input and outputs a distribution

over phonemes, indicating the identity of the phone at the center of the input window.
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Training data consist of auditory tokens sampled from labeled corpora as described below.

The model is presented with a window of speech and a corresponding vector indicating the

phone at the center of the window and is trained using stochastic gradient descent over the

network’s parameters. We do not mean this supervised training to be an accurate model of

first language acquisition, but rather, a way to quickly create networks that have

knowledge of a “native” language. We similarly train an English model to use as a native

language control. In this experiment we use real speech tokens sampled from spoken

corpora—stimuli which are inherently noisier than controlled lab-prepared stimuli. Using

this more naturalistic data for both training and testing demonstrates that the model can

deal with variability and is not sensitive only to stimuli created specifically for this

experiment.
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Figure 5. Example Network Diagram for Simulation 2. Shaded area represents

layers used for native language training and supervised learning. Entire network is used for

reinforcement learning. Phoneme layer size is 36 for native Japanese training, 39 for native

English training and 38 for non-native training (both reinforcement and supervised).
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The native network (shaded in Figure 5) consists of 3 convolutional and batch

normalization layers followed by 1 linear layer. Data for native language training is derived

from the Wall Street Journal Corpus for English (Paul & Baker, 1992) and the

GlobalPhone Japanese Corpus (Schultz, Vu, & Schlippe, 2013) for Japanese. The model is

presented with 19.5 hours of speech and training occurs for 25 epochs.

For subsequent video game training we sample sounds in each category ([r], [l], [d],

and [g]) from the Wall Street Journal Corpus with each category reflecting a different

location of the alien. We expose our native language model to training in the video game

paradigm, where phonetic information is combined with the location vector into a linear

layer as in Simulation 1 (unshaded in Figure 5) and the model once again outputs its

expected value of each action. We add two new nodes to the phoneme layer to mirror the

supervised model and allow the model to map new information at this layer. The training

signal is allowed to backpropagate through all layers of the network and can change the

initial parameters relating to the phone classification native language training. The

environment and presentation of stimuli in the video game occurs as described in

experiment 1, over 1500 episodes consisting of 128 tokens (32 for each category). As our

primary goal in this experiment is seeing the outcome of video game training when there is

some native knowledge already in the system, we simply attach the reinforcement learning

to the output of this model at the phoneme layer.

The supervised learning models are presented with only examples of /r/ and /l/

sounds - the same tokens used in the video game training. Since the native model does not

include nodes representing /r/ and /l/, we and add two nodes to the phoneme layer

corresponding to these two phonemes. We then continue training the model as a phoneme

classifier with the same /r/ and /l/ input as in the reinforcement learning model. The

model updates its parameters using the difference between its prediction of the phoneme

category and the ground truth category (either /r/ or /l/). This is presented as a one-hot

vector, except its length is two larger than in the native training, where the new /r/ or /l/
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value is set to 1 and the other values, including those corresponding to categories learned

during training, is set to 0, hence other than this increase in vector size by two, the

architecture of the supervised model is virtually identical to that of the native pretraining.

We aim to make the amount of training data equivalent between the reinforcement and

supervised learning models. The reinforcement learning model makes a parameter update

over a batch of 32 tokens every timestep. We present the supervised model with 1500

epochs of 64 datapoints—32 from each of the /r/ and /l/ categories. We do not present /d/

and /g/ tokens as part of the supervised model as, even if they are acoustically different,

these phonemes already exist in Japanese and are presented during the native training.

Neural networks often require large sets of data to train, so we train two different

versions of each model. The first includes four tokens of each speech category as in the

original experiment. These stimuli are those that the English native language training

successfully categorizes and are kept constant throughout the simulation. In the second

version of each model, we sample a large number of tokens during non-native training.

Instead of sampling only four tokens of each category, we instead present a new token from

the training portion of the Wall Street Journal corpus at each training step.

Acoustic input during all training is given as Mel Frequency Cepstral Coefficients

(MFCCs) (Mermelstein, 1976), which are designed to describe the overall shape of the

acoustic at any one point in time. We take 13 coefficients and first- and second-order

derivatives, giving 39 total dimensions. A 200ms speech window is segmented into frames

that are 25ms wide at 10ms intervals and zero-padded, yielding a total of 21 frames.

Neural networks are known to suffer from an issue known as catastrophic forgetting,

where performance on one task is greatly reduced after training on a second task. This

issue is relevant for our paradigm as we first train on a native language classification task

before presenting the network with the video game training—two tasks which output quite

different outputs. We are specifically focused on the discrimination of L2 contrasts in this

work and use the native language model only as a starting point for second language
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learning. While we are not concerned with the continued perception of the native language,

allowing the network to update all parameters in an unconstrained way would make the

native language knowledge we instill irrelevant. For this reason we add a regularization

term during training which aims to find a solution to the second task (the non-native

sound learning) which also performs well on the native language training (Kirkpatrick et

al., 2017; Aljundi, Babiloni, Elhoseiny, Rohrbach, & Tuytelaars, 2018). This term penalizes

parameters as the move away from the parameters learned during native language training

and is implemented for both supervised and reinforcement networks.

We simulate the [r]/[l] pre- and post-test discrimination tasks from the original

experiment as well as measure performance on the native language using a machine ABX

test, which is a parameter-free method of measuring the distance between model

representations (Schatz et al., 2013; Schatz, 2016). We take a vector of activations for a

presented token at the ‘phone’ layer of the model. Two tokens, A and X, are taken from

one category and a third token, B, is taken from a different category. We take the

Euclidean distance between vectors A and X, and B and X and determine which distance is

shorter. If X is determined to be closer to A, then the trial is a success, if X is closer to B,

then the trial has failed. The ABX success rate is defined as the probability of success for

two tokens from these categories selected at random from the corpus. An ABX success of 1

indicates perfect discrimination, with 0.5 being chance performance. We run the ABX task

over approximately 9 million samples of [r] and [l] drawn from a portion of the WSJ and

GPJ corpora withheld for testing, including 143 different speakers. Training and evaluation

sets are completely independent and no token or speaker used during training is present

during evaluation. For the ABX task used in our experiments, A, B and X are all sampled

from the same speaker, where X is sampled from a different ‘context’ (ie. surrounding

phonemes) than A and B. An ABX score is calculated by averaging the correct trials across

all pairs within a specific context, before averaging performance across all contexts. All

results are averaged over 6 model runs.
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Figure 6. Simulation 2 Results: A) Experimental results from (Lim & Holt, 2011).

B) Simulation results from run with only 4 tokens of each category presented

during training. Reinforcement Learning Results (left) and Supervised Learning

Results (right) with 95% confidence intervals. C) Simulation results from run

with large variety of token from each category presented during training.

Pre- and post-training ABX success rates are shown in Figure 62 for both versions of

2 These figures show ABX scores computed at the ‘phoneme’ layer. In response to a reviewer’s comment,
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Table 2

Cross Entropy values comparing our two models trained on limited tokens (as in original
experiments) to experimental data

Native Language

Training

Limited Token

Video Game Training

All Tokens

Video Game Training

English Japanese Japanese Japanese

Reinforcement Learning
-0.23 -0.68

-0.58 -0.64

Supervised Learning -0.60 -0.68

our training—presentation of 4 exemplars during training, and presentation of a wide array

of tokens sampled form the corpus. For models presented with only four tokens per

category, the Japanese native model improves in [r]/[l] discrimination ability after

non-native training across both supervised (t(5) = 5.37, p = 0.002) and reinforcement

learning (t(5) = 8.72, p < 0.001) models when presented with only 4 tokens. This

improvement is small but significant for both models and neither performance reaches that

of the native English model. This is consistent with results from Japanese native speakers

who participated in the experiment who show increased [r]/[l] discrimination performance

but do not reach native-level performance. We note a statistically significant (t(5) = 3.07,

p = 0.014), but very small difference between the performance of the supervised and

reinforcement learning models after training (two tailed t-test), with reinforcement learning

exhibiting slightly higher performance than supervised learning.

For the alternate version of our training with models presented with a large number

of tokens sampled from the English corpus, the size of the improvement before and after

video game training is much larger for both supervised (t(5) = 24.01, p < 0.001), and

reinforcement training (t(5) = 70.83, p < 0.001). This model does not have an experimental

counterpart, but the similar performance between supervised and reinforcement learning

we also computed ABX scores at earlier layers, but these did not change substantially during training in
either the reinforcement learning or the supervised learning model, suggesting that most learning occurred
at the phoneme layer.
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models is consistent over this different input. There is not a significant difference between

the supervised and reinforcement trained models for this input (t(5) = 1.93, p = 0.111). We

calculate cross entropy to compare our results to experimental data (Table 2). Presented

results are for a learning rate of 0.1 over training, and a γ of 0.9, however, once again the

results observed are consistent over various parameter settings of the network including

varying learning rates learning rate (0.01 − 0.9) and game types as in simulation 1.

These results show that in principle, a reinforcement signal is enough to alter speech

representations and enable an agent to improve its discrimination of ‘non-native’ speech

sounds, providing additional evidence that that video game paradigm results arise due to

the use of reinforcement learning. For training with limited tokens which mirrors the

original experiment of Lim et al. (2011), there is a statistically significant, but small

difference in discrimination after training between the two models, where reinforcement

learning shows slightly better performance than supervised learning. For training with a

large number of tokens sampled from the corpus, supervised and reinforcement learning

models perform equally well. Our results overall demonstrate that a reinforcement learning

agent set within a video game paradigm can overcome native language knowledge. The

reinforcement algorithm can use the category information implicitly provided through

action and reward pairings to uncover structure in the stimuli to at least the same extent as

an algorithm that takes explicit category information. This provides a specific account that

can explain how humans are able to learn sound categories in the video game environment.

General Discussion

Simulations in this paper show that a reinforcement learning network can model

human behavior in the Wade and Holt (2005) video game paradigm and capture specific

facets of human data better than a supervised learning algorithm. Our proposed model of

the video game environment consists of a deep Q network—a reinforcement learning
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algorithm which maps an input of locations and auditory tokens to actions, learning at

each timestep through a reward signal. In our first simulation we demonstrate that while

both algorithms are able to learn synthesized sound categories, reinforcement learning

provides a better model of one specific aspect of experimental data than supervised

learning. This shows that reward-based learning could be what is driving learning in the

video game paradigm. In our second simulation we build a model of a native Japanese and

English speaker before exposing the Japanese-trained model to the video game

paradigm—again comparing this with supervised learning. We show that both the

reinforcement and supervised networks perform similarly and reflect the improvement that

humans show when learning /r/ and /l/ sounds.

In prior experiments it has been shown that reward-learning systems in the striatum

are active during incidental learning tasks and a high degree of functional connectivity is

observed between these regions and the speech perceptual system in superior temporal

gyrus (Lim et al., 2014, 2019). Taken alongside this evidence, the fact that in our

simulations, reinforcement learning—a specific implementation of reward-based

learning—successfully captures some qualitative aspects of the data better than a

supervised algorithm supports the idea that usage of these circuits is important in adult

speech category acquisition. It also demonstrates that corticostriatal loops may provide a

particular role in updating perceptual representations.

Our model is similar to the framework proposed by Lim et al. (2014), and our

reinforcement learning algorithm similarly generalizes across modes (vision and audition).

One key difference is that both our reinforcement learning and supervised learning models

in Simulation 2 include a layer that is intended to correspond to category information,

whereas in the previous framework, this layer is only included in supervised learning. We

choose to formulate our model in this way so we can instill phoneme category knowledge

during native language training via a phoneme classification task. This also allows a fair

comparison with supervised learning as both models are closely aligned in architecture and
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can be tested at the same layer.

Implications For Second Language Phonetic Learning

While the model we propose in this paper shows a statistically significant difference

compared to the performance of a supervised algorithm in some scenarios, the effect size is

generally minimal. Behaviorally, the supervised learning simulation could be considered

similar to a situation where an L2 learner recognizes there are two additional categories to

learn and immediately matches any new information to one of those categories before

receiving explicit feedback at the end of each trial. Previous work has given conflicting

evidence on whether implicit learning is better than explicit learning. According to Lim

and Holt (2011), 5 days of training in the video game paradigm appears to be more

effective than 2-4 weeks of explicit training of this sort (Lively et al., 1993), although

Roark and Holt (2018) show better learning outcomes for explicit learning for non-speech

categories. The implicit learning paradigm is clearly effective though, and there appear to

be differences in the category types that can be learned through training that engaged

dorsal striatal circuits rather than frontal and anterior striatal circuits, as proposed by the

Dual Learning Systems model (Chandrasekaran, Yi, & Maddox, 2014). What causes this

difference? If we consider that supervised learning could model explicit paradigms, then

why do our models show very similar results and what could give rise to the differences

seen in prior literature?

We suggest that differences between these paradigms must arise from differences in

the neural circuitry recruited in each task. Neural imaging of the video game paradigm not

only shows activation of the striatum during category learning, but participants who

exhibit learning show strong functional connectivity between the striatum and the superior

temporal sulcus (STS)—the primary cortical center of speech processing (Liebenthal,

Binder, Spitzer, Possing, & Medler, 2005). This suggests that the basal ganglia are using

reward information to update auditory perceptual networks via corticostriatal loops. When
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the noise stimuli are randomized in the experimental counterpart to our Simulation 1 (such

that the aliens do not correspond to distinct auditory categories), functional connectivity

between STS and striatum is not predictive of category learning performance in the control

condition where category identity is not discernable (Lim et al., 2019). This means that

the connectivity is directly related to learning information about category membership of

the stimuli. If this functional connectivity plays an important role in category learning,

then the effectiveness of reinforcement paradigms could lie in the engagement of these

specific reward circuits. When the basal ganglia are active, connections to the STS allow

for effective learning; when the basal ganglia are less active, or not engaged at all, updates

to the perceptual system in STS are reduced.

The neural signatures observed in initial video game experiments are also seen in

other category learning paradigms (Golestani & Zatorre, 2004). These show that when

learning is effective in explicit learning paradigms, greater activation is also seen in the

basal ganglia. Basal ganglia activation may be particularly important for effective speech

category learning in a wide range of situations. While explicit learning paradigms are able

to activate these neural circuits required for effective learning, the video game by its nature

and setup as a reward based learning paradigm, may engage basal ganglia circuits more

specifically and effectively. The fact that feedback in the video game paradigm comes as a

reward signal, rather than simple category information, activates the reward-based circuits

in this region.

However, this still leaves open the question of why updates induced by the basal

ganglia are particularly effective. What is special about activating these circuits? We

suggest the possibility that a frontal system may perform separate updates to the striatal

system activated through reward-based learning. These circuits may have particular

properties that modulate their effectiveness for speech sound learning.

One difference between the systems could arise from more rapid plasticity induced by

basal ganglia feedback circuits. Theories in visual category learning propose that different
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feedback loops may result in plasticity on different timescales. As one example, Seger and

Miller (2010) suggest that the striatum forms rapid representations of reward predictions

that can gate updates to cortex. Under this theory, striatal areas are responsible for

forming the connection between specific cues and actions and frontal areas are responsible

for generalization and identifying the properties that are consistent across categories.

Within this framework, the effectiveness of the implicit learning paradigm would arise

because—even though both striatal and frontal neural circuitry update the perceptual

system in the same way—the striatal circuitry causes faster plasticity in perceptual regions.

Alternatively, our work conforms with the Dual Learning Systems (DLS) model for

speech category learning recently proposed by Chandrasekaran, Koslov, and Maddox

(2014). This theory builds on two system models in vision literature and posits that a

reflective system generates category boundaries by forming explicit rule-based updates and

a reflexive system generates implicit associations between tokens. A neurobiological split

between the systems is similar to that proposed in vision research is suggested (Ashby et

al., 1998; Ashby & Maddox, 2011), where the reflective system uses frontal circuits and and

the anterior striatum, and the reflexive system using circuitry in the dorsal striatum. The

framework is supported by both behavioral (Chandrasekaran, Yi, & Maddox, 2014), and

neural studies (Feng et al., 2021).

The models presented in this paper could be considered to approximately equate with

the two systems in this framework. Our reinforcement algorithm closely aligns with the

reflexive system which engages reward circuits and our supervised algorithm could be

considered to be more akin to the reflective system. Under the initial two systems models

it is assumed that the more successful system will dominate at a given time (Ashby et al.,

1998). If explicit rules are best suited to describing the task, the reflective system will

dominate learning and if the boundary between categories is better described as an

integration problem over multiple cues the reflexive system will dominate.

Chandrasekaran, Yi, and Maddox (2014) propose that speech category learning is
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reflexive-optimal, due to the resources needed to generate rules to capture categories in

such a highly multidimensional space. Under this assumption, in the video game paradigm

the reflexive system gives rise to better learning outcomes and dominates over the reflective

system. The results in our study are consistent with this idea as the reinforcement learning

model, which closely aligns with the expected computations of the reflexive system, aligns

more closely with human outcomes in specific situations. In our paper we do not model the

interaction between these systems, only the outputs that might be given by each. Future

work should look more directly at the competition between the two systems.

Interestingly, the optimality of the reflexive system for speech could coincide with

recent work in infant category learning which indicates that learning dimensions of an

auditory perceptual space could be a separate process from the formation of specific

categories during infancy (Feldman, Goldwater, Dupoux, & Schatz, 2021). We speculate

one possibility that the reason the reflexive system is particularly effective in humans,

could be because it targets an earlier stage of the mapping to phonetic categories—i.e., it

targets the warping of perceptual space, from which phonetic categories can be built, as

opposed to the stage which forms phonetic categories.

Our modeling results add to the growing body of evidence that reinforcement

learning plays a role in speech category learning in adults. Previous modeling work outside

of implicit learning, indicates that reinforcement learning provides a better model of

human behavior than other algorithms. Many speech sound learning algorithms posit that

learning occurs through gathering statistical information about one’s environment, however

Nixon (2020) shows that these algorithms cannot predict particular cue-outcome

relationships. In humans, a learned informative cue which is associated with a specific

outcome will block the learning of any other cues to the same outcome, and while

statistical learning cannot account for this effect, error-prediction algorithms related to

reinforcement learning can. Reward-based algorithms also predict ordering effects of cue

and outcome (Nixon, 2020) as well as other cue-weighting effects (Harmon et al., 2019).
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The results we present in this paper, alongside these previous studies, point towards

reinforcement learning as a mechanistic account of speech category learning in adults.

Infant Phonetic Learning

In the future, we hope to expand this algorithm to model native language learning in

infants more generally, as they appear to acquire speech sound categories in a passive

environment without direct feedback. Studies on auditory category learning show that

adult listeners can learn one-dimensional stimuli through passive exposure, however they

usually require explicit feedback to learn auditory stimuli that vary on more than one

dimension (Goudbeek, Swingley, & Smits, 2009; Yi & Chandrasekaran, 2016). When

infants learn the sounds of their native language, however, they are not told what specific

sounds belong in what phoneme categories. While they receive little to no direct feedback

from caregivers, their perception still becomes attuned to the speech sounds of their native

language at a young age. (Werker, Polka, & Pegg, 1997; Kuhl et al., 2006) Many theories

posit that they may accumulate statistical information about their acoustic environment

(Vallabha & McClelland, 2007), although there are some effects that purely statistical

learning cannot account for (Nixon & Tomaschek, 2021). The idea of ‘intrinsic reward’

within reinforcement learning literature posits algorithms where rewards come from within

the system, rather than from the external environment (Singh, Lewis, Barto, & Sorg,

2010). For example, an algorithm that explores a wide area of the solution space may

receive a reward for doing just that, even if it does not take rewarding actions (Eysenbach,

Gupta, Ibarz, & Levine, 2018). These ideas could perhaps be applied to infant phonetic

learning, where rewards are provided from higher levels of cognition, such as being able to

form categories that allow for successful word and pattern recognition. This would

contribute towards an explanation of how they are able to learn speech sound categories

effectively at a young age without explicit feedback.

Reinforcement learning may also provide a good model of experimental paradigms
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that are typically used with infants. A common infant testing procedure is the conditioned

headturn (CHT) paradigm, where an infant on a caregiver’s lap is trained to turn their

head to a toy whenever they notice a change in a stimulus. When they do this correctly,

they are rewarded with the toy lighting up and making a sound. This very easily fits as a

reinforcement learning algorithm where the learning signal during the experiment that the

infant receives comes in the form of a reward for good actions. While these paradigms are

typically thought to reflect pre-existing knowledge that the infant has, the effectiveness of a

reward-based paradigm in adults may lead us to consider that infants learn during the

experiment as well.

Conclusion And Future Directions

Next steps require identifying the specific range of tasks that appear to activate the

corticostriatal pathways recruited in this paradigm. Harmon et al. (2019) demonstrate that

reinforcement learning reflects human behavior over other algorithms in a paradigm where

the down-weighting of a phonetic cue will occur only if there is a more informative cue

present. This task may be another which selectively activates basal ganglia circuits. There

are, however, few additional examples in which we know that the basal ganglia are

recruited or that specific predictions differ between reinforcement and supervised learning.

As discussed above, we have focused on learning to perceive L2 contrasts in this

work, and have assumed that learning starts from native language speech perception. Since

we do not model the continued perception of speech in the first language, we are agnostic

with regard to the extent to which the first and second language speech systems are shared

or separate. For this reason, we do not discuss the ability of the system to discriminate

native language contrasts after [r]/[l] training. Our regularization term ensures that the

network uses native knowledge during non-native training, however both models that we

study in this paper would show catastrophic forgetting for the native language tokens.

Thus, for the present paper we assume we are modeling an L2 perceptual system that is
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simply initialized to be identical to the L1.

Our framework opens avenues to investigating the flexibility of representations of

speech and future work can manipulate which layers of the network can be influenced by

the reinforcement learning signal, and how those weight updates occur. Our model could

provide a basic framework to test whether there are particular parts of the processing

system that are less flexibly updated, or not updated at all, during second language

learning. Further exploration of the regularization term as a way to constrain the plasticity

of the system is also an interesting direction for future modeling work.

In the future our model could also be augmented to include varying levels of

motivation as part of the simulation. Motivation and engagement could be manipulated by

changing the amount of reward that the agent receives for taking correct actions, the

precise actions for which the agent receives reward, or the probability by which the agent

receives a reward for taking a correct action (ie. the agent only receives a reward for the

correct action 80% of the time). In the potential extension to infant phonetic learning,

intrinsic motivation can be incorporated into the model, where the reward function

accounts for actions that explore the entire action or reward space (an example of such a

computational model is Eysenbach et al., 2018).

Finally, the simulations in this paper have implications for second language teaching

pedagogy. Learning the sounds of a second language has always been challenging,

particularly when those sounds do not match up with one’s native language phonology.

Our work reinforces the idea that implicit learning can provide an effective strategy for

learning non-native speech sounds. Understanding why this paradigm is effective will allow

us to consider other tasks and activities that could lead to successful learning. Many

people use mobile game-like applications to learn foreign languages, which often include a

level system where learners receive rewards such as cosmetic upgrades, items, or points for

a leaderboard system. This work raises questions about the exact role that these rewards

play within second language learning. Reinforcement learning—where improvement is
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motivated through rewards—is a particularly relevant topic and further simulations on the

impact of rewards could potentially benefit second language education.
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