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Abstract

A challenge in learning phonological grammars is learning
how phonological processes interact. It has been argued that
some process interactions are easier to learn than others. One
basis for this argument is asymmetries observed in experimen-
tal settings: artificial languages generated from certain process
interactions are more likely to be successfully reproduced by
participants than others. In this paper, we argue that asymme-
tries in production do not necessarily provide direct support
that some phonological interactions are easier to learn. Rather,
we show that these asymmetries can instead emerge due to dif-
ferences in the number of consistent or nearly-consistent gram-
mars each pattern has. We present a noisy channel model of
morpho-phonological learning and apply it to a recent behav-
ioral study examining the learnability of phonological process
interactions. We find that, due to the relative difference in the
number of grammars that can exactly match or nearly match
the observed data, the model achieves the same qualitative re-
sults as those observed in experimental settings.
Keywords: Linguistics; Phonology; Opacity; Noisy Channel;
Bayesian

Introduction

A basic empirical observation is that languages change. An
example of this is given by Kiparsky (1968, 1971), who ar-
gued that patterns generated from certain phonological pro-
cess interactions are more likely to change over time than
others. This asymmetry served as motivation to distinguish
process interactions based on learnability: learners are more
likely to successfully learn certain process interactions (i.e.
transparent interactions) than others (i.e. opaque interac-
tions). Recent work has sought to experimentally and compu-
tationally investigate these learnability claims by evaluating
participants’ and models’ performance in artificial grammar
learning paradigms (Ettlinger, 2008; Kim, 2012; Brooks, Pa-
jak, & Baković, 2013; Prickett, 2019). These studies found
evidence that data generated by some process interactions
were more difficult to reproduce than others.

The standard interpretation of these results is that if a pat-
tern is easier to reproduce, then the interaction used to gener-
ate that pattern is also easier to learn. However, we argue that
this conclusion is premature; there are in fact many ways of
generating the same set of data beyond learning the gram-
mar that generated it. These include memorizing parts of
the data to hypothesizing entirely different phonological pro-
cesses than those of the original grammar. In this paper, we
explicitly show how considering the space of grammars is ca-
pable of capturing the reported learnability asymmetries. To

this end, we implement a noisy-channel learner that jointly in-
fers underlying forms and phonological processes from form-
meaning output pairs. The model generates predictions given
a space of (nearly) consistent grammars, which we com-
pare with empirical results from a recent behavioral study by
Prickett (2019). We find that this model, due to the difference
in the number of grammars that can generate or nearly gener-
ate different languages, achieves the same qualitative results
as those observed in experimental settings.

We begin first with some background on process interac-
tions. We then present a recent behavioral study investigating
the learnability of process interactions, as well as the artificial
languages we will be using. Next, we provide an overview of
the model and compare the model predictions with the empir-
ical results. We conclude with implications and next steps.

Background

One of the goals in generative phonology is characterizing
how infants acquire a phonological grammar from a set of
surface representations (SR; e.g. words). A phonological
grammar is comprised of two parts: a lexicon containing the
representations (also known as the underlying representation,
or UR) of atomic meanings and the mapping from URs to ob-
served surface forms. For example, many languages delete a
vowel when it precedes another vowel1:

Etsako (Casali, 1997) (1)
[dE] ‘buy’ + [akpa] ‘cup’
[d # akpa] ‘buy (a) cup’

When [E] does and does not appear is predictable based on its
context: [E] does not surface when before another vowel. We
can generate each output given a UR and a context-sensitive
mapping that transforms the UR into its observed form: /dE/
! [dE] vs. /dE # akpa/ ! [d # akpa].

In addition, in many languages, consonants undergo
palatalization in certain contexts (typically, before non-back
(high) vowels like [i] or glides like [j]). Again, the distri-
bution of [t] and [tS] given the data is predictable based on

1In reality, this characterization is not restrictive enough. The
vowel that gets deleted in this language depends on a variety of fac-
tors, including which vowels are adjacent to each other. We will set
aside these complications for the time being.
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Table 1: Sample toy languages for the bleeding and feeding interactions. Shaded cells correspond to filler words. Filler words were not used
to evaluate participants in either the experiment or the model.

Bleeding Stem-a Stem-i Stem-i-a Feeding Stem-a Stem-i Stem-i-a
UR /imat-a/ /imat-i/ /imat-i-a/ UR /imat-a/ /imat-i/ /imat-a-i/
Deletion – – [imat- -a] Deletion – – [imat- -i]
Palatalization – [imatS-i] – Palatalization – [imatS-i] [imatS- -i]
SR [imat-a] [imatS-i] [imat- -a] SR [imat-a] [imatS-i] [imatS- -i]

Stem-a Stem-i Stem-i-a Stem-a Stem-i Stem-i-a
UR /imak-a/ /imak-i/ /imak-i-a/ UR /imak-a/ /imak-i/ /imak-a-i/
Deletion – – [imak- -a] Deletion – – [imak- -i]
Palatalization – – – Palatalization – – –
SR [imak-a] [imak-i] [imak- -a] SR [imak-a] [imak-i] [imak- -i]

context: [tS] appears before [i], while [t] appears elsewhere.

Japanese (2)
[mot-e] ‘hold-IMP’
[mot-anai] ‘hold-NEG’
[motS-imas-u] ‘hold-PRES-POL’

We characterize the mapping from inputs to outputs via a
rule-based approach (SPE; Chomsky & Halle, 1968). Under
this approach, mappings are computed through the sequen-
tial application of context-sensitive rules; if a sound is found
in a particular context, that sound is changed. For example,
we can formally characterize the palatalization and deletion
processes using the following notation:

Palatalization: t ! tS / i (3)
Deletion: V ! Ø / V

The first process states that if [t] is found before [i], the
sound changes into [tS]. The second process states that if
a vowel is found before another vowel, the first vowel deletes.

Process interactions. Individual processes can potentially
interact with one another. There are two dimensions along
which these interactions are characterized under a rule-based
system: whether a process creates or eliminates the string to
which another process applies, and whether the process pre-
cedes or follows the other process. For example, consider the
UR /imat-a-i/ and the processes in (3). If deletion precedes
palatalization, the application of deletion creates the relevant
context in which palatalization can apply: /imat-a-i/ !DEL
[imat- -i] !PAL [imatS- -i]. This is known as a feeding inter-
action. If the opposite ordering were to occur, the deletion
process would have applied too late to trigger palatalization,
i.e. [imat- -i]. This is known as a counter-feeding interaction.

Consider now a slightly different UR /imat-i-a/. The only
difference between this input and the preceding example is
that the order of the suffixes is swapped. If deletion pre-
cedes palatalization, deletion now eliminates the environment
in which palatalization could have applied: /imat-i-a/ !DEL
[imat- -a] !PAL [imat- -a]. This is known as a bleeding in-
teraction. Reversing the order of the processes would allow
the application of palatalization to occur before deletion can

eliminate the context, i.e. [imatS- -a]. This is known as a
counter-bleeding interaction.

Note that rule-based systems are not the only way of
formalizing this mapping. More recent approaches charac-
terize the mapping though the evaluation and elimination of
possible outputs via ranked or weighted constraints (Prince
& Smolensky, 2004; Goldwater & Johnson, 2003). We opt
for the rule-based approach for two reasons. First, most
constraint-based formalisms lack the necessary mechanisms
to represent the crucial process interactions. Second, the
rule-based approach does not have an intrinsic bias in favor of
any particular phonological process. Minimizing these prior
biases in the model ensures that any asymmetry observed in
performance can be attributed to the grammatical space.

Toy languages. Learners acquiring the phonology of a lan-
guage need to learn a set of URs and rules. The question of
which types of process interactions are easiest to learn, and
how this relates to cross-linguistic patterns, has attracted con-
siderable attention. The focus of our simulations is a recent
study by Prickett (2019). Prickett investigated the learnabil-
ity of different process interactions in an experimental setting.
He trained participants in one of the four toy languages, asso-
ciated with each of the process interactions discussed above.

A toy language is composed of morpho-phonological
paradigms. Each paradigm consists of the stem (e.g. [imat])
in isolation, as well as three conjugated forms: the stem with
an [-i] suffix, the stem with an [-a] suffix, and the stem with
both the [-i] and [-a] suffixes. The order in which the [-i]
and [-a] suffixes combine differs depending on the language.
Each language consists of two paradigm types: [t]-final stems
(e.g. /imat/) and [k]-final stems (e.g. /imak/).

Each slot in the paradigm is generated by sequentially ap-
plying the deletion and palatalization processes to each stem-
suffix combination. For the bleeding and feeding languages,
each UR undergoes deletion followed by palatalization. For
the counter-bleeding and counter-feeding languages, each UR
undergoes palatalization followed by deletion. The four lan-
guages are identical in all respects except for when both suf-
fixes attach to the stem; for example, the counter-bleeding
interaction generates [imatS- -a], while the counter-feeding
interaction generates [imat- -i]. Sample paradigms for the

����



Table 2: Trial types and schematized choices for each toy language. Expected responses given on the left in bold. Cells in the table
correspond to the same cells in Table 1.

Bleeding Faithful Palatalizing Interacting Feeding Faithful Palatalizing Interacting
SR [imat-a] [imatS-i] [imat- -a] SR [imat-a] [imatS-i] [imatS- -i]
Options [t-a] *[tS-a] [tS-i] *[t-i] [t- -a] *[tS- -a] Options [t-a] *[tS-a] [tS-i] *[t-i] [tS- -i] *[t- -i]

– – Deleting – – Deleting
SR – – [imak- -a] SR – – [imak- -i]
Options – – [k- -a] *[k-i-a] Options – – [k- -i] *[k-a-i]

Counter-bleeding Faithful Palatalizing Interacting Counter-feeding Faithful Palatalizing Interacting
SR [imat-a] [imatS-i] [imatS- -a] SR [imat-a] [imatS-i] [imat- -i]
Options [t-a] *[tS-a] [tS-i] *[t-i] [tS- -a] *[t- -a] Options [t-a] *[tS-a] [tS-i] *[t-i] [t- -i] *[tS- -i]

– – Deleting – – Deleting
SR – – [imak- -a] SR – – [imak- -i]
Options – – [k- -a] *[k-i-a] Options – – [k- -i] *[k-a-i]

bleeding and feeding languages are given in Table 1.
We refer to certain forms of each toy language using termi-

nology that reflects which process was being tested. Faithful
forms correspond to the [t]-final stem combined with the [-a]
suffix /imat-a/. Palatalizing forms correspond to the [t]-final
stem combined with the [-i] suffix /imat-i/. Deleting forms
correspond to the [k]-final stem combined with both the [-i]
and [-a] suffixes /imak-a-i/ and /imak-i-a/. Lastly, the inter-
acting forms correspond to the [t]-final stem combined with
both the [-i] and [-a] suffixes /imat-a-i/ and /imat-i-a/.

The training phase consisted of giving the stem in isola-
tion to the participant, then having them produce some suf-
fixed form by selecting one of two options. For example,
in the feeding language, the participant first hears the word
[imat] paired with an image representing its meaning. The
participant is then given an image representing the morpho-
logically complex form containing the [-a] suffix and asked
to choose between the options [imat-a] and [imatS-a]. Feed-
back is then given as to whether the response is correct or not.
The testing phase was identical to the training phase except
that participants were presented novel words and feedback
was not given. Prickett tracked the proportion of responses by
each speaker that was or was not predicted under the intended
grammar. Schematizations of the choices and expected re-
sponses for each trial type are given in Table 2. The results of
the experiment are shown on the top of Figure 1.

Prickett found two statistically significant results. In the
palatalizing trials, Prickett found that participants trained on
the feeding and counter-bleeding languages had significantly
higher accuracy than the bleeding and counter-feeding
languages. In the interacting trials, Prickett found that
participants performed better when generating the bleeding
and feeding versus the counter-bleeding and counter-feeding
forms. It is tempting to interpret the results of this experiment
as providing direct evidence that the process interactions that
yielded high accuracy are easiest to learn. However, we argue
in this paper that such a conclusion would be premature.

Grammatical spaces. While the outputs were generated via

the application of particular phonological processes for a de-
fined UR, this exact grammar is not the only manner in which
the data could have been produced. The language could have
also be generated through the application of different phono-
logical processes, through memorization, or a combination of
the two. For example, the interacting form for the counter-
feeding interaction [imat- -i] could have been generated by
having its UR be /imat- -i/ with neither palatalization nor
deletion applying. This form is derived not via the applica-
tion of phonological processes, but rather through the explicit
coding of the output as its UR. Alternatively, this form could
have been generated from an input /imatS- -i/ with a general
depalatalization process that transforms [tS] to [t] across all
contexts. Under this hypothesis, the output is formed via the
application of a phonological process not a part of the orig-
inal grammar used to generate the data. In other words, the
output is compatible with a number of different hypotheses,
many of which are completely disjoint from the grammar as-
sumed to be learned. As a result, it is hard to interpret which
grammars are learned. In the following sections, we present
an alternative account of why learners perform better in some
languages and certain forms in those languages: they have
more distinct grammars that can generate them.

Our argument is similar to that put forth by Rafferty et al.
(2013), who argued that another assumption made by exper-
imentalists and computational modellers – the link between
learnability and typological frequency – is incomplete. They
showed computationally that the number of hypotheses that
can generate a particular language, weighted by their prior,
is an indicator of both its typological frequency, as well as
its stability over time. This line of reasoning is also echoed in
Martin and White (2021) who suggest that asymmetries in the
learnability of harmony and disharmony pattern may emerge
due to differences in the number of compatible analyses for
each pattern. The results here are parallel to this argument.

The idea that learners’ behavior reflects the combined in-
fluence of many different hypotheses about the grammar is
consistent with a broad class of models known as noisy chan-
nel models (Feldman & Griffiths, 2007; Levy, 2008), which
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Figure 1: Top. Average proportion of correct answers in the testing
phase. Plot taken from Prickett (2019). Middle. Predictions under a
model biased towards only consistent grammars. The model makes
similar qualitative predictions as the experimental results in all trial
types except in the palatalizing trials, where the bleeding language
outperforms the counter-bleeding language. Bottom. Predictions
under a model that considers both consistent and nearly-consistent
grammars. The model makes the same qualitative predictions as
those seen in the empirical results.

have previously been applied in the acquisition literature to
syntactic learning (Perkins, Feldman, & Lidz, 2017; Schnei-
der, Perkins, & Feldman, 2020). Those models assume that
the data learners observe may have been corrupted by a noise
process, which creates additional uncertainty about what the
uncorrupted data look like. This forces them to consider not
only hypotheses that are consistent with the data, but also hy-
potheses that are almost consistent with the data.

Model

Data. We assume that a datum Dx consists of two parts: the
sequence of atomic meanings, or lexemes µDx = hmi,m j, ...i

and the surface form fDx = hsmi ,sm j , ...i. A sample dataset
given to the model is shown in (4).

imathm1i imat-ahm1,m2i imatS-ihm1,m3i imatS- -ihm1,m2,m3i (4)
imakhm4i imak-ahm4,m2i imak-ihm4,m3i imak- -ihm4,m2,m3i
ulithm5i ???hm5,m2i ???hm5,m3i ???hm5,m2,m3i
ulikhm6i ???hm6,m2i ???hm6,m3i ???hm6,m2,m3i

We show the model data like in (4), then ask it to gener-
ate the forms it has not seen before (those marked with ‘???’).

Setup. We employ a noisy channel model of morpho-
phonological learning. The model generates an output in two
steps. In the first step, a grammar, composed of a set of un-
derlying forms U and sequence of mappings R, generates a
set of intended outputs I. In the second step, noise potentially
corrupts the intended outputs, generating the observed forms
D. U and R are both categorical variables. A grammar then
consists of a set of fully specified underlying forms for all
valid lexeme combinations.

D = hh f1,m1i,h f2,m2i, ...,h fn,mnii (5)
U = hhu1,m1i,hu2,m2i, ...,hun,mnii

For each individual form, we assume a single unique UR.
Lexemes will always take the same UR for a given context,
but can vary across different contexts. For example, for the
forms [imat] hm1i and [imatS-i] hm1,m2i, a possible UR hy-
pothesis could consist of /imat/ and /imatS-i/. While m1 shows
up in both forms, it does not have the same UR in both. [t]-
final stems can either have a UR that is [t]-final or [tS]-final.
The suffixes can either have a faithful UR or a null UR. The
set of underlying forms for the toy languages are given in Ta-
ble 3. We assume a uniform prior over URs.

In addition to the deletion and palatalization processes dis-
cussed in (3), we posit the following rules:

Depalatalization: tS ! t / # (6)
Generalized depalatalization: tS ! t
Generalized palatalization: t ! tS

The first rule states that the palatalized consonant [tS] de-
palatalizes to [t] when found at the end of the word. The
second and third rules are generalizations of the depalatal-
ization and palatalization processes, which apply the relevant
process across all contexts. These rules were incorporated
to allow the grammar to generate forms such as the faithful
form [imat] from URs that contain the palatalized consonant
(i.e. /imatS/). These rules were also added as doing so ensured
that there was no a priori asymmetry in the ability to gener-
ate [t] vs. [tS]. Any asymmetry in performance will arise as
a consequence of the space of grammars with respect to the
data rather than an arbitrary choice in the hypothesis space.
The full space of individual rules is given in Table 3.

A rule hypothesis R is generated by taking some ordered
subset over the space of individual rules. For example, one
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Table 3: Hypothesis space used in the simulation for the toy languages. The first column corresponds to the space of individual rules. The
following columns correspond to example UR hypotheses for the (counter-)bleeding and (counter-)feeding languages.

(Counter-)bleeding (Counter-)feeding

Rules Faithful Palatalizing Interacting Faithful Palatalizing Interacting
Palatalization /imat-a/ /imat-i/ /imat-i-a/ /imat-a/ /imat-i/ /imat-a-i/

Depalatalization /imatS-a/ /imatS-i/ /imat- -a/ /imatS-a/ /imatS-i/ /imat- -i/
Generalized Palatalization /imatS-i-a/ /imatS-a-i/

Generalized Depalatalization /imatS- -a/ /imatS- -i/
Deletion – – Deleting – – Deleting

– – /imak-i-a/ – – /imak-a-i/
– – /imak- -a/ – – /imak- -i/

possible rule hypothesis is to have deletion followed by gen-
eralized palatalization followed by depalatalization. We stip-
ulate a fixed meta-ordering among rules: more specific rules
must precede more general rules (see Kiparsky, 1973 for dis-
cussion and reasoning why). As was the case with the URs,
we assume a uniform prior over rules.

We assign the probability of generating an intended output
I given the rules and URs as a 1-0 probability:

P(Ix|Ux,R) = [R(Ux) = Ix] (7)

In the second step, the intended output is then potentially
corrupted by noise. We adopt the framework used in Levy
(2008) and formalize this noise by computing the Leven-
shtein distance L(·) (Levenshtein et al., 1966) between the
intended and observed outputs. Surface forms with greater
Levenshtein distance to the intended output are less probable:

P(Dx|Ix) µ e�lL(Ix!Dx) (8)

The hyperparameter l controls how much noise is tolerated;
the higher l, the less noisy the output.

The likelihood of a dataset is the product of the likelihoods
of each individual datum.

P(D|I) =
|D|

’
x

P(Dx|Ix) (9)

Inference and generating predictions. Ultimately, we want
the model to produce forms it has both seen and not seen
before. To do this, we compute the posterior over grammars
P(U,R|G) using Bayes’ rule. Since we are operating with
categorical grammars, there is only one intended output for
each grammar: the output of the grammar R(U). Thus, the
likelihood is straightforward to compute.

P(U,R|D) µ P(D|R(U))P(U,R) (10)

We estimate the posterior distribution via MCMC using
Gibbs sampling (Geman & Geman, 1984). We train the
model for 500,000 iterations, discarding the first half and
sampling every 25 samples. We generate predictions via the
posterior predictive distribution:

P(d⇤|D) = P(U,R|D) [P(d⇤|U,R)] (11)

⇡ 1
N

N

Â
i

P(d⇤|Ui,Ri), Ui,Ri ⇠ p(U,R|D)

Accuracy is computed as in Prickett (2019), where we
renormalize the probabilities of each option:

Accuracy =
P(intended|D)

P(alternative|D)+P(intended|D)
(12)

Results

We ran the model twice using different values of l. In one
run, we set l = 100 in order to examine performance under
a model that only considered consistent grammars. In the
other run, we set l = 3 in order to evaluate performance
under a model that considers both consistent and nearly-
consistent grammars. We assess the models’ performance
by examining their accuracies for each language on held-out
data. The results are given in Figure 1. Under a model
biased towards only consistent grammars, we observe higher
performance for the feeding and bleeding languages in
both the palatalizing and interacting trials, contrasting what
was observed empirically. Under a model that entertains
both consistent and nearly-consistent grammars, we find
that the model succeeds in capturing both of the empirical
observations made by Prickett. To illustrate how the model
achieves the results, we first discuss the effect of consistent
grammars on performance before moving on to the effect of
nearly-consistent grammars.

Consistent grammars. The expected interacting forms in
the feeding and bleeding languages have more high-posterior
grammars tied to them (i.e. occupy a larger share of the
grammatical space) as the grammatical requirements needed
to generate them are less restrictive than the counter-feeding
and counter-bleeding forms. The feeding language allows the
model to infer grammars that posit the necessary palataliza-
tion process for all of its UR hypotheses, whereas the counter-
feeding language does not. For example, for the feeding form
[imatS- -i], the model can jointly posit a UR like /imatS- -i/
and a vacuous palatalizing process as the two do not com-
pete. In contrast, for the counter-feeding form [imat- -i], the
model cannot posit a palatalization process if its correspond-
ing UR hypothesis is /imat- -i/. Having fewer compatible
UR-rule combinations results in only a fraction of hypotheses
acquired in the learning process actually being able to gen-
erate the correct output, ultimately lowering accuracy. The
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same also holds for the bleeding and counter-bleeding lan-
guages. Each UR hypothesis for the bleeding output is com-
patible with a number of different rule hypotheses while still
being consistent with the other forms of the language. For ex-
ample, [imat- -a] can be generated via the UR /imatS- -a/ and
a rule hypothesis containing the generalized de-palatalization
process. This requirement still allows us to posit other rule
hypotheses to generate the other observed forms of the lan-
guage (e.g. palatalization to capture [imatS-i]). In contrast,
the counter-bleeding output can only be generated by a sub-
set of the UR hypotheses; no rule hypothesis can generate all
the forms of the counter-bleeding language if the UR of the
interacting form is /imat- -a/. Like in the case of the feeding
vs. counter-feeding languages, this greatly restricts the space
of possible ways of generating the counter-bleeding output,
lowering performance.

The palatalizing trials have the same UR hypotheses across
all four languages, so variation in performance on those trials
across languages must stem from differences in the training
data: specifically, the interacting forms. A consequence of
learning from interacting forms is that each language has
a different number of grammars that include the necessary
palatalization process. We find indeed that the number of
palatalizing grammars for each language correlates with the
model’s accuracy: 93% and 95% of the unique grammars
sampled by the models trained on the bleeding and feeding
languages had a productive palatalization process compared
to only 89% and 74% of grammars for the counter-bleeding
and counter-feeding languages.

Nearly-consistent grammars. Under a particular hypothesis
space, some languages have more closely similar languages
in the space than others. As the only difference in perfor-
mance between this model and the previous model occurs
with respect to the bleeding and counter-bleeding languages,
we focus our attention there. Consider the difference in the
distribution of words in each language:

Bleeding imat imat-a imatS-i imat- -a (13)
Counter-bleeding imat imat-a imatS-i imatS- -a

The bleeding language has more words containing [imat]
than [imatS]. In contrast, the counter-bleeding language con-
sists of an equal number of [imat] and [imatS] forms. Recall
that the noisy channel allows the model to consider gram-
mars almost consistent with the data. A reasonable alterna-
tive grammar for the bleeding language would be to elimi-
nate [tS] from the surface entirely (i.e. depalatalize across the
board). Grammars of this type have a higher relative poste-
rior probability when trained on the bleeding language than
the counter-bleeding language; eliminating [tS] would incur
only one error in the case of the bleeding language, but two
in the case of the counter-bleeding language. Being more
likely to adopt grammars that try to produce [t] across all
contexts would improve performance on the interacting tri-
als, but worsen performance on the palatalizing trials. The

contribution of the space of nearly-consistent grammars gen-
erates an effect sufficient to alter the asymmetry observed in
the palatalizing trials from favoring the bleeding and feeding
languages to favoring the feeding and counter-bleeding lan-
guages. It is crucially through the interaction of the space
of consistent and nearly-consistent grammars that we achieve
the same qualitative results as those seen experimentally.

Discussion

A basic assumption in experimental and computational work
is that production results are indicative of how easy a phono-
logical phenomenon is to learn. In this paper, we presented an
alternative explanation: certain patterns are easier to produce
because they have many grammars that could have generated
them. We tested this hypothesis by implementing a noisy
channel morpho-phonological learner, which makes predic-
tions based on a space of grammars. We found that the model
is able to produce qualitatively similar predictions to what
was seen experimentally. This was achieved not only because
certain patterns have more grammars that perfectly match the
data, but moreover because some patterns have more gram-
mars that nearly match the data. These simulations illustrate
that the experimental results can be modelled not as a result
of successfully learning the intended process interaction, but
through the combination of landing on alternative consistent
analyses as well as mislearning the data.

There are several avenues of future research. First, while
our work employs a rule-based formalism, other approaches,
such as Optimality Theory (Prince & Smolensky, 2004) and
MaxEnt grammars (Goldwater & Johnson, 2003), rely on
constraint interaction. Each theory has different hypothesis
spaces and may have different predictions about learnability.
It is worth exploring what these theories predict about the
distribution of outcomes. Moreover, artificial grammar learn-
ing is a widely utilized behavioral paradigm used to assess
learnability. Other experiments assessing the learnability of
process interactions have likewise been explored (Ettlinger,
2008; Kim, 2012; Brooks et al., 2013). Whether grammat-
ical spaces can capture these asymmetries as well remains
an open question. Lastly, this model generates these results
under a uniform prior over both rules and underlying forms.
Many phonological theories have proposed several substan-
tive biases in order to capture asymmetries in the typological
frequencies of different phonological phenomena. These pri-
marily pertain to biases over possible mappings (Smolensky,
1996; Steriade, 2001), but some intuitions on possible UR
hypotheses (i.e. having as few URs as possible for a given
lexeme) have also been assumed in most of the modelling
literature. It would be interesting to explore how different
biases and prior will interact with the grammatical space.

Broadly, our work contributes to the phonological learning
literature by computationally investigating a basic assump-
tion made by the field. We encourage future work to consider
the role of the space of grammars when interpreting produc-
tion results.
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