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Abstract

In acquiring a syntax, children must detect evidence for abstract structural dependencies
that can be realized in variable ways in the surface forms of sentences. In What did David
fix?, learners must identify a non-local relation between a fronted object of the verb (what)
and the phonologically null “gap” in canonical direct object position after the verb, where it
is thematically interpreted. How do learners identify a non-adjacent dependency between an
expression and something that has no overt phonological form?

We propose that identifying abstract syntactic dependencies requires statistical
inference over both overt linguistic material and unsatisfied grammatical expectations:
noticing when a predicted argument for a verb is unexpectedly missing may serve as evidence
for the gap of an argument movement dependency. We provide computational support for
this hypothesis. We develop a learner that uses predicted but unexpectedly missing objects
of verbs to identify possible gaps of object movement, and identifies which surface
morphosyntactic properties of sentences are correlated with these possible movement gaps.
We find that it is in principle possible for a learner using this mechanism to identify the
majority of sentences with object movement in child-directed English, and that prior
knowledge of which verbs require objects provides an important guide for identifying which
surface distributions characterize object movement. This provides a computational account
for why verb argument structure knowledge developmentally precedes the acquisition of
movement in a language like English. More broadly, these findings illustrate how statistical
learning and learning from violated expectations can be combined to novel effect in the
domain of language acquisition.

Keywords: language acquisition, computational modeling, statistical learning,

expectation violation, non-adjacent dependencies, movement, argument structure
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1 Introduction

In acquiring a syntax for their native language, children infer a system that specifies
ways of combining expressions in hierarchical structures, and defines dependencies over those
structures. These dependencies encode abstract grammatical relations, determined not by
the specific form of any particular expression, but rather by the syntactic properties of
expressions and their structural positions relative to each other.

For instance, the predicate-argument dependency between a verb and its direct object
is established through a particular structural configuration (1a), and is the same regardless
of the particular verb or the particular object noun phrase (underlined). And whereas in
English this dependency is often established locally, between two adjacent expressions, the
same abstract dependency can also be established non-locally, across potentially large
amounts of linguistic material. In each of the sentences in (1b-1d), a fronted phrase bears
the same object relation to the verb fir as does the corresponding phrase (a toy) in (la),

despite appearing in a non-adjacent position.

(1) a. David is fixing a toy. Amy is buying a plane ticket.
b.  What did David fix?
c.  What did the girl who we saw at the park say that David fixed?

d. I found the toy that David fixed.

These examples show us that syntactic dependencies are highly abstract in relation to
the specific forms that express them. The same verb-object dependency can be satisfied by
phrases with very different surface forms, appearing in very different positions in a sentence.
And these dependencies take still different forms in other languages. This tension between
the abstract nature of syntactic dependencies, and the variability of surface forms that
realize them, presents a challenge for theories of how this central domain of syntax is

acquired (Chomsky, 1965, 1980; Fodor, 1998; Lidz & Gagliardi, 2015; Pinker, 1984; Valian,
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1990). How do language learners come to identify abstract structural relations in the face of
such great variety in surface expression?

Prior accounts of dependency acquisition have largely focused on dependencies that are
morphologically marked, such as the relation between the auxiliary verb is and the -ing form
of the verb in (1a). Young children show awareness of the co-occurrence patterns of
non-adjacent sounds and morphemes their input, statistical sensitivities that may allow them
to discover morphosyntactic dependencies at early ages (Gémez, 2002; Gémez & Maye, 2005;
Hohle, Schmitz, Santelmann, & Weissenborn, 2006; Nazzi, Barriere, Goyet, Kresh, &
Legendre, 2011; Santelmann & Jusczyk, 1998; Tincoff, Santelmann, & Jusczyk, 2000;

Van Heugten & Shi, 2010). But this represents only a narrow corner of the dependencies that
learners must acquire. Here, we turn our attention to the sorts of dependencies illustrated in
(1b-1d), in which an object is moved from its canonical position after the verb.! The abstract
nature of movement dependencies poses a challenging learning problem. Identifying that the
same verb-object dependency is present in (la) and (1b-1d) requires tracking the
co-occurrences not only of specific surface forms, but also of abstract syntactic categories
and positions. Learners must become aware that a fronted noun phrase is standing in a
non-local relation to something that has no overt phonological form: the “gap” associated
with the verb, in canonical direct object position, where it is thematically interpreted.

In this paper, we argue that identifying abstract syntactic dependencies requires
statistical inference over both overt and hidden grammatical structure. We pursue the
hypothesis, consistent with a broader literature on the role of expectation violation in
development (Denison & Xu, 2012; Kouider et al., 2015; Stahl & Feigenson, 2017, 2015;
Téglas et al., 2011), that children learn from unsatisfied grammatical predictions. Our case
study is the role of verb argument structure knowledge in the acquisition of argument

movement. In their second year of life, children begin to identify subjects and objects in

! Here, “move” simply means that the relation between the object and the verb is established non-locally.
Any syntactic theory needs to account for the fact that the same dependency can be satisfied both locally
and non-locally. We use “move” as a theory-neutral term for this phenomenon.
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their canonical positions, and to learn which verbs require objects (Lidz, White, & Baier,
2017; White & Lidz, 2022; Fisher, Jin, & Scott, 2019; Jin & Fisher, 2014; Yuan, Fisher, &
Snedeker, 2012). Movement dependencies are acquired only after local argument structure
knowledge has emerged (Gagliardi, Mease, & Lidz, 2016; Perkins & Lidz, 2020, 2021). This
developmental trajectory points towards a particular learning mechanism: knowledge of local
argument dependencies may help learners identify when arguments have been moved. If
children notice when a predicted argument for a verb is missing in its expected position, this
may compel them to search for that argument non-locally, and thereby learn the
morphosyntactic footprints of particular movement dependencies in their language (Gagliardi
et al., 2016; Perkins & Lidz, 2020; Perkins, 2019; Stromswold, 1995).

We provide computational support for this proposal. We develop a learner that
identifies which surface morphosyntactic properties of sentences are correlated with expected
but missing direct objects of verbs. In simulations on child-directed English, our model
successfully identifies the majority of sentences with object movement in its input. Moreover,
we show that prior argument structure knowledge plays a substantial role in the success of
this distributional learning mechanism: knowledge of which verbs require objects provides an
important guide for identifying which surface distributions characterize object movement.
These findings provide insight into how learning from expected grammatical structure can
work in concert with statistical learning to enable syntactic dependency acquisition in early

development.

2 Acquiring Non-Local Syntactic Dependencies

A large body of literature finds that sensitivity to dependencies between non-adjacent
sounds and morphemes develops in an infant’s second year of life (Gomez, 2002; Gémez &
Maye, 2005; Hohle et al., 2006; Nazzi et al., 2011; Santelmann & Jusczyk, 1998; Tincoff et
al., 2000; Van Heugten & Shi, 2010). For instance, Santelmann and Jusczyk (1998) showed

that 18-month-old English learners are aware of the dependency between is and -ing in



MIND THE GAP 6

sentences like Fverybody is baking bread. Because these types of non-adjacent dependencies
are morphologically marked, they leave detectable evidence on the surface forms of sentences
that learners hear. That is, to identify that there is a dependency between is and -ing,
learners need only notice that these sounds co-occur in their input with unusual regularity—
although this still leaves open the question of how learners identify that this surface-level
co-occurrence is marking a particular grammatical dependency, namely, the relation between
the auxiliary be and a verb in the progressive aspect (Hohle et al., 2006; Nazzi et al., 2011;
Santelmann & Jusczyk, 1998; Tincoff et al., 2000).

Other types of non-local syntactic dependencies, such as the argument movement
dependencies in wh-questions, have received much less attention in prior work. These also
pose a more substantial learning challenge. English wh-phrases have different surface forms
than clause arguments in their canonical positions, and have different distributions: they
overwhelmingly occur clause-initially. Therefore, recognizing that the same verb-object
dependency is present in the wh-question in (1b) and in the basic transitive clause in (1a)
requires abstracting away from these surface properties. Infants cannot merely track the
co-occurrences of specific sounds or lexical items; they must represent the dependency
abstractly, as an instance of the same dependency that is typically established locally
between a verb and its direct object.

Prior experimental work has found that infants as young as 15 months sometimes
respond appropriately to wh-questions (Seidl, Hollich, & Jusczyk, 2003; Gagliardi et al.,
2016; Perkins & Lidz, 2020). But Gagliardi et al. (2016) and Perkins and Lidz (2020) argue
that infants’ success on these tasks may reflect an interpretive heuristic based on knowledge
of local argument dependencies in combination with pragmatic reasoning, rather than
syntactic representations of the non-local dependencies in these questions. This argument is
motivated by earlier findings that children at 15 to 16 months show sensitivity to lexical and
clause transitivity (Jin & Fisher, 2014; Lidz et al., 2017). Learners at this age are beginning

to identify which verbs require direct objects (Lidz et al., 2017), and in the following months
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they gain facility in using this knowledge to predict upcoming direct objects during online
sentence processing (Hirzel, Perkins, & Lidz, 2020; Lidz et al., 2017; White & Lidz, 2022).
Infants in this age range also use subjects and objects to draw inferences about verb
meaning, interpreting verbs with both subjects and objects as labels for causal events (Jin &
Fisher, 2014). This early knowledge of local subject and object dependencies may lead to the
appearance of wh-question comprehension in prior preferential looking tasks, even without
representing wh-dependencies syntactically. Such tasks typically presented infants with
wh-questions with transitive verbs, such as Which dog did the cat bump?, in the context of
events in which e.g. a dog bumps a cat, and the cat bumps a different dog. A 15-month-old
who can identify that the cat is the subject this question, and who knows that bump
typically requires a direct object, may be inclined on the basis of that knowledge to look at
an individual who got bumped by a cat— appearing to understand the question without
necessarily representing which dog as a non-local object of the verb. In support of this
account, Perkins and Lidz (2020) found that 15-month-olds’ performance on this task
depended on their vocabulary, a likely index of their verb knowledge.

Perkins and Lidz (2021) provided a more rigorous test of wh-dependency
representations by asking when infants register the complementarity between between a local
direct object and an object wh-phrase. If infants represent the wh-phrase in a sentence like
(1b) as expressing the same grammatical relation as the local direct object in (1a), then they
should be aware that the wh-phrase cannot co-occur with a local object: *What did David fix
a toy is ungrammatical. In a listening preference task, infants were presented with both
wh-questions and basic declarative clauses with transitive verbs, with and without local
direct objects. 18-month-olds listened longer to basic declarative sentences with local objects
vs. without (e.g. A dog! The cat should bump him! > *A dog! The cat should bump!), but
displayed the opposite pattern of preference for wh-questions (e.g. Which dog should the cat
bump? > *Which dog should the cat bump him?). That is, 18-month-olds showed a consistent

preference for grammatical sentences of each type. However, 14- and 15-month-olds did not
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differentiate between these sentence types. These results suggest that infants represent the

wh-phrase as a non-local object of the verb at 18 months, but not before.

2.1 Learning Mechanisms

The experimental results surveyed above point towards the following developmental
trajectory. Basic verb argument structure knowledge appears to develop early, at 15-16
months for English learners, and emerges before infants identify moved arguments, such as
those in wh-questions. What learning mechanisms might allow learners to identify these
non-local argument dependencies in their input? This is not a trivial task. Movement
dependencies are not always marked with consistent morphology: for instance, English
wh-phrases take a variety of different forms. The class of wh-elements in any language will
distribute in specific ways in the surface forms of sentences: for instance, English wh-words
are clause-initial and frequently occur in questions. However, even if a learner can identify a
word class with these particular surface distributional properties, it does not necessarily
follow that these are wh-elements. Many languages have question particles that can appear
at sentence boundaries in both wh- and polar questions. An example is the particle la in
Tz'utujil Mayan (2). A Tz'utujil learner needs a way to tell that la is a question particle and
not a wh-word, and conversely an English learner needs a way to tell that what is a wh-word

and not a question particle.

(2) Tz'utujil Mayan (Dayley, 1981)
La xwari ja ch’uuch’?

Q slept the baby

‘Did the baby sleep?’

Moreover, in many languages, wh-phrases do not appear clause-initially. In wh-in-situ
languages like Chinese, Japanese and Korean, wh-phrases are pronounced in their thematic

position local to the verb, but still take interrogative scope in a higher clausal position (3).
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Learners of these languages must identify when an expression is in a non-local wh-dependency

with a higher clausal node, even when it has not overtly moved to this position.?

(3)  Mandarin Chinese (Cheng, 2003)
Hufei mai-le shenme

Hufei buy-PERF what

‘What did Hufei buy?’

Thus, in order to identify wh-dependencies in their language, children must solve
multiple problems. They need to learn whether their language fronts wh-phrases, and if so,
which surface forms signal that this movement has occurred. In a language with wh-fronting,
they also must identify the thematic position where the wh-phrase should be interpreted in
relation to the verb. As noted above, wh-in-situ poses a different learning problem than
wh-fronting: in wh-fronting, a wh-phrase is pronounced in the position where it takes
interrogative scope, and learners must identify a non-local dependency with its thematic
position, whereas in wh-in-situ, the wh-phrase is pronounced in its thematic position, and
learners must identify a non-local dependency with its scope position. We focus here on the
problem posted by wh-fronting, but return to consider wh-in-situ in the General Discussion.

In English, surface signals for wh-movement include not only wh-words, but also a
variety of other reflexes of movement, such as prosodic marking and, in questions where the
moved constituent is not a subject, subject-auxiliary inversion and do-support. Mature
speakers of a language make efficient use of these signals in sentence processing to identify
moved arguments and predict upcoming “gaps” where they should be interpreted (Aoshima,
Phillips, & Weinberg, 2004; Crain & Fodor, 1985; Frazier & d’Arcais, 1989; Frazier & Clifton,
1989; Sussman & Sedivy, 2003; Traxler & Pickering, 1996). But children must first learn

2 On many accounts, this scope relation is established through covert movement (e.g. Aoun, Hornstein, &
Sportiche, 1981; Huang, 1982). Other non-movement accounts of wh-in-situ include binding by a covert
operator (Reinhart, 1998), with some proposing different wh-in-situ representations across different languages
(Cole & Hermon, 1994). See Cheng (2003) for an overview.
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these signals in order to use them in parsing wh-dependencies. In languages like English,
identifying the tails of these dependencies is particularly challenging, because the thematic
positions of moved elements are phonologically null. How do learners identify a non-adjacent
dependency where only one element appears overtly?

One possible piece of the puzzle comes from the literature on “expectation violation” or
“error-driven learning” in other areas of cognitive development. A large body of work finds
that infants use knowledge about the physical and social properties of objects and agents,
alone or in combination with learned statistical contingencies, to make predictions about
upcoming events (Denison & Xu, 2012; Kouider et al., 2015; Stahl & Feigenson, 2017, 2015;
Téglas et al., 2011). Violations of these predictions may provide valuable opportunities for
learning (Stahl & Feigenson, 2017, 2015). For instance, an experiment in Stahl and
Feigenson (2015) presented 11-month-olds with events that either conformed with or violated
object solidity. In one such event, a ball rolled down a ramp towards a solid wall, stopping
behind an occluder. When the occluder was lifted, one group of infants saw that the ball had
been stopped by the wall, while a second group of infants saw that the ball had apparently
passed through the wall, violating their predictions about object solidity. After this event,
both groups of infants were tested on their ability to map a novel property (e.g., squeaking)
to the previously observed toy. Infants who had observed the prediction-violating event
showed significantly greater learning than infants who had not. In a further experiment,
infants who viewed these events were then given a choice to explore the ball or a novel object.
Infants who had viewed the prediction-violating event chose to explore the ball more than
infants who had not. Moreover, their exploration was consistent with testing the object’s
solidity properties: they banged the ball against the table to a greater extent than infants
who had seen a different event type. These results suggest that even very young learners are
sensitive to inconsistency between their own predictions and observed events, and when they
observe a situation where their predictions are violated, they exploit this opportunity to

learn, explore, and test hypotheses about the potential cause of that violation.
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We pursue the hypothesis that a similar form of expectation-violation may underlie
infants’ discovery of argument movement dependencies in languages like English. Here, it is
not predictions about physical events that drive learning, but rather predictions about
grammatical structure. On this hypothesis, verb argument structure knowledge
developmentally precedes argument movement acquisition because the former provides the
basis for generating structural predictions— specifically, predictions about upcoming
arguments of verbs. When infants encounter a case where an expected argument does not
appear in its local position, they exploit this expectation violation to learn about the cause
of the locally missing argument, scaffolding their identification of movement dependencies
(Stromswold, 1995; Perkins, 2019; Perkins & Lidz, 2020; Gagliardi et al., 2016). For example,
learners who know that a verb like fix requires a direct object might register that it is
unexpectedly missing after the verb in a question like What did David fiz?. This unsatisfied
structural prediction may provide the basis of inferring the tail of a non-local argument
dependency— a “gap” of argument movement— even though it is silent. And it may compel
learners to search the rest of the sentence for the cause of the missing argument, eventually
identifying that another expression in the sentence (what) is satisfying the verb’s transitivity
requirement non-locally. This would allow them both to assign an appropriate parse to the
sentence, and to begin to learn how various types of non-local dependencies are realized: i.e.
that this question contains a wh-dependency, which is marked in English by various surface
signals, such as what, do-support, and subject-auxiliary inversion.

In sum, we propose that the process of acquiring non-local dependencies follows three
logically independent steps, which we will together call Gap-Driven Learning (Perkins &
Lidz, 2020; Perkins, 2019):

(i) using knowledge of verb argument structure to detect argument gaps: predicted

arguments that are unexpectedly missing in their local positions;

(ii) identifying what surface forms are correlated with these argument gaps; and
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(iii) inferring what types of syntactic dependencies are responsible for those correlations.

Here, we investigate the Gap-Driven Learning hypothesis specifically in the domain of
direct object gaps. This decision is motivated by empirical evidence for early knowledge of
verb transitivity (Lidz et al., 2017; Jin & Fisher, 2014), making it plausible that direct object
gaps are the type of argument gap that learners may be able to detect readily at the relevant
stage of development. But how this knowledge is in place by this age raises its own learning
problem, which must be addressed in order for Gap-Driven Learning to be possible. Before
children can identify when arguments have been moved, they cannot identify all instances of
direct objects in sentences containing transitive verbs. How, then, do they arrive at the
appropriate expectations that some verbs obligatorily require objects, such that they will be
surprised when those objects are missing? Perkins, Feldman, and Lidz (2022) investigated
this question computationally, and show that it is feasible for children to find their way
around this learning problem. The learner in Perkins et al. (2022) assumes that it
occasionally represents sentences erroneously, and learns what portion of its input
representations to treat as signal vs. noise for the purpose of learning verb transitivity.
When tested on the distributions of direct objects that a child at this age could identify in
child-directed English, the model learned how to filter its data to correctly assign transitivity
properties to the majority of the most frequent verbs in its input. This tells us that it in
principle possible for children to identify verb transitivity without accurately parsing
argument movement, thereby providing a way for Gap-Driven Learning to get started.

In this paper, we present a computational model that instantiates the first two steps of
learning under the Gap-Driven Learning hypothesis. The learner builds off of the model in
Perkins et al. (2022), using the approximate verb transitivity knowledge that their learner
identified. It tracks statistical regularities in the surface morphosyntactic features of
sentences in order to identify clusters of sentences that share distributional properties. At
the same time, it tracks when its expectations of upcoming direct objects are violated, in

order to infer which clusters of properties are correlated with potential direct object gaps.
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When tested on child-directed speech, we find that the model identifies the large majority of
sentences with object movement. Furthermore, we show that prior knowledge of verb
transitivity, even if rough and approximate, is important for this distributional learning
process to be successful. The learner performs better if it uses transitivity knowledge to infer
likely object gaps, rather than clustering sentences on the basis of their overt surface features
alone. These findings demonstrate that a learner could in principle identify object movement
dependencies in English by using unsatisfied structural predictions to guide distributional
learning. As verb transitivity knowledge forms the basis for generating these structural
predictions, this provides an account for the empirically-attested order of argument structure

and argument movement acquisition in early development.

3 Model

We present a Bayesian model that simultaneously tracks the statistical distributions of
surface morphosyntactic features in sentences, and applies its knowledge of verb transitivity
in order to infer which distributional properties are correlated with locally missing direct
objects. This distributional learning takes the form of categorization: the learner infers
“categories” of sentences according to their feature distributions, and infers which sentence
categories likely contain direct object gaps. When the learner sees a sentence that violates its
expectations about verb transitivity, the learner infers that that sentence contains a direct
object gap, and that all other sentences in the distributionally-defined category do so as well.
This allows the learner to generalize across sentences that share similar surface features, and
to infer which of those shared features signal object movement dependencies.

This distributional learning mechanism follows prior computational work that has
proposed similar mechanisms for the acquisition of phonetic categories in infancy, and for
category learning domain-generally (Anderson & Matessa, 1990; Feldman, Griffiths,
Goldwater, & Morgan, 2013; Maye, Werker, & Gerken, 2002; McMurray, Aslin, & Toscano,

2009; Sanborn, Griffiths, & Shiffrin, 2010). Similar to these previous models, the current
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account envisions the learning task as requiring two simultaneous inferences: discovering the
underlying system of categories that give rise to distributions of surface features that a
learner observes, and identifying which observations belong to which category. However, it
departs from previous literature by envisioning this categorization process as merely a means
to an end. Whereas the phonetic learning literature has traditionally assumed that there is a
set of phonetic categories to be acquired (but see Feldman, Goldwater, Dupoux, & Schatz,
2021), here we do not assume that adult grammars necessarily represent “categories” of
sentences in any meaningful way. Instead, the categories inferred by this learner are an
intermediate step of learning: they enable further inference about the underlying properties
of sentences that are formally similar. When the learner infers that one sentence in a
category likely contains an object gap, it then infers that this property holds of other
sentences in the category as well. In doing so, it identifies which surface features are
correlated with object gaps and therefore may be the footprints of movement.

Our computational approach falls under the paradigm of Bayesian cognitive modeling.
A cognitive model formalizes a hypothesis about the knowledge that a learner brings to a
particular learning task (the learner’s hypothesis space, containing assumptions about how
its data are generated), along with the mechanisms that a learner uses to update that
knowledge on the basis of new data. Bayesian approaches characterize learners’ beliefs as
probability distributions over hypotheses, which are updated using rational probabilistic
inference: the posterior probability of a hypothesis given observed data is calculated by
combining the learner’s prior beliefs with the likelihood of the data under each hypothesis.
The learner that we present in the current work is a Bayesian model that is “nonparametric”
in the sense that the size of its parameters (the number of latent sentence categories to be
acquired) is unknown in advance. The approach taken in Bayesian cognitive modeling differs
from the statistical approach of hypothesis-testing through Bayesian regression: in the
cognitive modeling paradigm, the model itself is the hypothesis being tested, rather than a

tool for assessing which of several hypotheses provides the best fit for data. Such a model
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can take many different forms depending on the theoretical assumptions of the modeler, and
typically assumes a complex, non-linear relationship between variables and data. The
current approach uses some of the same techniques from the machine learning literature, but
differs from supervised machine learning in that the model is not fit on the learning objective
that it is tested on, so its data need not be split between training and test sets to avoid
over-fitting. For a detailed tutorial introduction on Bayesian cognitive methods and further
examples of how this paradigm has been applied, see Griffiths, Chater, and Tenenbaum
(2024) and the citations therein.

Following a rich tradition in the language acquisition literature (e.g., Abend,
Kwiatkowski, Smith, Goldwater, & Steedman, 2017; Alishahi & Stevenson, 2008; Berwick,
1985; Dillon, Dunbar, & Idsardi, 2013; Elman, 1990; Frank, Goodman, & Tenenbaum, 2009;
Goldwater, Griffiths, & Johnson, 2009; Pearl & Sprouse, 2019; Perfors, Tenenbaum, &
Wonnacott, 2010; Perfors, Tenenbaum, & Regier, 2011; Perkins et al., 2022; Sakas & Fodor,
2001, 2012; Vallabha, McClelland, Pons, Werker, & Amano, 2007; Wexler & Culicover, 1980;
C. Yang, 2002), our model is framed at Marr’s (1982) computational level. We aim to
characterize a particular type of mental computation that could give rise to successful
learning given the information available in children’s data and a set of hypotheses about
their knowledge at the relevant developmental stage. This model therefore represents an
idealization of learners’ actual inference processes, but an idealization that is nonetheless
grounded in empirical data about their grammatical knowledge and representational abilities
in development, described in more detail below. It also provides a measure of how much
information is available in the child’s representation of the input (at a particular stage of
development) to support the hypothesized inferences. The results of our simulations open
the door for further algorithmic questions concerning learners’ abilities to access and use the
information available in their environment, and whether their learning processes resemble
this idealized mechanism.

In this section, we (i) specify the generative model, encoding the learner’s assumptions
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about how its observations of sentence features are generated, and (ii) specify how the
learner jointly infers sentence categories and object gaps, given its data and its knowledge of
verb transitivity. The following sections present simulations demonstrating that this joint
inference allows the learner to successfully identify features that characterize object

movement dependencies in English, when tested on child-directed speech.?

3.1 Generative Model

The data that our learner observes consists of the morphosyntactic features of
sentences containing transitive, intransitive, or alternating verbs. The learner builds off of a
first step of learning modeled in Perkins et al. (2022), which shows how some initial
knowledge of verb transitivity properties might be acquired before a child can identify moved
objects. That learner assumed that there are three transitivity categories to be
identified—transitive verbs that require direct objects, intransitive verbs that disallow them,
and alternating verbs that optionally allow them—and assigned verbs in its input to these
three categories based on their distributions with direct objects in canonical post-verbal
positions, which English-learning infants can identify prior to 18 months (Jin & Fisher, 2014;
Hirsh-Pasek & Golinkoff, 1996; Seidl et al., 2003; Gagliardi et al., 2016; Perkins & Lidz, 2020;
Lidz et al., 2017). These initial transitivity assignments are imperfect, modeling the realistic
assumption that a child’s knowledge of verb transitivity is likely to be approximate at this
stage of development.

The current learner now assumes that there are two reasons why it might observe
canonical direct objects or no direct objects after the verbs in the sentences that it observes.
On the one hand, the transitivity of that verb determines whether it should always, never, or
sometimes occur with a direct object. On the other hand, there may be a separate
grammatical process, such as argument movement, that results in an apparent transitivity

violation. The learner assumes that these transitivity violations are governed by latent

3 Code and data for the model and simulations reported in this paper can be found on <URL of first
author’s GitHub repository>.



MIND THE GAP 17

“categories” of sentences with shared grammatical properties. Each category has a particular
parameter governing whether it produces object gaps: if it does, then observations of
canonical direct objects in that category may no longer reflect the transitivity properties of
these verbs, but may instead be due to other grammatical properties that produce
“non-basic” word orders. These properties also give rise to the distributions of other
morphosyntactic features of sentences in a particular category.

For instance, the learner might identify that a sentence like What did David fix?
belongs to a category of other sentences that have object gaps, and also tend to be questions
with subject-auxiliary inversion, a form of do, and an unknown functional element
sentence-initially (e.g., what). On the other hand, the learner might identify that a sentence
like Your toy got broken belongs to another category of sentences that also have object gaps,
but different morphosyntactic features: here, a form of get and the verbal suffix -en. The
distributional features of the first sentence category are the footprints of object wh-questions
in English; the features of the second category are the footprints of get-passives.

The learner does not know ahead of time how many sentence categories there will be,
or what the properties of those categories are. Using the distributions of direct objects and
the other observed sentence features in its data, the learner infers what categories of
sentences are present, what their distributional properties are, and which categories produce
object gaps. This allows the learner to identify specific clusters of morphosyntactic features
that are correlated with object gaps in different clause types, which may be candidates for
entering into non-local movement dependencies.

More formally, we provide the graphical model for the learner in Figure 1. A graphical
model provides a visual representation of the process by which the learner assumes its data
are generated. Circular nodes represent random variables, and arrows represent conditioning
relationships between variables. Shaded nodes represent variables with observed /known
values; unshaded nodes represent variables whose values are unknown and must be inferred.

Rectangular “plates” indicate when a portion of the model is repeated over a particular
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Figure 1. Graphical Model for Joint Inference Learner. Nodes correspond to random
variables: the observed direct objects X and other features F' in each sentence, the
transitivity category T and rate of direct objects 6 for each verb, the latent “category” ¢ of
each sentence, the rate of direct objects 6X) and other sentence features 6 produced by
each category, and whether each category produces a transitivity violation e. Arrows denote
conditioning relationships between variables.

range, denoted by the superscript in the right corner. See Griffiths et al. (2024) for more
information.

Observations of direct objects are formalized as the Bernoulli random variable X. This
variable encodes direct object data for each of the m sentences containing each of the V'
verbs in the model’s input, with a value of 1 if the sentence contains a direct object following
the verb, and 0 if it does not. The model’s observations of the other n relevant
morphosyntactic features of the sentence are represented by the vector of Bernoulli random
variables F. Specific details of this feature set are discussed in the next section.

The direct object observations X () for a given verb v can be generated by two
processes: the transitivity of verb v, represented by the variables T" and 6 in the upper half
of the model, or the other grammatical properties of the category that the sentence belongs
to, represented by the variables ¢, e, and §*) in the lower half of the model. We describe

each of these generative processes in turn.
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In the upper part of the model, each observation X of a direct object for a particular
verb is conditioned on the parameter 8, a continuous random variable that controls the
probability that verb v will be used with a direct object. 8 is conditioned on the variable
T® a discrete random variable that can take on three values corresponding to transitive,
intransitive, or alternating verbs. In order to model the hypothesis that learners are using
prior knowledge of verb transitivity properties, we assume that the learner has approximate
knowledge of these values of T for the set of verbs in the learner’s data, as acquired by the
model in Perkins et al. (2022). This means that the learner knows some of the values of 0 as
well. If verb v is fully transitive, then the learner assumes that 8(*) = 1: the verb should
always occur with a direct object. If the verb is fully intransitive, then *) = 0: the verb
should never occur with a direct object. If the verb belongs to the alternating category of T,
then A takes an unknown value between 0 and 1 inclusive. The prior probability over @ in
this case is a Beta(q, 8) distribution, where the parameters o and 3 are counts of direct
objects and no direct objects for verb v in sentence categories without transitivity violations,
excluding the current category.

In the lower part of the model, each X is conditioned on the discrete random
variable ¢, defined for all positive integers, which represents the category that the sentence
belongs to. These sentence categories also condition the other morphosyntactic features in
the sentence, encoded in the vector F. Each category c is assumed to reflect a particular set
of underlying grammatical properties that give rise to the distributions of direct objects and
other features of a sentence. The number and properties of these categories are a priori
unknown, and the learner infers the properties that will allow it to explain the distributions
of features and direct objects that it observes. Returning to our earlier examples, the learner
might infer a value of ¢ that encodes English wh-object questions, giving high probability to
sentence-initial function words (i.e., wh-words), subject-auxiliary inversion, forms of do, and
direct object gaps. Another inferred value of ¢ might encode English get-passives, giving

high probability to direct object gaps, forms of get, and the -en verbal suffix. The prior
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probability over ¢ is a Dirichlet process (Ferguson, 1973), which gives a particular category
prior probability proportional to the number of sentence observations already assigned to
that category. This process also reserves a small non-zero probability for new categories,
allowing the model to flexibly converge on the number of sentence categories that best
explains the distributions in its data. By allowing the model to explore a potentially
unbounded number of categories, this prior builds in the fewest possible assumptions about
the number of categories required to explain the distributions in a given language or dataset;
however, this form of prior also biases the model to re-use categories whenever possible, and
thus to keep the total number of categories small.* See Appendix A for details.

The random variables e, 6X), and 6F) represent the parameters of each of the sentence
categories. The Bernoulli random variable e. encodes whether a given category ¢ produces
transitivity violations. If e, = 0, then the category does not produce transitivity violations,
and all observations of a direct object in X were generated by the transitivity properties of
verb v. But if e, = 1, then the category does produce transitivity violations, and the
observations of direct objects X ) were generated by a particular grammatical property of
category c¢. The learner in Perkins et al. (2022) inferred that transitivity violations occurred
approximately 19% of the time in sentences containing this same set of verbs in
child-directed speech. In order to model the hypothesis that the current learner builds off of
the knowledge gained in that previous stage of learning, our learner assumes that 19% is the

prior probability that e, = 1.°

4 Note that this is not intended as a claim about the number of sentence categories that a child’s developing
cognitive capacities can support. Following Anderson (1990), we frame the current model as a way to
determine the solution that an ideal learner could arrive at from the input that a child is exposed to. Further
work might extend this model to explore different hypotheses about limits on the number of categories that a
child can feasibly entertain.

® The model in Perkins et al. (2022) differs from the current model in that it did not group sentences into
categories. In the previous model, this parameter represented the probability of transitivity violations across
sentences in the corpus. In the current model, this parameter represents the probability of transitivity
violations across categories of sentences. These two parameters are not necessarily equivalent; they will only
be equivalent if sentences are equally distributed among sentence categories. Although this assumption may
not be borne out, it is adopted here as a simplifying assumption of the learner’s prior, which can be
overridden as the learner updates its hypotheses upon seeing data.
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The random variable 5£X ) represents the probability of observing a direct object in a
category with transitivity violations— that is, whether the particular violation in that
category produces object gaps, or whether it adds an apparent extra object that isn’t
licensed by the verb. Intuitively, we can think of the probability that a sentence contains a
direct object as depending on one of two biased coins. If e, = 0 and the observation was
generated by the verb’s transitivity properties, then one biased coin is flipped and the
sentence contains a direct object with probability (*). But if e, = 1 and the observation was
generated by the grammatical properties of category ¢, then a different biased coin is flipped
and the sentence contains a direct object with probability §(X). The parameter §X) is
assumed to have a uniform Beta(1, 1) prior distribution. This uniform prior means that it is
equally likely a priori for a sentence category to create object gaps as it is to add extra
objects. This form of prior builds in the fewest possible assumptions about the probability of
observing a direct object vs. an object gap within a sentence category. Analogous to 6,
the random variables in &(F) represent the probabilities of observing the other
morphosyntactic features in a given sentence category. Each () is also assumed to have a
uniform Beta(1, 1) prior distribution, meaning that all features are equally likely a priori to
be present as they are to be absent; this likewise builds in the fewest possible assumptions

about the distributions of features within sentence categories.

3.2 Inference

The learner uses component-wise Gibbs sampling (Geman & Geman, 1984) to jointly
infer the category of each observed sentence (¢) and whether or not each category contains
transitivity violations (e). We first initialize values of ¢ and e for each sentence. Then, for
each sentence, we calculate a posterior probability distribution over new category
assignments given the observed data in X and F', the known verb transitivity properties T,
and the other sentence category assignments and properties. We re-sample new values of ¢

for each sentence sequentially from this posterior probability distribution. Finally, we use the
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new category values to re-sample values of e for each category from its posterior probability
distribution, given the other model parameters. This cycle is repeated over many iterations
until the model converges to a stable distribution over ¢ and e. Details of the initialization

and sampling procedure are provided in Appendix A.

4 Simulations

We tested our learner on a dataset of child-directed English. As described above, our
model performs two steps of inference: it jointly categorizes sentences according to their
surface feature distributions, and infers which sentence categories have direct object gaps. In
order to evaluate its performance and assess the importance of each of these inference steps,
we compared it to a baseline model that lacks one of these steps. The first baseline model
uses verb transitivity knowledge to identify object gaps, but does not categorize sentences
based on their feature distributions. The second baseline model categorizes sentences based
on their feature distributions, but lacks verb transitivity knowledge and the ability to
identify object gaps. We ask two primary questions: (i) how well can our learner identify
instances of object movement in English, in comparison to these baselines? and (ii) how
informative are the specific features of the model’s categories for isolating movement

dependencies from other grammatical processes?

4.1 Data

We prepared a dataset from four parsed corpora in the CHILDES Treebank (Pearl &
Sprouse, 2013), which contains parse trees for child-directed English corpora on CHILDES
(MacWhinney, 2000). Details of these corpora are provided in Table 1. From these corpora,
we selected sentences containing the verbs whose transitivity properties are known by our
learner. Because a child’s knowledge of verb transitivity is likely to be imperfect before 18
months of age, we base our learner’s knowledge on the transitivity classes inferred by the
learner in Perkins et al. (2022), which provides a model of the previous stage of learning that

our current model builds off of. We selected 18,503 sentences containing the verbs whose
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Table 1
Corpora of Child-Directed Speech

Corpus # Children | Ages # Words | # Utterances
Brown- Adam, Eve, & Sarah (Brown, 1973) | 3 1:6-5;1 391,848 87,473
Soderstrom (Soderstrom et al., (2008)) 2 0;6-1;0 90,608 24,130
Suppes (Suppes, 1974) 1 1;11-3;11 | 197,620 35,904
Valian (Valian, 1991) 21 1;9-2:8 123,112 25,551

transitivity properties were inferred by the previous learner: these are the 50 most frequent
transitive, intransitive, and alternating action verbs in these corpora. Because the previous
learner assigned only 66% of these verbs to the correct transitivity category as specified in
Perkins et al. (2022), this provides a noisy and imperfect source of knowledge for the current
learner.% Table 2 provides the frequencies of these verbs along with the transitivity
categories assumed by our model.

We conducted an automated search over the Treebank trees for overt direct objects
following each verb, as well as the morphosyntactic features of each sentence that our model
observes. We assume that the learner’s inference is driven by information relevant to the
predicate-argument structure of a sentence: morphosyntactic features pertaining to subjects,
objects, and verbs. These features are listed in Table 3.

In selecting these features, we model a learner with the representational abilities of an
infant between the ages of 15 and 18 months. Prior behavioral evidence finds that infants at
these ages can use the word order properties of their language to identify clause subjects and
objects in their canonical positions (Jin & Fisher, 2014; Hirsh-Pasek & Golinkoff, 1996; Seidl
et al., 2003; Gagliardi et al., 2016; Perkins & Lidz, 2020; Lidz et al., 2017). They attend to
auxiliaries, and can detect when the order of a subject and auxiliary is inverted (Geffen &
Mintz, 2015). They are able to segment a variety of verbal suffixes in English and other
languages (Kim & Sundara, 2021; Mintz, 2013; Figueroa & Gerken, 2019; Santelmann &

6 The errors made by the learner in Perkins et al. (2022) were primarily in classifying verbs as
deterministically transitive or intransitive when these verbs can participate in rare alternations. Perkins et al.
(2022) had categorized these verbs as “true” alternators following Levin (1993).
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Table 2
Known Verbs and Transitivity Categories Assumed by Learner (T)

Verb Total % Direct Objects Verb Total % Direct Objects
Transitive Alternating, cont.
feed 220 93% drink 366 60%
fix 337 91% wear 477 60%
pick 331 90% eat 1318  59%
bring 605  89% sing 306 53%
drop 169 88% blow 255 52%
throw 312 88% draw 375 51%
hit 214 87% move 238 47%
lose 185 86% ride 281 41%
close 166 85% hang 151 35%
buy 358 84% stick 192 29%
touch 183 84% write 583 27%
leave 356 83% fit 227 22%
wash 195 83% play 1568  19%
Alternating wait 383 15%
pull 331 81% stand 294 ™%
push 352 78% Intransitive

open 342 7% run 228 6%
catch 185 76% walk 253 4%
cut 263 75% jump 197 4%
bite 191 73% swim 180 4%
turn 485 72% work 256 4%
build 299 2% cry 275 3%
knock 160 72% sleep 451 3%
hold 579 70% sit 859 1%
read 509 69% stay 308 1%
break 550 63% fall 605 0%

Jusczyk, 1998; Soderstrom, Wexler, & Jusczyk, 2002; Soderstrom, White, Conwell, &
Morgan, 2007; Hohle et al., 2006; Nazzi et al., 2011; Van Heugten & Shi, 2010). In addition
to auxiliaries and verbal affixes, infants at these ages are sensitive to the syntactic properties
of a handful of other functional categories: determiners (Hicks, Maye, & Lidz, 2007; Hohle,
Weissenborn, Kiefer, Schulz, & Schmitz, 2004; Shi & Melangon, 2010; Cauvet et al., 2014),
pronouns (Cauvet et al., 2014), prepositions (Lidz et al., 2017), and negators (de Carvalho,
Crimon, Barrault, Trueswell, & Christophe, 2021). Although they may not know the
categories of other functional elements, they are able to recognize them as functional as

opposed to lexical on the basis of their phonetic and prosodic properties (Monaghan, Chater,
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Type Features

Object Direct object of known verb is overt in canonical object position (right
NP sister of V)

Subject Subject of known verb is overt in canonical subject position (left NP

sister of VP); sentence-initial; preceded by an auxiliary; preceded by
another noun

Verb Known verb is first verb in sentence; followed by a preposition or
particle; has -ed, -en, -ing, -s, or irregular morphology

Tense & Auxiliaries | Verb is preceded by to, be, have, get, or occurs with do

Other Question; unknown function word sentence-initially, sentence-medially
before verb, sentence-medially after verb, or sentence-finally

Table 3

Direct Objects and Morphosyntactic Features Observed by Learner (X and F'). The presence
of a direct object is the sole feature encoded by X. The remaining 21 features are encoded
within the feature vector F.

& Christiansen, 2005; Shi, Morgan, & Allopenna, 1998; Shi, Werker, & Morgan, 1999).

In coding for the features in in Table 3, we model an infant who can identify objects
locally after verbs, but cannot yet identify non-local objects, such as fronted wh-phrases in
wh-questions (Perkins & Lidz, 2021). This means that sentences like You're eating or What
are you eating? were both coded as not having a direct object from our learner’s perspective,
even though the wh-word what acts as a non-local object in the second sentence of this pair.
Instead, wh-words are coded as “unknown function words,” a hyper-category that includes
all functional elements assumed to be unknown at this age: wh-words, complementizers,
quantifiers, focus particles, and conjunctions other than and.

We also code for the pragmatic feature “question,” which represents whether an
utterance has interrogative force. Empirical evidence suggests that infants in their second
year of life understand when a speaker is seeking information (Casillas & Frank, 2017;
Goodhue, Hacquard, & Lidz, 2023; Luchkina, Sobel, & Morgan, 2018); see Carruthers (2018)
on “questioning attitudes” as a basic component of human minds. They do so likely on the
basis of distributional, prosodic, and socio-pragmatic cues (such as pauses and eye gaze)

which differentiate questions from assertions in child-directed speech (Y. Yang, 2022). Young
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infants are sensitive to the prosodic and distributional differences between declaratives and
polar questions (Frota, Butler, & Vigério, 2014; Geffen & Mintz, 2015; Soderstrom, Ko, &
Nevzorova, 2011). Although wh-questions differ from polar questions in their prosody
(Geffen & Mintz, 2017), it is possible that infants may know that these sentences are
interrogatives, even before they are aware that they contain wh-dependencies (Seidl et al.,
2003; Gagliardi et al., 2016; Perkins & Lidz, 2020). Questions were identified by the presence
of a question mark in the transcription; this does not distinguish constituent questions from
polar questions.

In coding for the feature “question,” we abstract away from the specific prosodic
features that learners might rely on to distinguish interrogatives from declaratives, and
wh-questions from polar interrogatives (Frota et al., 2014; Geffen & Mintz, 2015; Soderstrom
et al., 2011; Y. Yang, 2022; Gryllia, Doetjes, Yang, & Cheng, 2020), which were not available
in the corpora of child-directed speech used for our model’s dataset. In abstracting away
from the prosodic signal, we ask how far a learner might get on the basis of distributional
morphosyntactic information. However, we do not intend this as a claim that children
cannot or do not additionally attend to this richer prosodic information, and further work
might extend the current model to operate over a prosodically-enriched dataset.

To verify the accuracy of our automated coding, a random sample of 500 sentences
from the dataset were separately hand-coded by two trained researchers. Percentage
agreement between the hand-coding and automated coding ranged from 87%-100% across
the 21 features; inter-rater reliability was also 87%-100%. See Appendix B for more detail.

The sentences in the dataset were also coded for their underlying clause types,” listed in
Table 4. These annotations were used as a gold standard to evaluate our model, and were not
part of the model’s dataset. These clause types included three with movement: wh-questions,

passives, and relative clauses. A given clause might be coded as multiple types, e.g. as both

7 We use “clause type” as a theory-neutral term to refer to the various syntactic constructions in the clauses
comprising our model’s dataset, in a way that is not directly related to the literature on the relation between
clause types and speech acts (e.g. Sadock & Zwicky, 1985; Konig & Siemund, 2007).
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Clause Type # Clauses Description

Basic transitive 2855 (15%) Matrix, finite, declarative clause with overt direct object
following known verb

Basic intransitive 2704 (15%) Matrix, finite, declarative clause without overt direct
object following known verb

Wh-question 2336 (13%) Clause has canonical syntactic form of a wh-question,
with wh-element in a dependency with the known verb

Polar question 3641 (20%) Clause has canonical syntactic form of a polar question

Other question 1922 (10%) Clause was transcribed with a question mark, but does

not have canonical syntactic form of a wh-question or
polar question: includes tag, fragment, and echo ques-
tions, and rising intonation declaratives

Passive 268 (1%) Known verb has been passivized, excluding forms that
are clearly adjectival

Relative clause 298 (2%) Known verb is in a full or reduced relative clause

Other embedded clause 4905 (27%) Known verb is in a finite or non-finite embedded, non-
relative clause

Imperative 2176 (12%) Clause has canonical syntactic form of an imperative

Table 4
Distribution of Underlying Clause Types in Dataset

a question and a passive. For sentences with multiple clauses, coding was conducted for the
clause containing the verb of interest. Accuracy of clause-type coding was again evaluated by
comparing against a 500-sentence sample hand-coded by two researchers. Percentage
agreement between the hand-coding and automated coding ranged from 84%-99% across the
9 clause types (inter-rater reliability 87%-99%); see Appendix B. Additional hand-coding
was conducted for wh-questions and relative clauses in order to annotate the gap site in these

sentences, which could not be reliably identified automatically for the entire dataset.

4.2 Results

4.2.1 Sentence Category Distributions. Our joint inference model inferred 39
total sentence categories, 16 with transitivity violations and 23 without. To determine which
of the model’s inferred transitivity-violating categories were ones that contained object gaps
(vs. other types of transitivity violations), we calculated the odds ratio of direct objects

appearing in these categories. This measure divides the odds of observing a feature in a
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Figure 2. Proportions of Clause Types in Inferred Sentence Categories, Joint Inference Model

given category by the odds of observing that feature outside of that category; an odds ratio
significantly greater than 1 indicates that a feature is more likely to be present within than
outside of the category, and an odds ratio significantly less than 1 indicates that a feature is
more likely to be absent. Significance was calculated using a Fisher’s exact test with a
Bonferroni correction for multiple comparisons. See Appendix C for full details.

Of the 16 transitivity violating-categories, 15 had significantly lower odds (odds ratio
less than 1) of producing direct objects; we call these “object gap” categories. For each of
the model’s categories, Figure 2 displays the proportion of the category made up of each
underlying clause type. Note that these proportions do not necessarily sum to 1 because a
single clause might be of multiple types. For example, the sentences in the model’s Category
1 are entirely (1.00) wh-questions; this means that a given sentence in Category 1 has a 100%

probability of being tagged with the wh-question type in the gold-standard annotation.
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However, in Category 2, a given sentence has a 95% probability of being a wh-question and
also a 99% probability of being an embedded clause: this is a category that is predominantly
long wh-questions, i.e., those with wh-dependencies into embedded clauses.

In order to see whether the sentences in a given category predominantly belong to a
particular clause type, versus being spread out among many different clause types, we
calculated the purity of these categories when compared to the true underlying clause types
in the corpora. Purity was calculated by counting the total number of sentences that belong
to the predominant clause type in each category, and dividing by the total number of
sentences in the dataset (Manning, Raghavan, & Schiitze, 2008). Because a given sentence
could belong to more than one clause type (i.e., both a wh-question and an embedded
clause), we counted it as belonging to the predominant type in the category if that type was
among those that the sentence belongs to. We note that this is a coarse approach, and intend
it only as a descriptive measure; our goal is not to evaluate the model on its clustering, but
rather to evaluate it on whether it is able to find movement in its data, which we report in
Section 4.2.2. Given this approach, this measure has a minimum value of 0 if clusters are
made up of a mixture of clause types, and a maximum value of 1 if clusters are made up of a
single clause type. Our model’s overall cluster purity is 0.76, which tells us that the model’s
categories were more likely to track one underlying clause type rather than a mixture.

The model inferred many more categories than necessary to identify the set of
underlying clause types that it is being evaluated against. This is unsurprising: the learner
was not given any information about how many clause type categories were present, nor the
grain size at which to perform its categorization. Instead, it was given leeway to posit as
many categories as needed to explain the distributions of features and transitivity violations
in its data. The model divided wh-questions among seven different categories: five
transitivity-violating categories and two with no transitivity violations. These categories
differentiate monoclausal from biclausal questions (e.g., What does he eat? vs. What would

you like to read?), questions in the progressive aspect (e.g., What are you bringing?) from
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Figure 3. Accuracy on identifying sentences with object movement in three metrics:
precision (proportion of model’s object-gap categories that contain object movement), recall
(proportion of object movement in corpus identified by model), and F1 (harmonic mean of
precision and recall)

those in other aspects, and questions where the wh-word is sentence-initial from those where
it is not (e.g., And what is he wearing?). The model also categorized subject questions
separately from object and adjunct questions, and correctly identified subject questions as
non-transitivity-violating. These distinctions may have implications for the learner’s ability
to generalize about the surface forms that are distinctive of different types of movement
dependencies, a point we return to in the following sections.

4.2.2 Accuracy on Identifying Object Movement. Here, we ask how well our
learner can identify instances of object movement in its data. Visually, we can see from
Figure 2 that clause types with movement were more likely to be categorized in object-gap
categories than in non-object-gap categories. To ask how well the model identified cases of
object movement specifically, we compared its object-gap categories against the sentences
that were coded as actually having object gaps in the corpus. The model’s accuracy is
displayed in Figure 3 using three metrics. Precision measures the proportion of sentences in
the model’s object-gap categories that contained object movement according to our gold
standard— that is, the proportion of these categories made up of object wh-questions, object
relative clauses, or passives. Recall measures the proportion of sentences with object
movement in the corpus overall that were identified as belonging to one of the model’s

object-gap categories. These metrics are not always aligned: it would be possible to achieve
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Figure 4. Distribution of Movement Types in Model’s Object-Gap Categories

perfect recall by identifying all sentences as having object movement, but this would result in
very poor precision. The F1 score, the harmonic mean of precision and recall, reflects the
model’s overall accuracy by taking into account both of these metrics. For each of these
metrics, we compare the model’s performance to a chance baseline, indicated by the dashed
horizontal line. This represents the expected performance of a learner that randomly
categorizes sentences as having transitivity violations that cause direct objects gaps, by
flipping a coin with weight 0.19, which is the probability of transitivity violations encoded in
our learner’s prior.

The model achieved an F1 score of 0.50. Its recall was 0.80, indicating that it identified
80% of sentences with object movement in its data. This accuracy rate is substantially above
chance performance. Its precision was 0.37, indicating that on average, 37% of the sentences
within its object-gap categories had instances of object movement. This precision rate is also
above chance, but shows us that the model did not always manage to isolate object
movement from other clause types in its data. To examine this further, we plotted the
distribution of movement and non-movement types in the model’s object-gap categories in
Figure 4. Object movement was the predominant clause type in 60% of these categories, but
occurred alongside other movement types as well, particularly adjunct movement. The model
appears to categorize adjunct movement together with object movement based on some
surface distributional similarities: unlike subject movement, both object and adjunct

movement contain subject-auxiliary inversion and can trigger do-support, even though
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Verb Class | # Object-Movement Sentences | % Identified
Transitives 299 0.75
Intransitives | 15 0.60
Alternators | 1055 0.82
Total 1369 0.80

Table 5
Proportion of Object-Movement Sentences Identified, by Verb Type

adjunct movement does not tend to produce transitivity violations. The other 40% of the
model’s object-gap categories were predominantly comprised of sentences without movement.
Thus, while the learner achieved high accuracy in identifying sentences with object
movement as such, in certain cases it categorized sentences with object movement together
with other clause types.

The model achieves this performance despite several factors that limit its accuracy.
First, the model does not receive credit for identifying cases of movement other than
wh-questions, passives, and relative clauses; other rarer cases of movement were more difficult
to code automatically, and thus were not annotated in the gold standard labels.® Second, the
model only infers object movement from sentences that it believes violate verb transitivity:
sentences with missing direct objects for verbs that it considers fully transitive. This means
that the current evaluation measures how well the model was able to generalize from
fully-transitive verbs to verbs that also allow intransitive uses. Table 5 displays the
proportions of sentences with object movement that the model correctly identified as having
object gaps, broken down by the verb classes that comprised the model’s prior transitivity
knowledge. The model achieved high recall even though the majority of sentences with
object movement occurred with verbs that it believed to be alternating, rather than
obligatorily transitive. Of the 1369 sentences coded as having object movement in the corpus,
only 299 contained known transitive verbs, compared to 1055 containing known alternating

verbs.? Nonetheless, the model achieved high accuracy across both the transitive and

8 These rarer movement types included tough-movement, movement out of purposive clauses, clefting,
pseudo-clefting, topicalization, and comparative movement.

9 The few cases of object movement with intransitive verbs were uses of the verb in a rare or ungrammatical
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alternating verb classes. This tells us that it was able to generalize effectively: it used the
presence of object gaps with known transitive verbs to identify the forms that object
movement takes in its data, even with verbs that do not obligatorily require objects.®

In summary, our joint inference model performed significantly higher than chance in
categorizing sentences with object movement in its data. It achieved a high recall rate,
indicating that it was correctly able to identify the large majority of sentences with object
movement that it encountered. Its accuracy was high for both transitive and alternating
verbs, indicating that it was able to use the presence of transitivity violations with
fully-transitive verbs to identify direct object gaps with verbs that do not require objects.
However, this object-gap inference produced a mixture of signal and noise: the sentences
that the model categorized together with object movement also contained a variety of other
movement and non-movement clause types. This has potential implications for how
informative the learner’s categories are for isolating object movement from other syntactic
dependencies, a question we turn to next.

4.2.3 Identifying Distinctive Features of Object Movement. Under our
hypothesis, the sentence categories inferred by the joint inference model are an intermediate
step of learning. Jointly inferring how to categorize sentences according to their surface
features, and which sentence categories contain object gaps, helps a learner identify the
particular forms that characterize different types of object movement in the target language.
Here, we ask how well the model identified which specific surface features are the footprints
of object movement. To do this, we assessed which surface features are most distinctive in
the categories that the model inferred to have object gaps. If these include the characteristic

transitive frame (e.g. What did you run?).

10 We note that each of the model’s categories contains a mixture of different verbs (median number of verbs
per category: 41, range: 10-50). Each category also includes a mixture of transitive, intransitive, and
alternating verbs, in proportions similar to the overall proportions of these verb types in the dataset (median
proportions in model’s categories: 0.21 transitive, 0.19 intransitive, 0.62 alternating; overall proportions in
dataset: 0.20 transitive, 0.20 intransitive, 0.61 alternating). The category that most closely tracks one verb
and one verb type is Category 8, which is predominantly (0.96) alternating verbs, and predominantly (0.77)
the verb break. This is a category of passives that most frequently have the verb broken.
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Category| Primary Clause Type Distinctive Features

1 Wh-question Subject is overt, preceded by an aux; verb is first in sentence, has
-ing, preceded by be; sentence-initial function word; question

2 Wh-question & Embedded | Verb is preceded by to; sentence-initial function word; question

3 Wh-question Subject is overt, preceded by an aux; verb is first in sentence,
occurs with do; sentence-initial function word; question

4 Wh-question Subject is overt, preceded by an aux; verb is first in sentence, has
-ing, preceded by be; sentence-medial function word before verb;
question

5 Passive Verb has -ed, -en, or irregular form, preceded by get

6 Passive Verb has -ed or irregular form, preceded by to and be

7 Passive Subject (when overt) is sentence-initial; verb is first in sentence,
has irregular form, preceded by be or have

8 Passive Subject is overt, sentence-initial; verb is first in sentence, verb
has -en form, preceded by be or have

9 Passive Subject is overt, preceded by an NP; verb has -en or irregular
form, preceded by be or have

10 Passive Subject (when overt) is sentence-initial; verb is first in sentence,
has -ed form, preceded by be or have

11 Embedded Verb preceded by to; sentence-medial function word before verb

12 Embedded Subject is overt, preceded by an NP; verb has -ed, -s, or irregular
form; sentence-medial function word before or after verb

13 Imperative Verb is first in sentence

14 Basic Subject is overt, sentence-initial; verb is first in sentence, has -ed,
-s, or irregular form; function word sentence-finally or sentence-
medially after verb

15 Basic Subject is overt, preceded by an NP; verb has -ing, preceded by
be; sentence-medial function word before verb

Table 6

Features with Significantly Higher Odds in Object-Gap Categories

forms of English object movement dependencies, then the model’s sentence categories contain

helpful information for identifying the ways that object movement can be realized in English.

To assess feature distinctiveness, we again calculated the odds ratio of each surface

feature in the model’s argument-gap categories. Table 6 reports the features with odds ratios

significantly greater than 1 for each of the model’s object-gap categories; full details are

provided in Appendix C. Among these features are the characteristic forms of object

movement dependencies in English. The categories that are predominantly wh-questions

have greater odds of including subject-auxiliary inversion, do, and unknown function words

sentence-initially or medially before the verb: these are wh-words. The categories

predominantly made of passives have greater odds of including get or be, and -en, -ed, or
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irregular verbal morphology.

However, the distinctive features of object-gap categories also include forms that are
irrelevant to movement dependencies. These include many positional characteristics of
subjects and verbs, but also some specific morphemes. For instance, be and -ing are
distinctive of two of the model’s wh-question categories, and have is distinctive of several of
the model’s passive categories. These features mark the realization of aspectual dependencies:
be and -ing mark the progressive aspect, and have together with -ed or -en marks the perfect
aspect. Thus, the model’s categories contain both signal and noise for learning which surface
features are the footprints of movement rather than other syntactic dependencies.

In summary, the current learner successfully identified the forms that characterize the
most frequent types of movement in English, but it also identified some irrelevant features
that are accidentally correlated with these forms. This invites the question of how a learner
could effectively use this information for further steps of learning— how a learner could
separate signal from noise by explaining some correlations as movement, and others as
different dependencies. It is possible that the model’s ability to posit a potentially
unbounded number of categories pushed it towards categories that are overly-specific. Future
work might test hypotheses about limits on the number of categories that a learner can posit,
relaxing the ideal-learner assumption of this model in favor of one that more closely reflects
the cognitive constraints that a child is operating within. It is unknown, however, whether
this would lead the learner away from the accidental correlations that it identifies when its
number of categories is unconstrained. Alternatively, it is also possible that a more
sophisticated distributional learning mechanism might perform better. Further investigation
is needed to determine whether the signal-to-noise ratio in the model’s categories improves if
it infers argument gaps using not only missing direct objects, but also other required but
missing arguments (subjects and prepositional objects). This would give the learner the
opportunity to identify non-object movement; it is an open question whether this could make

its inference about categories with argument gaps more precise.



MIND THE GAP 36

4.3 Model Comparisons

Our model achieves above-chance performance on identifying sentences with object
movement by jointly inferring two properties: how sentences should be categorized together
according to their surface feature distributions, and which sentence categories violate
expectations about verb transitivity. To evaluate how important this joint inference is, we
compare our model to baseline learners that only perform one step of inference at a time.

4.3.1 No-Category Baseline. If it didn’t matter that our learner categorized
sentences according to their surface features, then a learner should do just as well at
identifying object movement on a sentence-by-sentence basis, by noting when objects are
unexpectedly missing for known transitive verbs. To test whether the model’s categorization
process matters, we compared our model against a baseline learner that only used the
presence or absence of direct objects in individual sentences, together with its knowledge of
the transitivity properties of verbs in these sentences, to infer which sentences likely contain
object gaps. Like our learner, this baseline model infers that an object gap is present when a
transitive verb is unexpectedly missing its object. Unlike our learner, this model does not
cluster sentences into categories according to their surface features, so it cannot draw
inferences about which features are likely to be distinctive of sentences with object
movement, and cannot generalize the likely presence of an object gap from one sentence to
another based on the similarity of their features.

This baseline learner has the architecture of the filtering model in Perkins et al. (2022),
shown in Figure 5A. This is similar to the generative model in Figure 1, but omits the
variables ¢, F, and 6). With the variable ¢ omitted, the learner does not assume that its
direct object observations are partially governed by latent categories of sentences; with F
and 0U) omitted, the learner does not observe or draw any inferences about the distributions
of other surface features of sentences. Here, the variables e and §X) are not indexed by
sentence category: e represents whether an individual sentence (rather than a sentence

category) contains a transitivity violation, and ¢* ) represents the rate of direct objects in
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Figure 5. Graphical Models for (A) No-Category Baseline and (B) No-Transitivity Baseline

individual sentences (rather than sentence categories) where transitivity violations are
present. The learner’s inference procedure consists of learning which sentences contain
transitivity violations given its assumptions about verb transitivity and the rate of violations,
but no joint learning about sentence categories on the basis of their distributional features.
We fixed the transitivity properties T of each verb and the parameter §X) to the values
inferred by the learner in Perkins et al. (2022). We then sampled transitivity violations for
each sentence in the corpus from the posterior probability distribution over e given X, T" and
5% integrating over 6. See Appendix A for details.

To determine how well this “No-Category Baseline” identified movement, we compared
the sentences without direct objects that it inferred to have transitivity violations against
the actual cases of object movement in the corpus. Its precision, recall, and F1 score are
reported in Figure 3. The model achieved above-chance accuracy overall, but scored
substantially lower than the joint inference model on all three metrics. This because the
baseline model’s only source of reliable information for object gaps comes from the small
percentage of verbs that it believes to be obligatorily transitive; it uses no other features in
the sentences to inform this inference. If we examine its identification of object movement

across verb classes, we find that it achieved high accuracy (74%) on identifying object
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movement with fully-transitive verbs. But for the much larger percentage of verbs that are
alternating, it can only guess which sentences contain gaps, identifying only 34% of object
movement with these verbs. Thus, our joint inference model’s ability to categorize sentences
using a wide range of surface morphosyntactic features, and to generalize across sentences in
a category, results in substantially better performance than inferring movement on a
sentence-by-sentence basis from transitivity violations alone.

4.3.2 No-Transitivity Baseline. Our second baseline comparison investigates
how much prior verb transitivity knowledge constrains the learner’s identification of
movement—specifically, how important it is that our learner uses transitivity violations in
the process of categorizing sentences by their surface morphosyntactic features. We compare
our model against a learner that performs this categorization without knowing which verbs
require direct objects. Like our learner, this baseline model uses the surface features of
sentences to cluster sentences into categories. Unlike our learner, this baseline model does
not have any knowledge of which verbs are transitive, so it cannot track transitivity
violations in order to infer that object gaps are present in some of its sentence categories.
Instead, it treats direct object observations identically to other surface features: for this
learner, all direct objects are governed by the grammatical properties of a sentence category,
not by the transitivity classes of verbs in the sentences. This learner therefore runs the risk
of inferring categories that mix together sentences with movement and sentences without.

The architecture of this “No-Transitivity Baseline” is shown in Figure 5B. This
assumes the lowest portion of the generative model in Figure 1, omitting the variables T, 6,
and e. When the variables T" and 0 are omitted, the learner now assumes that all direct
object observations X are generated by §(*), the grammatical properties of each sentence
category, rather than by any properties of the verbs in these sentences. When the variable e
is omitted, the learner no longer assumes that certain sentence categories contain transitivity
violations. This means that its inference procedure consists of learning which sentence

categories are present and which sentences belong to those categories, but no joint learning
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about transitivity violations in these categories. We sample category values for each sentence
in the corpus from the posterior probability distribution over ¢ given X and F', integrating
over 6X) and §U). See Appendix A for details.

Like our learner, the No-Transitivity Baseline inferred 39 total categories. Of these, 22
had significantly lower odds of producing direct objects; we call these “object-gap” categories,
under the assumption that these are the learner’s candidate categories for object movement.
Full details are provided in Appendix C. The proportions of underlying clause types in the
learner’s categories are reported in Figure 6. These categories have similarly high purity to
those inferred by the joint inference model: the baseline model’s overall cluster purity is 0.77,
compared to 0.76 for the joint inference model. This shows that the morphosyntactic
features being tracked by both learners are informative for differentiating the different

underlying clause types in the corpus, even without knowledge of which verbs require objects.
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However, the baseline model’s categories did not successfully differentiate sentences
with movement from sentences without. The learner inferred many more sentence categories
that were candidates for object movement, leading to slightly higher recall than our joint
inference learner (Figure 3). But its precision was quite poor, leading to a substantially
worse F1 score. To examine the source of this worse precision, we plotted the distribution of
movement and non-movement types in the model’s object-gap categories in Figure 7. We
find that object movement is the predominant clause type in only 27% of the learner’s
object-gap categories, compared to 60% in our joint inference learner. This tells us that our
learner’s ability to track transitivity violations is important for identifying categories of
sentences with and without movement. While the distributions of morphosyntactic surface
features of sentences convey a certain amount of information about the distinctions among
different clause types, learning which of these distinctions signal movement, and which do

not, requires the use of verb transitivity knowledge during distributional analysis.

4.4 Summary

In summary, our model identified 80% of sentences with object movement in
child-directed speech, by tracking the surface morphosyntactic features of sentences that
violate its expectations of verb transitivity. The model jointly infers how to categorize

sentences according to their surface feature distributions, and which of these sentence
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categories contain object gaps: unexpectedly missing objects of known verbs. This allowed
the learner to generalize across sentences that share the same form and posit object gaps
even for verbs that it does not know to be transitive. The learner performed substantially
better than a baseline that relies only on known verb transitivity knowledge and does not
categorize sentences on the basis of their surface feature distributions. This shows that the
model’s categorization process is important. It also out-performed a baseline that categorizes
sentences using their surface features alone, without knowing which verbs require objects.
The baseline learner performed substantially worse at differentiating sentences with and
without object movement, showing that verb knowledge is an important guide for identifying

movement.

5 General Discussion

In order to acquire the system of syntactic dependencies in their language, children
must detect evidence for abstract structure that is realized in highly variable ways within
and across languages. Prior work has focused on how learners leverage statistical sensitivities
to identify dependencies that are morphologically marked in their language (Gomez, 2002;
Gomez & Maye, 2005; Hohle et al., 2006; Nazzi et al., 2011; Santelmann & Jusczyk, 1998;
Tincoff et al., 2000; Van Heugten & Shi, 2010). But these statistical learning mechanisms
face challenges when encountering the fuller range of syntactic dependency types that
learners must acquire. Movement dependencies provide an extreme example, both in their
degree of abstraction and the degree of overt evidence available on the surface forms of
sentences. How do learners identify a non-adjacent dependency between a fronted expression
and the “gap” of movement, which has no overt phonological form?

Here, we argue that solving this problem requires statistical learning not just over overt
linguistic material, but also over hidden grammatical structure. Consistent with the
literature on expectation-violation in other domains of cognition (Denison & Xu, 2012;

Kouider et al., 2015; Stahl & Feigenson, 2017, 2015; Téglés et al., 2011), we pursue the
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hypothesis that statistical learning is informed by unsatisfied grammatical predictions. When
a learner encounters an unexpectedly missing predicted argument of a verb, this may serve
as evidence for a gap of an argument movement dependency. By tracking the surface forms
that co-occur with these posited gap sites, learners may come to identify the distributional
signatures of argument movement in the target language, enabling further inference about
which specific syntactic dependencies underlie these surface forms. This hypothesis is
motivated by prior empirical findings that knowledge of verb transitivity emerges before the
identification of movement dependencies in infancy (Lidz et al., 2017; Jin & Fisher, 2014;
Gagliardi et al., 2016; Perkins & Lidz, 2020, 2021).

Our findings demonstrate that this hypothesis is computationally feasible for the
identification of object movement. Our learner jointly categorizes sentences according to
similarities in their surface forms, and infers which of these sentence categories violate its
expectations about verb transitivity. This joint inference allows it to accurately identify the
majority of object movement in child-directed speech, and in doing so, to identify the formal
properties that are the footprints of object movement in English. It performs substantially
better than baseline learners that rely on only one of these two sources of information: either
learning from verb transitivity violations without using surface morphosyntactic features of
sentences, or learning from distributions of surface features with no knowledge of verb
transitivity. This shows that the learner’s expectations about hidden grammatical structure,
coming from prior verb argument structure knowledge, place important constraints on its
distributional learning mechanism. It thereby provides a computational account for why verb
argument structure knowledge developmentally precedes the acquisition of movement in a
language like English.

These findings raise three sorts of questions for future research. First, how does a
learner take information about the formal correlates of object gaps in the language, and
identify whether a particular form is realizing a movement dependency, versus another

syntactic dependency? Our learner’s inference yields both signal and noise for this next step
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of learning: the distinctive features of its object-gap categories include forms that
characterize object movement in English, but also include forms that realize other
non-movement dependencies, such as aspectual dependencies. It is possible that children
using this mechanism might be overly specific in the forms that they associate with
movement—for instance, inferring that progressive aspect is a hallmark of wh-questions, or
perfect aspect is a hallmark of passives. Alternatively, perhaps a learner would identify fewer
accidental correlations if the number of categories that it can posit for its data is limited,
inviting further work exploring how children’s developing cognitive capacities might interact
with this type of distributional learning at young ages. But the current findings also raise
the possibility that this learning mechanism is not sufficient to allow children to determine
which expressions in a sentence are participating in movement dependencies, and which are
not. Separating signal from noise may require supplementing information from formal
distributions with additional information about the likely dependencies in a given sentence
and the ways that those dependencies can be realized, so that a learner can successfully
factor out the features that realize other dependencies from those that realize movement.
Prosody and pragmatics might provide additional relevant sources of information that
are likely available to a young infant. Infants are sensitive to prosodic patterns from their
first weeks of life (e.g. Christophe, Dupoux, Bertoncini, & Mehler, 1994; Christophe, Mehler,
& Sebastian-Gallés, 2001; Gerken, Jusczyk, & Mandel, 1994; Jusczyk et al., 1992; Nazzi,
Bertoncini, & Mehler, 1998). Because prosodic breaks tend to fall at the edges of syntactic
phrases, past work has argued that infants may be able to use this information to help
identify some of the constituency structure of an utterance (Christophe, Millotte, Bernal, &
Lidz, 2008; de Carvalho, He, Lidz, & Christophe, 2019; Gleitman, Gleitman, Landau, &
Wanner, 1988; Gout, Christophe, & Morgan, 2004; Morgan, 1986; Morgan & Demuth, 1996).
Languages also deploy various other prosodic features, such as pitch and durational
differences, to differentiate interrogatives from declaratives and wh-interrogatives from polar

interrogatives (Frota et al., 2014; Geffen & Mintz, 2015; Soderstrom et al., 2011; Y. Yang,
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2022; Gryllia et al., 2020). Many of these features are language-specific and therefore must
themselves be acquired, but it is possible that learners’ inferences about the features that
realize movement could be made more precise by tracking prosodic information in tandem
with the morphosyntactic information provided to our model.

Infants also show early abilities to track the communicative intent of speakers (Csibra,
2010; Meltzoff, 1995; Woodward, 2009) and to identify the speech act of an utterance, at
least at a coarse level of granularity (Casillas & Frank, 2017; Goodhue et al., 2023; Grosse,
Behne, Carpenter, & Tomasello, 2010; Liszkowski, 2005; Luchkina et al., 2018). This speech
act information might also provide useful information about the syntactic dependencies in a
given sentence. However, as argued by Y. Yang (2022), it is likely that this speech act
information would need to work in tandem with the type of syntactically-guided
distributional analysis proposed in the current work. Even a small amount of information
about a speaker’s communicative intent in using a particular sentence, along with the
speaker’s prosody, may help constrain the structure and interpretation that a learner assigns
to that sentence. But it is likely that this information is not by itself constraining enough to
provide a complete parse. Y. Yang (2022) shows that it is computationally difficult to
identify questions from child-directed speech using only pragmatic and prosodic information,
and thus identifying which questions contain wh-dependencies would likely be even more
challenging. This suggests that a learner might need to have available a partial syntactic
representation for which this top-down information could be useful. This invites further
investigation into how statistical learning might be supplemented both by a child’s
developing knowledge of possible syntactic dependencies, and knowledge of how those
dependencies relate to speakers’ goals in discourse.

A second important question for future research is how learners come to identify not
only object wh-movement in their language, but also other types of movement dependencies.
Our model only uses unexpectedly missing direct objects to infer when movement might be

present, and therefore cannot identify subject, prepositional object, or adjunct movement.
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However, our model’s exclusive focus on object movement is not intended as a claim that
this form of movement must developmentally precede all others. Instead, these results merely
demonstrate that the proposed expectation-violation learning mechanism could allow a
learner to identify one type of argument movement that is empirically attested at early stages
of development, while leaving open the possibility that other types of movement might also
be acquired in tandem. In particular, it is possible that this mechanism could generalize to
other forms of argument movement: in addition to tracking object gaps, a child might track
when expected subjects or prepositional objects are unexpectedly absent, thereby allowing
simultaneous inferences about the presence of subject and prepositional object movement.
However, these gaps will be less obvious in matrix subject questions than in embedded
questions, raising questions about the amount of evidence available for a learner to detect
subject movement at young ages. A different learning mechanism would be required for the
acquisition of adjunct movement, where no missing argument will signal the tail of the
dependency.'! Although some work finds that infants comprehend and produce subject and
certain adjunct questions at young ages (Stromswold, 1995; Seidl et al., 2003; Gagliardi et al.,
2016; Perkins & Lidz, 2020), further empirical work is needed to establish the developmental
trajectory of infants’ syntactic representations of these other forms of wh-movement relative
to object movement, and to investigate the mechanisms by which they are acquired.

A third future research direction is determining how the proposed learning mechanism
might generalize cross-linguistically. Our learner uses expectations about the word order of
English to detect when direct objects are missing in their canonical positions. This hinges on
the assumption that learners at this stage of development have already acquired some
knowledge of how their language marks canonical predicate-argument relations. Perkins and

Hunter (2023) and Maitra and Perkins (2023) provide computational support for this

11 One possibility comes from the fact that our learner categorized adjunct questions together with object
questions based on similarities in their surface morphosyntactic features: specifically, subject-auxiliary
inversion and do-support. These features might serve as a cue that movement is present in adjunct questions,
even though our learner currently identifies this as the wrong type of movement.
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assumption, but further empirical investigation is needed. In languages with a freer word
order, other information, such as case morphology, may need to be recruited; see Fisher et al.
(2019) and Suzuki and Kobayashi (2017) for evidence that Korean- and Japanese-learning
2-year-olds are sensitive to this information in verb learning.

Moreover, using argument gaps as evidence for movement dependencies requires at
least a reasonable correlation between empty arguments and movement in a language. This
may be true for English (although see the caveat noted above for matrix subject questions),
but this will be complicated in languages that allow syntactic null arguments or wh-in-situ.
In languages like Korean and Japanese, learners must come to identify that many of the
argument gaps that they observe are null pronominals rather than the gaps of movement;
conversely, English learners must rule out a null pronominal analysis in favor of movement.
And learners of wh-in-situ languages will not be able to rely on argument gaps in order to
identify wh-dependencies; instead, they must come to recognize such dependencies even when
the wh-element has not overtly moved to the clause position where it takes scope (Aoun et
al., 1981; Huang, 1982). It is possible that learners can more readily recognize when an
in-situ wh-element bears a particular grammatical relation, but would need to use other
formal, prosodic, or pragmatic information to recognize that this element is in a non-local
dependency with a higher node in the clause, corresponding to the scope of the interrogative.

We suggest that the mechanism proposed here for English is one instance of a more
general learning strategy that might be tailored to fit the evidence provided by a learner’s
data. Cross-linguistically, identifying canonical argument dependencies may be a necessary
precursor to identifying non-local dependencies such as movement. An English learner may
identify that word order provides a strong signal for canonical argument relations, and
disruptions to this expected canonical word order signal that movement may be present. A
Japanese learner may identify that case morphology is a better signal for these argument
relations, that argument “gaps” occur with frequency that is more easily attributed to null

pronominals rather than movement, and that overt and covert movement dependencies may
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be instead signalled by additional formal, prosodic, or pragmatic properties. In both cases, it
is plausible that a learner’s initial knowledge of the core predicate-argument structure of a
clause provides an important grammatical scaffold for guiding future learning from the
surface distributions in the data. This invites further empirical and computational work
studying the developmental trajectory of argument structure and argument movement
cross-linguistically.

More broadly, the current findings illustrate how two learning mechanisms with
analogues in other areas of cognition— statistical learning and learning from
expectation-violation— can be combined to novel effect in the domain of language
acquisition. On this proposal, prior grammatical knowledge creates expectations that, when
violated, form the basis for inferring hidden grammatical structure. Statistical learning may
then be conducted over this hidden structure as well as more observable forms in the data.
Here, we suggest that this combination provides a powerful foothold into syntactic
dependency learning in early language development. This may also provide new avenues for
understanding how incremental learning proceeds not only in language acquisition but also
other domains of cognition, where predictions generated from knowledge acquired earlier in

development form part of the data that learners use to draw new generalizations.
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Appendix A
Details of Gibbs Sampling

6.1 Joint Inference Learner

We use Gibbs sampling (Geman & Geman, 1984) to jointly infer ¢ and e, integrating
over 6, 6% and 6.

6.1.1 Sampling c. To begin, values of ¢ for each sentence are initialized to one of
three initial sentence categories: one category with transitivity violations and two without.
These initial categories are sampled from the posterior probability distribution that a given
sentence contains a transitivity violation under the model in Perkins et al. (2022). This uses
the same sampling equations as for the No-Category Baseline, reported in Section 6.2.1. If a
sentence is sampled as containing a transitivity violation under that model, it is initialized to
the transitivity-violating category; if not, it is randomly initialized to one of the two
non-violating categories. We used two non-violating categories rather than one because this
improved the sampler’s convergence.

After initializing ¢, new values of ¢ for each sentence are re-sampled sequentially. From
observations of direct objects and other features in a sentence, and across other sentences in
the model’s data, the model determines which previously seen or new value of ¢ was most
likely to have generated those observations. For direct object observation XZ-(U) and other

feature observations F;-( : in sentence 7, together with all other direct object observations
X_;, feature observations ﬁ_i, and sentence category assignments c_; for other sentences in

the dataset, we use Bayes’ Rule to compute the posterior probability of each value for c,
. P(Xi(y)a F;(v) |Ci7 €c, T(U), X ﬁ—u C—i)p(Ci|C—i)
Zp(Xz'(U)7 -F_;z(v) |C;7 €, T(v)v X—ia ﬁ—i; C—i)p(cﬂc—i)

(1)

The posterior probability of a particular value of ¢ given the observed data, known

(v)

p(ci|Xi(v)7 F:l 3 T(U)7 €, X*i; ﬁ*i? C*i)

transitivity categories, and other sentence category values is proportional to the likelihood,



MIND THE GAP 61

the probability of Xi(v) and F;-(U) given that value of ¢, other observed data and category
values, and the prior probability of c. We assume that c¢ is independent of all other model
parameters. The prior probability of ¢ is a Dirichlet process (Ferguson, 1973) with parameter
«. In this process, each category value ¢; has prior probability proportional to the number of
sentence observations already assigned to that category, n.,. This process also reserves a
small non-zero probability for new categories of ¢, determined by the parameter «, which we
set equal to 1. The proportion of this extra probability that is reserved for new
transitivity-violating categories is 0.19, the mean rate of transitivity violations inferred by
the model in Perkins et al. (2022), and the proportion reserved for new categories without
violations is set to 0.81. For n total observations of sentences across all categories, we define

the prior on ¢,

Ne, .
——— for previously seen values of ¢
n—+ «
0.19
p(cilc—i) = a for new values where e, = 1 (2)
n+ «
0.81
@ for new values where e, = 0
n—+ «

Assuming independence between X and F', we calculate the likelihood as the product
of the probabilities of observing X ) and F given the other observations and model

parameters,

p(Xi(v), ﬁi(v) lcivee, T, X F_; e ;) = p(XZ-(U) les 0, TW X, c_i)p(ﬁi(v) lcivee, Ficy)
(3)

The first term in this likelihood function is calculated differently depending on the
value of e, for the current category ¢;. If ¢; is a transitivity-violating category (e., = 1), then
direct objects are generated by the grammatical property of that category 5((:2)( ). We calculate
the probability of a direct object by integrating over all possible values of 5((:X ), conditioning

on other observations of sentences in this category,

Ci

p(Xi(v)|Ciaei = LT(U) —i, C /P ’5(){) )p( g()|cz'7X7i)d5(~X) (4)
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The first term inside the integral is equal to ¢ if XY =1, 0or1-6%if X =0.

Cq

We can use Bayes’ Rule to compute the second term inside the integral, the probability of

5£ZX ) given all other observations within the category,

p(X_ildY), ci)p(059|ex)

P 5éX) Ci;X—i -
e ) I p(X 41650, ep(05c)ds s

7

(5)

The prior probability p(agf )|¢;) is assumed to follow a uniform Beta(1,1) distribution.
Let n., be the total observations in category c; and k., be the total direct object observations
in this category. The likelihood term, p(X,i\ééiX ), ¢;), is the probability of observing k., direct

objects in n, total observations. This follows a binomial distribution with parameter 6,

Ne,; . Ne, —ke.
0. = () ) oy o

Solving the integral in equation (4), we calculate that X takes a value of 1 with

ke, +1

ke +1
Mo, 12 '

and 0 with probability ~ —5

probability

If ¢; is not a transitivity-violating category (e., = 0), then direct objects in this
category are generated by the transitivity properties of each verb. The first term in the
likelihood function in (3) thus depends on the known transitivity category T® and 6, the
rate of direct objects under that transitivity category. If verb v is transitive or intransitive,
then 6 is known, and Xi(v) takes a value of 1 with probability #, and 0 with probability 1 — 6.
If verb v is alternating, we again integrate over all possible values of (), conditioning on
observations of this verb in other categories without argument gaps. This integral is
analogous to the integral in equation (4). Here, let nﬁ”) be the total observations for verb v
in categories where e. = 0, and k%v) be the total direct object observations for verb v in these
categories. Following equations analogous to (4)-(6), we calculate that X takes a value of 1
with probability :%;;z, and 0 with probability w

The second term in (3) is the probability of the other observed features occurring in

the given category. Assuming independence among features, this is equivalent to the product
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over the probabilities of observing each feature in this category,

p(ﬁi(v) ’Civ €e; ﬁ—ia C—i) = H p(Fi/(v)lci’ €c; F‘—Zﬁ C—i) (7)

(3

The probability of observing a particular feature F' in a category ¢; is given by 5§F ) for
that feature and that category. We integrate over all possible values of (5£F ), conditioning on
other observations of feature F'. Let n., be the total observations in category ¢; and k:g be

the total observations of feature F' in this category. Following equations analogous to (4)-(6),

F
we calculate that E(v) takes a value of 1 with probability :c:;, and 0 with probability
"Ci_kg +1
Ne, +2

6.1.2 Sampling e. After sampling values for ¢ for each sentence in the dataset, we
then sample new values of e for each category. We calculate the posterior probability of each
value of e, for a category c given all of the direct object observations in that category X, and

known verb transitivity properties 7',

p(ec‘g Xc; T) _ p<Xc’€cu C, T>p(€c> (8)

Y p(Xelel, ¢, Tp(el)

e

c

We assume that e, is independent of T" and ¢, and that the prior probability p(e.) = 1
is again set to 0.19, the mean rate of transitivity violations inferred by the model in Perkins
et al. (2022). In other words, the learner assumes that the prior probability of a
transitivity-violating category is equivalent to the probability that any single sentence
contains a transitivity violation, as inferred by the previous learner. This will only be the
case if sentences are equally distributed among categories, a simplifying assumption of the
learner’s prior that may be overridden if not supported by the data.

The likelihood term, p(X.|e., ¢, T), is the probability of seeing particular observations
of direct objects for verbs in this category. If e., = 1 and ¢; is a transitivity-violating

category, this probability is determined by 5£X ). We calculate the joint probability of the
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direct object observations for each verb in that category given 5£X ), integrating across all

possible values of 6%,

pXelec = 1. T) = [ TT (X105 )p(69]er)ds ) g

The first term inside the integral is the product across all verbs of probability of the
direct observations for that verb X in the category, given (5((:X ). This probability is given in
equation (6). We again assume that the prior probability p(ééiX )|¢;) follows a uniform
Beta(1,1) distribution. Let n. be the total observations in a particular category and k. be

the total direct object observations in that category. Solving the integral in equation (9), we

find that

p(Xc’ec = 1767 T) =

U(ke 4+ D)I(ne — ke + 1) ( (10)

0 [(nl) + 1)
I'(ne+2) (v")

o DY) + Do) — kY + 1)>

If e., = 0 and ¢; is not a transitivity-violating category, the likelihood term in equation
(8) is determined by the known transitivity 7" of each verb in the category. The probability
of the particular direct object observations X, in the category is the joint probability of

seeing those direct object observations for each verb, given the transitivity of that verb,

p(Xcfec = 0,e,7) = I (X0 |7") (1)

U/

We can again re-write X" as k¥ direct object observations out of n? total observations
for a given verb in a given category. The probability of observing k¥ direct objects out of n?
total observations of a verb follows a binomial distribution with parameter #(*). Recall that

9) = 1 for transitive verbs and ") = 0 for intransitive verbs. For alternating verbs, we
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must integrate across all possible values of (),
p(Xelee =0,¢,T) = p(k [n), 7™ = /p(kgv)mgv)’ 0 p(0@ 7)) de™ (12)

We assume that p(®)|T™)) follows a Beta(a, 3) distribution, where the parameters o
and [ are counts of direct object observations and no direct object observations for verb v in

other categories without argument gaps. Solving the integral in equation (12), we find that

p(k I, TM) =

Dl +1) Dla+A) (T + () — K + 5)

6.1.3 Sampling with Annealing. The reported simulations used 5,000 total
iterations of Gibbs sampling. This number was chosen to be the largest that could run
within a feasible amount of time, and the model was run multiple times to assess
convergence, with no substantive differences found across runs. To aid in the model’s search
process, simulated annealing was used during the first 1,000 iterations. In this process, we
raise the posterior probabilities of ¢ and e to the power of an annealing constant defined as
1/t, where t is the current temperature. Then, we slowly lower the temperature (reduce t)
until the annealing constant reaches 1. While the temperature is warm, the posterior
probability distributions are flattened so the learner is able to explore more of its hypothesis
space. After 1,000 iterations of Gibbs sampling with annealing, another 4,000 iterations were
run without annealing. The final iteration was taken as a sample from the posterior

distribution over ¢ and e.

6.2 Baseline Models

6.2.1 No-Category Baseline. Transitivity violations under the No-Category
Baseline were sampled from the posterior probability distribution over the variable e in

Perkins et al. (2022), given observed direct objects X and the values of 7" and 6*) inferred
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by that model. Here, e is a random variable encoding whether an individual sentence
contains a transitivity violation and §*) is the probability that a transitivity violation will
produce a direct object in an individual sentence. Via Bayes’ Rule, the posterior predictive
probability for the value e; of a particular sentence i, given the direct object observation Xi(v)
for the verb v in that sentence, all other error values e_;, other direct object observations

X _;, and other model parameters, is:

p(ei‘Xi(v)a T(U)a 5(X)7 €_i, sz)

(v) (X)
p(X]es, TV, 63, e 1, X () "
€,

Zp ”)Ie T(” 0 ey, X i)p(er)

For the prior probability that a sentence contains a transitivity violation p(e;), we
again use 0.19, the mean rate of transitivity violations (the parameter €) inferred by the
learner in Perkins et al. (2022). If the sentence contains a transitivity violation (e; = 1), the
likelihood p(X,;(v)|ei =1,T™ €6 e_;, X_;) depends only on the value for §*X), the

probability that a transitivity violation produces a direct object: XZ-(U)

takes a value of 1 with
probability §), and 0 with probability 1 — §X). If the sentence does not contain a
transitivity violation (e; = 0), the likelihood depends on the probability that verb v occurs
with a direct object, given by 6(*) for the verb’s transitivity category 7). If the verb is
transitive or intransitive, 8 is known; X ) takes a value of 1 with probability €, and 0 with
probability 1 — . If the verb is alternating, we must again integrate over all possible values
of 8 conditioning on other observations of this verb without transitivity violations. Let
nﬁ”) be the total observations for verb v in sentences where e = 0, and k%v) be the total direct
object observations in those sentences. Again following equations analogous to (4)-(6), we

M g1

(@)
find that X ) takes a value of 1 with probablhty m , and 0 with probability * (“)+2

For the simulation reported in Section 4.3.1, values of e were randomly initialized each
sentence and were then re-sampled sequentially from the posterior distribution over e; above,
using the values for T and the mean value of §X) = 0.25 inferred by the model Perkins et al.

(2022). This process was repeated over 5,000 iterations of Gibbs sampling, and the final
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sample was used as a sample from model’s posterior distribution over e.

6.2.2 No-Transitivity Baseline. Sentence categories for the No-Transitivity
Baseline were sampled according to a subset of the equations in Section 6.1.1 for our Joint
Inference Learner, without conditioning on individual verbs, transitivity values, or
transitivity violations. Given observations of direct objects X; and other features F;in
sentence 2, together with other direct object and feature observations X_; and F_; as well as

other sentence category assignments c_;, the posterior probability of ¢; is

- P(Xi>ﬁi‘cz’,Xfiaf‘fi,cfﬂp(ci‘c—i)
ZP(sz FE|C§7 X i ]-*?Li, c_i)p(cilc_)

G

plei|Xi, Fi, X, F i cy) (15)
The prior probability of ¢ is calculated just as in our Joint Inference Learner, in (2).
Again assuming independence between X and F', we calculate the likelihood
p(Xi, F’Z-|cl-, X ., F_, c_;) as the product of the likelihoods of observing X; and F. given all
other observations and sentence categories. Because the No-Transitivity Baseline assumes
that a direct object observation X, is generated directly by the sentence category c¢; and not
by the transitivity properties of the verb in that sentence, the likelihood of a direct object
p(Xilei, X_;, c_;) is calculated according to the equations for transitivity-violating categories
under the Joint Inference Learner, in (4)-(6). The likelihood of the features in a sentence
p(ﬁi|c¢, F_,, c_;) is calculated in the same way as for our Joint Inference Learner, in (7).
The simulation reported in Section 4.3.2 was conducted similarly to the simulation for
our Joint Inference Learner. Each value of ¢ was first randomly initialized to one of three
categories and then resampled over 5,000 iterations of Gibbs sampling, with simulated
annealing used during the first 1,000 iterations. The final iteration was taken as a sample

from the posterior distribution over c.
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Table B1 reports percentage agreement and Cohen’s Kappa between two researchers’

Appendix B

Accuracy of Automated Dataset Coding
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hand-coding and the automated annotations, for each sentence feature and clause type in a

random sample of 500 sentences from our dataset. We also report the inter-rater reliability

of the two researchers for the purposes of comparison. We note that Cohen’s Kappa should

be interpreted with caution, as each sentence feature and clause type was represented to

different degrees within the 500-sentence sample.

Rater 1 v. automated

Rater 2 v. automated

Rater 1 v. Rater 2

Feature % Agreement | Kappa % Agreement | Kappa % Agreement | Kappa
Subject overt 0.93 0.86 0.94 0.88 0.97 0.93
Subject sentence-initial 0.96 0.88 0.97 0.93 0.96 0.88
Subject follows aux 0.98 0.94 0.87 0.64 0.87 0.64
Subject follows NP 0.93 0.55 0.98 0.90 0.94 0.61
V is first in sentence 0.92 0.81 0.93 0.83 0.95 0.89
V before prep or particle 0.89 0.77 0.91 0.80 0.91 0.81
V has -ed 0.97 1.00 1.00 1.00 1.00 0.97
V has -en 1.00 1.00 1.00 1.00 1.00 1.00
V has -ing 1.00 1.00 1.00 1.00 1.00 1.00
V has -s 1.00 1.00 1.00 1.00 1.00 1.00
V irregular 1.00 0.96 1.00 1.00 1.00 0.96
V follows to 1.00 0.99 0.99 0.97 0.99 0.97
V follows be 0.98 0.91 0.92 0.71 0.94 0.80
V follows have 0.98 0.15 0.96 0.09 0.98 0.68
V follows get 1.00 0.66 0.99 0.44 0.99 0.72
V occurs with do 0.94 0.77 0.93 0.74 0.95 0.82
Sentence-initial functor 0.96 0.84 0.98 0.90 0.97 0.87
Sentence-medial functor pre-V 0.93 0.63 0.97 0.82 0.94 0.69
Sentence-medial functor post-V 0.93 0.34 0.95 0.41 0.95 0.61
Sentence-final functor 0.98 0.58 0.99 0.82 0.97 0.49
Question 1.00 0.99 1.00 1.00 0.99 0.99
Clause type % Agreement | Kappa % Agreement | Kappa % Agreement | Kappa
Basic transitive 0.95 0.79 0.86 0.55 0.89 0.62
Basic intransitive 0.90 0.59 0.87 0.45 0.93 0.58
‘Wh-question 0.94 0.72 0.94 0.66 0.97 0.87
Polar question 0.92 0.74 0.93 0.76 0.98 0.93
Other question 0.93 0.60 0.92 0.55 0.96 0.82
Passive 0.99 0.66 0.99 0.60 0.99 0.28
Relative clause 0.95 0.23 0.99 0.60 0.95 0.27
Other embedded clause 0.84 0.59 0.85 0.61 0.87 0.64
Imperative 0.95 0.80 0.95 0.75 0.96 0.82
Table B1

Accuracy of sentence feature and clause type coding
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Appendix C
Details of Odds Ratio Comparisons

To assess the featural makeup of the categories inferred by our model, we calculated the odds
ratios (ORs) for each feature in each of these categories. The odds of observing a feature in a
particular category were divided by the odds of observing the feature outside of that
category. For any given category ¢ and feature I, let n;f):l be the number of times that
feature was present within a category (had value 1), and n;::c% be the number of times that
feature was present outside of that category. Similarly, let n%c)zo be the number of times that

feature was absent within a category (had value 0), and n%_zc()) be the number of times that

feature was absent outside of that category. Then, the odds ratio is calculated as

nily | npy

ng«f)zo / n%—;:())

OR\Y = (16)

An odds ratio greater than 1 indicates that a feature has higher-than-usual odds inside
a category; an odds ratio less than 1 indicates that a feature has lower-than-usual odds
inside a category. An odds ratio of infinity can occur if a feature is always present inside a
category, and an odds ratio of 0 can occur if a feature is never present.

A Fisher’s exact test was conducted to determine whether particular features had
significantly higher or lower odds of occurring within a category. A Bonferroni correction
was applied to correct for multiple comparisons: because 22 features were analyzed for each
category (direct objects X plus all 21 features in F ), the critical value for each comparison

was established by setting o equal to 0.05/22 = 0.002.

6.3 Determining Object-Gap Categories

We first determined our model’s “object gap” categories by calculating the odds of
observing a direct object within each of the 16 categories that the model inferred to have a

transitivity violation. Table C1 reports the odds ratios (OR) for direct objects, along with
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Category | OR | CI p-value

1 0.00 | (0.00,0.01) | 4.97E—129
2 0.06 (0.03,0.10) 8. 70 E—56
3 0.28 | (0.22,0.35) | 1.71E-33
4 0.13 | (0.06,0.25) | 2.19E—13
5 0.00 | (0.00,0.05) | 547E—22
6 0.05 | (0.00,0.28) | 3.35E—06
7 0.28 | (0.14,0.53) | 1.44E—05
8 0.13 | (0.06,0.27) | 2.11E—-12
9 0.03 (0.00,0.21) 3.64E—-08
10 0.26 | (0.13,0.47) | 5.36 E—0T7
11 0.32 | (0.26,0.40) | 4.76 E—27
12 0.10 (0.06,0.15) 8.04FE—-51
13 0.61 | (0.48,0.78) | 4.01E—05
14 0.50 | (0.37,0.67) | 2.01E—06
15 0.11 | (0.06,0.19) | 6.91E—28
16 0.60 | (0.39,0.90) | 0.01

Table C1

0dds ratios for direct objects within transitivity-violating categories, Joint Inference Model

their 95% confidence intervals (CI) and p-values, in each of the model’s transitivity-violating
categories. A transitivity-violating category was classified as an object gap category if the
odds ratio was significantly lower than 1 (at p < 0.002)— that is, if the category had
significantly lower odds of producing direct objects. The threshold of significance was met in
Categories 1-15, which were therefore classified as object gap categories; it was not met in
Category 16, which was therefore classified as “other.”

We performed a similar calculation to determine the candidate “object gap” categories
for the No-Transitivity baseline learner. Because this learner does not infer whether or not
categories contain transitivity violations, we calculated the odds ratios for direct objects
across all of the model’s categories, reported in Table C2. A category was classified as a
candidate object gap category if it had significantly lower odds of producing direct objects
(OR < 1, p < 0.002); this criterion was met in Categories 1-22. All other categories were

classified as “no gap.”
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Category | OR | CI p-value Category | OR CI p-value

1 0.10 | (0.07,0.14) | 3.73E—85 23 1.61 (1.18,2.20) 0.002

2 0.52 | (0.43,0.61) | 9.17E—15 | 24 0.86 | (0.58,1.25) 0.41

3 0.27 | (0.16,0.44) | 5.86E—09 25 0.64 (0.38,1.04) 0.06

4 0.00 | (0.00,0.05) | 2.79E—22 26 1.17 (0.79,1.74) 0.44

5 0.00 | (0.00,0.19) | 5.36 E—0T7 27 57.05 | (37.09,92.92) | 1.18E—292
6 0.13 | (0.05,0.27) | 8.64FE—12 28 1.12 (0.88,1.43) 0.36

7 0.00 | (0.00,0.15) | 8.98E—09 29 1.33 (1.00,1.77) 0.05

8 0.14 | (0.05,0.32) | 2.60E—08 30 5.16 (4.43,6.03) 6.86E—130
9 0.12 (0.10,0.14) 1.60E—172 | 31 0.41 (0.20,0.81) 0.007

10 0.52 | (0.45,0.58) | 8.39FE—27 32 3.98 (2.98,5.38) 5.41E—-26
11 0.64 | (0.55,0.73) | 2.95E—-11 33 5.14 (3.92,6.82) 2.33E—43
12 0.63 (0.51,0.77) 8.01E—-06 34 1.33 (1.22,1.46) 6.45E—11
13 0.00 | (0.00,0.01) | 8.90E—116 | 35 5.09 (4.46,5.82) 2.75E—-166
14 0.02 | (0.00,0.05) | 6.66E—48 36 1.11 (0.92,1.33) 0.27

15 0.04 | (0.02,0.08) | 1.13E—67 37 1.09 (0.94,1.25) 0.25

16 0.52 | (0.44,0.62) | 3.78E—15 38 3.51 (2.69,4.63) 2.10E—24
17 0.07 | (0.04,0.11) | 4.77E—60 39 2.68 (2.29,3.15) 1.61E-38
18 0.68 | (0.55,0.85) | 0.0005

19 0.41 (0.30,0.56) 9.87E—10

20 0.34 | (0.25,0.46) | 2.28E—15

21 0.25 (0.19,0.32) 1.32E—-32

22 0.26 | (0.13,0.49) | 2.29E—-06

Table C2
0dds ratios for direct objects within sentence categories, No-Transitivity Baseline

6.4 Analyzing Features of Object-Gap Categories

To assess which surface features F' were distinctive of the joint inference model’s 15
object-gap categories, we calculated the odds ratios for each of the 21 features in each of
these categories. Table C3 reports the odds ratios (OR), along with their 95% confidence
intervals (CI) and p-values, for each feature in each of the model’s object-gap categories. A
feature was considered to be distinctive of a particular category if its odds ratio was
significantly greater than 1 within that category (p < 0.002)— that is, if the category had

significantly greater odds of producing that feature.
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Table C3

0dds ratios for features F' within object-gap categories, Joint Inference Model
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Feature OR ‘ CI ‘ p-value OR ‘ CI ‘ p-value
Category 1 Category 2

Subject overt [e'¢) (79.90, 00) 5.00E—-97 0.06 (0.03,0.09) 1.7T1E-74

Subject sent-init 0.00 (0,0.02) 7.49E—56 0.00 (0.00,0.04) 1.14E-34

Subject follows aux 1139.99 | (325.67,8192) 0 0.00 (0.00,0.06) 2.27TE—-23

Subject follows NP 0.17 (0.08,0.32) 2.91E-13 0.00 (0.00,0.10) 3.22E—-15

V is first in sentence 197.56 (35.30, 7456.10) 2.73E—-68 0.05 (0.03,0.07) 8.87TE—96

V before prep or particle | 0.45 (0.35,0.56) 5.72E—-14 0.64 (0.49,0.84) 0.0008

V has -ed 0.00 (0.00,0.26) 1.77E—-06 0.00 (0.00,0.43) 0.0003

V has -en 0.00 (0.00,1.24) 0.13 0.00 (0.00,2.02) 0.27

V has -ing 0o (648.15, 00) 0 0.00 (0.00,0.06) 3.75E—23

V has -s 0.00 (0.00,0.30) 1.39E—-05 0.00 (0.00,0.49) 0.001

V irregular 0.00 (0.00,0.11) 2.38E—-14 0.00 (0.00,0.18) 4.62E-09

V follows to 0.00 (0.00,0.03) 4.36 E—43 383.75 (129.63,1924.75) 1.16E—184

V follows be [e'e] (907.56, 00) 0 0.00 (0.00,0.09) 1.14E-17

V follows have 0.00 (0.00,0.84) 0.02 0.00 (0.00,1.37) 0.12

V follows get 0.00 (0.00,1.84) 0.27 0.00 (0.02, 3.00) 0.64

V occurs with do 0.00 (0.00,0.05) 9.41FE—-28 0.00 (0.00,0.09) 2.82E—-17

Sent-init functor 00 (828.6, 0) 0 220.71 (109.42,513.07) 1.96E—213

Sent-med functor pre-V 0.04 (0.01,0.16) 1.85E—16 0.07 (0.01,0.26) 1.58 E—09

Sent-med functor post-V | 0.00 (0.00,0.31) 2.11E-05 0.00 (0.00,0.51) 0.002

Sent-fin functor 0.30 (0.06,0.89) 0.02 0.49 (0.10,1.46) 0.29

Question 214.47 (72.76,1044.77) 5.40E—-162 389.07 (69.62,13928.29) 3.27TE—-102
Category 3 Category 4

Subject overt o (83.36, 00) 3.95E-101 | oo (14.46, 00) 1.22E—-18

Subject sent-init 0.01 (0.00,0.04) 4.52E—-56 0.04 (0.00,0.21) 1.95E—-09

Subject follows aux 00 674.71, 00) 0 395.12 (68.96,14149.22) 2.98E—61

Subject follows NP 0.47 (0.30,0.69) 3.26E—05 1.97 (0.97,3.14) 0.04

V is first in sentence 22.47 (11.72,49.54) 4.87TE—58 11.81 (3.90, 58.52) 9.51E—-10

V before prep or particle | 1.11 (0.91,1.34) 0.29 0.45 (0.26,0.75) 0.001

V has -ed 0.00 (0.00,0.25) 1.26 E—06 0.00 (0.00,1.42) 0.19

V has -en 0.00 (0.00,1.19) 0.08 0.00 (0.00, 6.75) 0.99

V has -ing 0.00 (0.00,0.04) 9.44FE—-39 00 (106.77, 00) 4.30E—-64

V has -s 0.00 (0.00,0.29) 5.81E—06 0.00 (0.00,1.63) 0.18

V irregular 0.00 (0.00,0.11) 4.37TE—-15 0.00 (0.00, 0.60) 0.004

V follows to 0.02 (0.00,0.06) 3.58E—41 0.00 (0.00,0.18) 1.60E—-08

V follows be 0.00 (0.00,0.05) 101E—29 | 536.78 | (93.64,16384.00) 2.28E—70

V follows have 0.00 (0.00,0.81) 0.03 0.00 (0.00,4.57) 0.99

V follows get 0.00 (0.00,1.77) 0.28 0.00 (0.00,10.01) 0.99

V occurs with do 40.09 (31.00, 52.51) 3.18E—-264 0.00 (0.00,0.30) 1.21E-05

Sent-init functor 54.78 (40.77,74.90) 1.22E—-286 0.23 (0.00,0.68) 0.003

Sent-med functor pre-V | 0.06 (0.01,0.18) 4.50E—16 64.68 (34.02,136.19) 4.63E—62

Sent-med functor post-V | 0.92 (0.45,1.68) 0.99 2.40 (0.75,5.87) 0.07

Sent-fin functor 0.00 (0.00,0.35) 6.37E—05 | 0.00 (0.00,2.01) 0.27

Question 22.50 (15.32,34.32) 2.04E—-127 o] (31.19, 00) 1.85E—32
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Feature OR ‘ CI p-value OR ‘ CI p-value
Category 5 Category 6

Subject overt 1.25 (0.76,2.13) 0.41 0.00 (0.00,0.11) 2.03E-10

Subject sent-init 1.75 (1.05,2.89) 0.03 0.13 (0.00,0.80) 0.02

Subject follows aux 1.32 (0.71,2.34) 0.35 0.00 (0.00,0.78) 0.01

Subject follows NP 0.67 (0.24,1.54) 0.47 0.00 (0.00,1.24) 0.10

V is first in sentence 0.00 (0.00,0.02) 1.97E—-38 0.31 (0.12,0.76) 0.006

V before prep or particle | 0.69 (0.40,1.15) 0.15 0.58 (0.20,1.47) 0.30

V has -ed 5.04 (2.29,9.95) 8.06E—05 37.78 (15.54,93.68) 3.85E—14

V has -en 43.00 (21.95,79.61) 1.23E-18 0.00 (0.00,24.72) 1.00

V has -ing 0.00 (0.00,0.24) 1.31E—06 | 0.68 (0.13,2.27) 0.79

V has -s 0.00 (0.00,1.87) 0.27 0.00 (0.00, 5.99) 1.00

V irregular 19.54 (11.93,32.36) 5.01E-31 5.46 (1.91,13.89) 0.001

V follows to 0.36 (0.13,0.82) 0.01 28.19 (8.41,147.73) 2.11E-12

V follows be 0.00 (0.00,0.33) 4.29E—-05 147.16 (23.87,5839.43) 2.33E-19

V follows have 0.00 (0.00, 5.22) 1.00 0.00 (0.00,16.76) 1.00

V follows get [e'¢) (8402.05, 00) 2.10E—-192 0.00 (0.00, 36.70) 1.00

V occurs with do 0.00 (0.00,0.34) 7.26E—05 | 0.00 (0.00,1.09) 0.06

Sent-init functor 0.74 (0.31,1.55) 0.50 0.26 (0.01,1.62) 0.24

Sent-med functor pre-V 1.01 (0.39,2.20) 1.00 0.86 (0.10, 3.52) 1.00

Sent-med functor post-V | 0.51 (0.01,2.98) 1.00 0.00 (0.00,6.19) 1.00

Sent-fin functor 0.61 (0.02,3.54) 1.00 1.92 (0.05,11.88) 0.42

Question 1.23 (0.75,1.99) 0.41 0.47 (0.15,1.23) 0.15
Category 7 Category 8

Subject overt 2.20 (1.19,4.32) 0.008 2.58 (1.47,4.79) 0.0003

Subject sent-init 3.10 (1.81,5.30) 1.86E—05 7.81 (4.69,13.432) 1.97E—-18

Subject follows aux 1.03 (0.49,2.02) 0.87 0.25 (0.07,0.67) 0.002

Subject follows NP 0.67 (0.21,1.66) 0.55 0.00 (0.00,0.36) 7.49E—-05

V is first in sentence 13.05 (3.45,110.38) 1.56 E—-07 5.38 (2.36,15.16) 1.03E—-06

V before prep or particle | 0.80 (0.45,1.38) 0.44 0.25 (0.12,0.47) 8.10E—07

V has -ed 0.00 (0.00,1.95) 0.27 0.00 (0.00, 1.49) 0.18

V has -en 0.00 (0.00,9.27) 1.00 9487.52 | (2881.74,4.50E+15) | 1.44E-177

V has -ing 0.00 (0.00,0.29) 1.19E-05 0.00 (0.00,0.23) 5.91E-07

V has -s 0.00 (0.00,2.25) 0.42 0.00 (0.00,1.72) 0.28

V irregular 826.95 (142.55,4.50E+15) | 1.10E—68 0.00 (0.00,0.63) 0.006

V follows to 0.00 (0.00,0.25) 2.39E—-06 0.00 (0.00,0.19) 3.97E—-08

V follows be 18.14 (10.04, 34.43) 1.66 E—26 17.90 (10.68,31.12) 1.32E—-33

V follows have 177.85 (101.25,317.74) 1.26 E—-57 660.85 (360.19,1237.75) 9.35E—-119

V follows get 0.00 (0.00,13.74) 1.00 0.00 (0.00,10.54) 1.00

V occurs with do 0.00 (0.00,0.41) 0.0004 0.00 (0.00,0.31) 3.12E—-05

Sent-init functor 1.18 (0.54, 2.36) 0.58 0.87 (0.40,1.71) 0.87

Sent-med functor pre-V | 0.67 (0.18,1.80) 0.66 0.64 (0.20,1.57) 0.44

Sent-med functor post-V | 0.62 (0.02, 3.60) 1.00 0.48 (0.01,2.74) 0.73

Sent-fin functor 0.00 (0.00,2.75) 0.65 0.00 (0.00,2.11) 0.42

Question 0.50 (0.26,0.90) 0.02 0.81 (0.50,1.31) 0.42
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Feature OR ‘ CI p-value OR ‘ CI p-value
Category 9 Category 10

Subject overt [e'¢) (5.18,00) 2.27TE-07 1.93 (1.11, 3.50) 0.01

Subject sent-init 0.10 (0.00,0.60) 0.003 4.90 (2.96,8.23) 5.30E—-11

Subject follows aux 1.93 (0.78,4.36) 0.10 0.60 (0.25,1.25) 0.21

Subject follows NP 70.82 (21.84,362.20) 2.62E—-23 0.82 (0.32,1.79) 0.85

V is first in sentence 0.03 (0.00,0.12) 2.63E—-13 15.27 (4.07,128.90) 5.52E—-09

V before prep or particle | 0.67 (0.28,1.49) 0.36 1.83 (1.11,3.02) 0.02

V has -ed 1.04 (0.03,6.30) 0.62 587.73 (220.32,2346.324) 1.38E-97

V has -en 136.01 (60.42, 303.36) 4.69E—-23 0.00 (0.00,7.92) 1.00

V has -ing 0.00 (0.00,0.60) 0.004 0.00 (0.00,0.25) 2.05E—-06

V has -s 0.00 (0.00, 4.56) 1.00 0.00 (0.00,1.92) 0.27

V irregular 5.43 (2.20,12.31) 0.0002 0.00 (0.00,0.70) 0.009

V follows to 0.96 (0.32,2.40) 1.00 0.00 (0.00,0.21) 2.45E—-07

V follows be 8.84 (4.09,19.64) 8.58 E—09 3.26 (1.90, 5.45) 1.21E-05

V follows have 00 (957.14, 00) 4.92E—-64 119.71 (70.98,201.06) 3.62E—52

V follows get 0.00 (0.00,27.90) 1.00 0.00 (0.00,11.76) 1.00

V occurs with do 0.00 (0.00,0.83) 0.03 0.00 (0.00,0.35) 6.61E—05

Sent-init functor 0.00 (0.00,0.76) 0.02 1.23 (0.60,2.31) 0.50

Sent-med functor pre-V 2.78 (1.01,6.65) 0.02 0.27 (0.03,1.03) 0.06

Sent-med functor post-V | 0.00 (0.00,4.70) 1.00 0.00 (0.00,1.98) 0.27

Sent-fin functor 1.47 (0.04,8.90) 0.50 1.28 (0.15,4.83) 0.67

Question 0.41 (0.15,0.98) 0.04 0.97 (0.58,1.60) 1.00
Category 11 Category 12

Subject overt 0.09 (0.06,0.11) 6.74E—101 98.97 (27.12,810.97) 9.20E—-62

Subject sent-init 0.02 (0.00,0.06) 1.92E-50 0.06 (0.02,0.13) 5.45E—-29

Subject follows aux 0.00 (0.00,0.04) 1.37E—-37 0.08 (0.03,0.19) 1.66 E—18

Subject follows NP 0.00 (0.00,0.06) 1.22E—-24 112.56 (71.80,186.11) 3.12E—-233

V is first in sentence 0.12 (0.09,0.15) 8.62E—-94 0.28 (0.22,0.35) 2.43E-27

V before prep or particle | 0.66 (0.53,0.813) 3.62E—05 1.13 (0.89,1.43) 0.31

V has -ed 0.00 (0.00,0.26) 1.81E—-06 5.32 (3.69,7.51) 8.41E—-16

V has -en 0.67 (0.08,2.48) 1.00 0.00 (0.00,1.83) 0.27

V has -ing 0.00 (0.00,0.04) 2.29E-37 0.00 (0.00,0.06) 1.7T7TE—254

V has -s 0.08 (0.00,0.45) 0.0001 5.10 (3.43,7.37) 2.46E—13

V irregular 0.15 (0.05,0.35) 7.00E—-09 4.59 (3.46,6.03) 2.38E—-22

V follows to 278.48 (133.83,704.94) 3.82E-297 0.57 (0.39,0.80) 0.0007

V follows be 0.01 (0.00,0.08) 8.22F — 27 0.09 (0.02,0.22) 3.71E—-14

V follows have 0.00 (0.00,0.83) 0.02 0.00 (0.00,1.24) 0.13

V follows get 3.16 (1.12,7.25) 0.02 2.26 (0.45, 6.89) 0.16

V occurs with do 0.01 (0.00,0.08) 5.63E—-26 0.11 (0.04,0.26) 1.22E—-12

Sent-init functor 0.50 (0.34,0.71) 3.96 E—05 0.34 (0.19,0.56) 1.41E—-06

Sent-med functor pre-V 8.27 (6.77,10.11) 1.54E—82 18.48 (14.43,23.77) 8.62FE—119

Sent-med functor post-V | 1.81 (1.08,2.87) 0.01 2.45 (1.42,3.99) 0.001

Sent-fin functor 0.50 (0.16,1.19) 0.14 0.00 (0.00,0.54) 0.002

Question 0.65 (0.53,0.80) 2.93E-05 0.66 (0.51,0.84) 0.0007
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Feature OR ‘ CI p-value OR ‘ CI ‘ p-value
Category 13 Category 14

Subject overt 0.03 (0.02,0.05) 3.68E—96 67.12 (18.33,557.28) 1.93E—-41

Subject sent-init 0.04 (0.01,0.10) 1.12E-31 36.47 (21.84,65.11) 2.30E-93

Subject follows aux 0.02 (0.00, 0.09) 6.37TE—24 0.07 (0.01,0.21) 1.51E—-13

Subject follows NP 0.00 (0.00,0.09) 6.84E—17 1.24 (0.81,1.86) 0.27

V is first in sentence 2.80 (2.00,4.00) 1.49E-11 5.62 (3.32,10.24) 5.40E—16

V before prep or particle | 0.52 (0.40,0.68) 2.88 E—07 0.60 (0.44,0.81) 0.0007

V has -ed 0.53 (0.17,1.26) 0.18 2.71 (1.51,4.56) 0.0006

V has -en 0.99 (0.12,3.70) 1.00 2.22 (0.45,6.75) 0.16

V has -ing 0.59 (0.39,0.85) 0.003 0.12 (0.04,0.28) 2.20E-11

V has -s 0.24 (0.03,0.88) 0.03 3.58 (2.06,5.87) 1.14E-05

V irregular 0.90 (0.53,1.44) 0.73 2.04 (1.30, 3.08) 0.001

V follows to 0.01 (0.00,0.07) 1.33E-27 0.08 (0.02,0.21) 771E-15

V follows be 0.00 (0.00,0.08) 1.46E — 19 0.00 (0.00,0.11) 1.28E—-13

V follows have 0.00 (0.00,1.24) 0.13 0.49 (0.01,2.80) 0.73

V follows get 0.00 (0.00,2.71) 0.65 1.07 (0.03,6.18) 0.61

V occurs with do 0.84 (0.57,1.21) 0.39 0.55 (0.31,0.93) 0.02

Sent-init functor 0.14 (0.06,0.30) 3.60E—12 0.41 (0.21,0.72) 0.0006

Sent-med functor pre-V 0.00 (0.00,0.12) 1.58E—-13 0.38 (0.16,0.78) 0.004

Sent-med functor post-V | 0.25 (0.03,0.91) 0.03 3.24 (1.80,5.45) 9.95E—05

Sent-fin functor 1.22 (0.52,2.46) 0.55 4.14 (2.34,6.90) 3.18E—-06

Question 0.26 (0.18,0.35) 6.98E—22 0.51 (0.37,0.71) 1.60E—-05
Category 15

Subject overt 113.66 (20.05,4391.44) 2.82E—-36

Subject sent-init 0.76 (0.51,1.11) 0.16

Subject follows aux 0.76 (0.47,1.18) 0.27

Subject follows NP 13.25 (9.60,18.41) 2.79E—-57

V is first in sentence 0.80 (0.58,1.11) 0.18

V before prep or particle | 0.59 (0.42,0.83) 0.001

V has -ed 0.00 (0.00,0.67) 0.007

V has -en 0.00 (0.00, 3.20) 0.63

V has -ing oo (232.04, 00) 6.42F—133

V has -s 0.00 (0.00,0.78) 0.02

V irregular 0.00 (0.00,0.28) 6.65E—06

V follows to 0.00 (0.00, 0.09) 349E-17

V follows be 65.85 (39.18,118.18) 1.86E—-116

V follows have 0.00 (0.00,2.17) 0.42

V follows get 0.00 (0.00, 4.76) 1.00

V occurs with do 0.00 (0.00,0.14) 3.57TE—11

Sent-init functor 1.33 (0.87,1.98) 0.15

Sent-med functor pre-V | 9.69 (7.07,13.28) 2.45E—41

Sent-med functor post-V | 1.58 (0.62, 3.36) 0.22

Sent-fin functor 0.00 (0.00,0.95) 0.04

Question 1.38 (1.01,1.88) 0.04




