Second Language Speech Assimilation
in an Optimal Transport Framework

Joselyn Rodriguez, Patrick Shafto, Naomi H. Feldman

1 Introduction

Some second language speech sounds are easier to learn than others. This variation
is likely to be driven at least in part by the way second language speech sounds
are related to native language categories (Strange, 2011; Best, 1995; Best and
Tyler, 2007; Flege, 1995; Flege and Bohn, 2021; Chang, 2015; Escudero, 2005).
Therefore, it is of great interest to understand how non-native listeners come to
associate speech sounds in a second language to categories in the native language.

Although the mapping between non-native (L2) sounds and native language
(L1) speech categories is often assumed to depend on acoustic or articulatory
similarity (Best, 1995; Flege, 1995), second language learners do not always
map second language sounds to L1 categories that are the most acoustically or
articulatorily similar (Bohn, 2017; Strange, 2007, 1999). Alternative theories
posit that learners know the phonological inventory of each language and match
categories in the L1 to categories in the L2 based on phonological similarity
(Chang, 2015; Best and Tyler, 2007; Strange, 2011). However, these theories
do not typically make clear how this mapping takes into account the acoustic or
articulatory properties of the different contrasts in each language, nor is there a
mathematical account of how it could take place without reference to the these
properties. Thus, although a range of theories tackle the problem of how learners
map between L2 sounds to L1 categories, there is not yet a formal model that can
predict how and why learners deviate from simply mapping each sound to its most
acoustically or articulatorily similar category.

In this paper, we introduce a new framework for predicting the association
between native language categories and second language speech sounds. Using
the mathematics of optimal transport (Monge, 1781; Peyré and Cuturi, 2020),
we derive a way of mapping between native speech categories and an acoustic
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distribution' that formalizes the idea of an L1 filter. We find that when applied to
second language speech sounds, this model correctly predicts mappings between
L2 acoustics and native categories that go beyond acoustic similarity. Specifically,
we apply the model to a case study of Spanish acquisition of English stops and show
that the model’s qualitative predictions are in line with what has been observed
in second language learners. Our work provides insight into the optimization
principles that could be guiding listeners as they transfer the native language
phonological structure to novel L2 acoustic environments.

2 Spanish learners’ acquisition of English stops

The case study we focus on in this paper is the acquisition of English stop contrasts
by native speakers of Spanish. This scenario is illustrated in Figure 1. As can be
seen from the figure, Spanish and English both maintain a two-way distinction
along voice onset time (VOT) in word-initial positions. Inspecting an IPA chart
would indicate that both languages both have a phonemic distinction between /d/
and /t/. However, the realization of these sounds differs phonetically across the two
languages (Abramson and Lisker, 1973; Casillas et al., 2015; Williams, 1977b).
English /d/ and /t/ are both realized as voiceless stops word-initially. The distinction
between the two sounds in word initial position in English is actually aspiration:
/d/ is realized as a voiceless stop [t] and /t/ is realized as [t"]. In Spanish, /d/ is
realized as pre-voiced whereas /t/ is voiceless, surfacing as [d] and [t] respectively
(Figure 1; Abramson and Lisker 1973)?.

Because both of the English categories are more acoustically similar to Spanish
/t/ than to Spanish /d/, a second language learner that followed acoustic similarity
alone would categorize both English sounds as Spanish /t/. However, this is
suboptimal in second language learning because it collapses a contrast that is
present phonologically in both the first and second language, and it is also not what
is observed empirically. Rather, work on the acquisition of stops in Spanish-English
bilinguals has found that Spanish-English bilinguals strive to maintain a two-way
distinction (see Casillas 2021 for a review on production).

Beyond just retaining the distinction, previous work suggests that bilinguals
are able to maintain representations that differentially process input from both
English and Spanish. For example, studies examining the impact of language mode
(Grosjean, 2020) for early and late bilinguals suggest language-specific patterns
in discrimination (Lozano-Argiielles et al. 2021; Gonzales et al. 2019; Gonzales
and Lotto 2013; Garcia-Sierra et al. 2012; Elman et al. 1977; Casillas and Simonet

I'We frame our simulations in terms of acoustic distributions, but the mathematical framework we
develop could be applied to either acoustic or articulatory distributions. Our simulations in this paper are
carried out in an idealized setting that is not derived directly from acoustic measurements of individual
speech tokens, and thus do not provide new evidence in favor of acoustic representations.

2It has been noted in previous work that there is also a place distinction between the two languages:
the Spanish sounds are produced as dental whereas the English sounds are produced as alveolar (Casillas
et al., 2015). Given that most previous research has focused on VOT alone, we leave this for future
work.
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Figure 1: Categorization of /d/ and /t/ in English and Spanish. Spanish is "true voicing”
language in which the voiced categories are pre-voiced and the voiceless category is
short-lag. The English voiced category /d/, however, is realized as short-lag whereas the
voiceless category /t/ is realized as long-lag.

2018; although see Bohn and Flege 1993; Caramazza et al. 1973; Williams 1977a
for contradictory findings). Work focusing specifically on late L1 Spanish learners
of English has found that these learners tend to perform similarly to the early
bilinguals, displaying a shift in categorization boundaries towards the boundaries
of monolingual English listeners along VOT (Gorba, 2019; Flege and Schmidt,
1995). Additional work utilizing a categorical oddity discrimination task has found
native-like discrimination for the English /d/-/t/ ([t] - [t"]) contrast for late L1
Spanish learners of English (Flege and Wayland, 2019)

These results suggest that learners are able to update category representations
with exposure to a second language, and that this process takes place fairly quickly.
More specifically, when learners acquire a second language with the same underly-
ing contrast with different surface realizations, they update the representations to
some extent in order to learn the L2-like categorization boundary. We hypothesize
that this shift in the category boundary reflects the learners’ mapping of their L1
categories onto new acoustic realizations in the L2. Here we formalize a computa-
tional model that optimizes a mapping between native categories and L2 sounds,
and show that it can capture this type of shift in category boundary.

3 Model

We frame L2 language assimilation as a problem of optimal transport. The original
formulation of optimal transport is as the solution to a straightforward problem:
how to move piles of dirt to fill holes, minimizing the amount of effort (Monge,
1781). Since its initial formulation, optimal transport has found application across a
variety of domains including machine learning (Arjovsky et al., 2017) and cognitive
modeling (Wang et al., 2020) thanks to its general applicability to optimizing
mappings between probability distributions.

To capture assimilation patterns in second language learners, we propose a
model in which the speech sounds are analogous the dirt that is being moved and the
categories are analogous to the holes. The effort needed to move a particular speech
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Figure 2: Left and middle figures: Distribution of acoustic information in two simulated
languages. The Spanish-like native language simulates a true voicing language in which one
category falls entirely in the negative value range while the English-like non-native
language simulates an aspirating language with one category falling around 0 VOT and the
other with a greater lag time. Right figure: Distribution over category labels. Each category
is assigned .5 of the total probability mass.

sound into a particular category is defined in our model based on mappings between
categories and acoustics in the native language. In acquiring a second language,
a learner may encounter a new distribution of acoustics. The proposed model
uncovers the optimal mapping between this encountered distribution of acoustics
and the existing categories in the native language. Because optimal transport
problems are constrained by both the dirt that is being moved and the holes that
are being filled, our model’s optimization is constrained by both the acoustics of
the new language and the distribution over categories in the native language. The
constraint that comes from the distribution over categories is important because
it causes the categories from the native language to be redeployed in association
with the distribution of acoustics in the second language. We show that the optimal
solution to the resulting transport problem does not simply map sounds in the L2
to their most similar category in the L1. Instead, the model correctly predicts a
boundary shift in the mapping between the acoustics and categories.

We compare our model to a Bayesian classifier that instantiates similarity-
based assimilation (Best, 1995; Flege, 1995). Like the optimal transport model,
the classifier operates over the acoustic distribution of sounds from the second
language, but unlike the optimal transport model, it is not constrained to reproduce
the distribution over categories in the first language. This allows us to isolate the
effect of the category-based constraint in shaping assimilation patterns.

3.1 Background on Optimal Transport

Defining an optimal transport problem requires three parts: two distributions and a
cost matrix. The solution to the problem is an optimal transport plan. This plan
defines the most cost-efficient manner of coupling distributions. In this work, we
use the discrete formulation of the problem.

Formally, a transport plan, P, is a joint probability matrix of size m X n
that has the two probability distributions p = (f1..., trn) and v = (vy...,vy)
as its marginals. In other words, u is recoverable from P by summing over the
separate values of v and vice versa. There are many transport plans that have p



and v as their marginals, and the optimal transport plan minimizes the cost, C, of
transporting between p and v (see Equation 1). In the current work, we make use of
entropy regularized optimal transport which additionally includes a regularization
parameter, € > 0, that enables efficient computation,

P(p,v) = argmin (C, P) — eH(P). (1
PeU(p,v)

In Equation 1, 4 and v refer to two discrete finite probability distributions. U (u, v/)
refers to the set of transport plans between . and v. H refers to the entropy of the
distribution H(P) = >_, ; —P; jlog P; ; and € > 0. The cost matrix refers to a
non-negative matrix, C' = (Cij)mxn that encodes the cost of transporting mass
from a point ¢ in one distribution to a point j in the other. The optimal transport
plan, P¢, is derived by minimization of Equation 1. The plan with the minimum
entropy-regularized cost is the solution to the transport problem.

The solution to the problem can be computed using the Sinkhorn scaling al-
gorithm, a method of deriving a balanced matrix that is able to return both the
required marginal distributions (Knopp and Sinkhorn, 1967; Sinkhorn, 1964). Im-
portantly, this algorithm is able to solve the optimal transport problem in Equation 1.
Sinkhorn scaling is completed by first initializing a candidate plan using a Gibbs
kernel: K; ; = e~Cii/¢. The algorithm then iteratively refines the initial guess by
alternating projection onto each marginal distribution. When changes are small
enough, we terminate computation. We implement this algorithm using the POT:
Python Optimal Transport package (Flamary et al., 2021) using a value of € = 1.

3.2 Assimilation as Optimal Transport

We now define the our optimal transport model of L2 assimilation. The two
probability distributions that we utilize are a distribution over acoustics, P(X)
(Figure 2 left) and a distribution over category labels, P(Y") (Figure 2 right). The
discretized distributions are the marginals distributions, p and v, utilized in the
optimal transport problem (Equation 1). Thus, the output of this model is the
optimal map between acoustic values (here, an idealized version of VOT) and
category labels (/d/ or /t/).

The distribution over acoustics is constructed using two normalized Gaus-
sian distributions. We simulate the native language by creating two Gaussian
distributions centered around -100ms and Oms with standard deviations of 10ms,
normalized to sum to 1 (Figure 2 left). This language serves as the simulated
Spanish-like native language. The second language (long-lag or English-like) is
similarly constructed with two Gaussians with means centered at Oms and 100ms
each with standard deviations of 10ms (Figure 2 middle). This serves as the
English-like L2 language. Each distribution is discretized by binning over the
VOT values, so that the distribution over acoustics is a discrete distribution defined
over 400 VOT bins (m = 400). The distribution over category labels consists of a
uniform discrete distribution with two values /t/ and /d/ (n = 2; Figure 2 right).
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Figure 3: Cost matrix derived as the negative log probability of the joint distribution
between L1 acoustic distribution and category distribution. Lighter colors correspond to
lower cost values and thus higher probability.

The last piece is the cost matrix, which we define in terms of the negative log
of the joint probability distribution between acoustics, X, and category labels, Y,
derived from the native language,

C=-logP(X,Y). )

For each native language category (/t/ or /d/), the cost matrix assigns low cost to
the acoustics for the category dependent on the acoustic realization of that category
in the native language. These values are computed from the simulated acoustic
distributions for each category in the native language, resulting in a m X n matrix
(Figure 3)3.

With all the pieces in place, we now compute the optimal transport plan via
Equation 1 implemented using the Sinkhorn scaling algorithm (Sinkhorn, 1964).
Recall this takes place through iterative refinement of an initial guess K. In this
calculation, because the cost matrix is defined in terms of the log probability
function, the matrix K that initializes the Sinkhorn scaling algorithm reduces to
P(X,Y), the joint probability distribution over acoustics and category labels in the
native language. In each step, the algorithm iteratively derives the optimal plan by
projecting onto one marginal distribution and normalizing over the other to satisfy
the constraint over marginals for transport plans.

3.3 Assimilation as Bayesian classification

To illustrate the utility of the proposed model, we additionally implement a base-
line model: a Bayesian classifier, which has been used as a baseline model for
computational modeling of L1-L2 perception in previous work (Escudero et al.,
2007). A Bayesian classifier is a statistical model that makes use of Bayes’ rule to
compute posterior probabilities P(Y|X) of category membership,

PXY)P(Y)

PO = = p iy pv7) @

3The cost matrix, as well as the transport plans in Figure 4, are transposed for easier visualization,
with © on the columns and v on the rows.
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Figure 4: Optimal transport plan for acoustic values in L1 distribution to L1 categories
(left) and for L2 acoustics and L2 categories (right). The y-axis are the category labels, /d/
and /t/, the lighter shades show the values from the acoustic distribution that the model
associates strongly with a category label.

where the likelihood, P(XY"), is a Gaussian distribution corresponding to a
particular category label in the native language, i.e. one of the Gaussians illustrated
in Figure 2 (left), and the prior distribution, P(Y"), is the distribution over category
labels illustrated in Figure 2 (right).

This has connection to the proposed model as it can be understood as one
part of the transport problem, namely marginalization along the acoustics. This
is because the cost matrix C' and initialization matrix K correspond to the joint
distribution over acoustics and category labels—the numerator in Equation 3—and
because the normalizing constant in Equation 3 is equal to P(X). However, the
Bayesian model differs from the optimal transport model in that it doesn’t require
the marginalization over the category labels. Intuitively, this can be understood
as maintaining a native-language filter through the categorization model, but im-
portantly, not constraining the filter to maintain any particular distribution over
category labels.

4 Simulations

We present two simulations to illustrate our model’s behavior. Simulation 1 shows
that both our optimal transport model and the baseline model accurately recover
the association between categories and labels in the native language when pre-
sented with samples from the same acoustic distribution that they were trained on.
Simulation 2 shows that when the distribution of acoustics is changed to that of a
second language, only the optimal transport model is a able to predict a shift in the
mappings between acoustics and category labels.

4.1 Simulation 1: Native Language Assimilation

The goal of Simulation 1 is to show that when the model encounters a native-like
distribution over acoustics, it recovers the same mappings between categories and
acoustics that it was trained on.

We first discuss the optimal transport model. We set up the model in terms of
the native speaker (Spanish-like). We use the cost matrix derived via the native-like
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Figure 5: Categorization of the optimal transport and Bayesian model when trained on the
L1 and tested on the L1 (A,B) and L2 (C,D). Purple corresponds to the /d/ label, and orange
corresponds to the /t/ label. The logistic function indicates the location of the category
boundary in the native language.

patterns as discussed in Section 3.1. In this simulation, the marginal distribution
of acoustic values (VOT) and category labels are exactly the same distributions
that this cost matrix was derived from; they are taken from previous work on the
distribution of VOT and perceptual behavior by native speakers (Abramson and
Lisker, 1973). Thus, we solve the optimal transport problem between the unlabeled
distribution of acoustics (Figure 2 left) and category labels (Figure 2 right).

Because the cost matrix is derived from the native language, the optimal trans-
port plan simply recovers the L1 mapping between acoustic values and categories.
This can be seen in the left of Figure 4, in which the lighter shaded colors are at
the same locations along the x-axis (VOT) as in the original distribution (Figure 2
left), and in the correct boundary in Figure 5Sa. This result is expected given the
formulation of the cost matrix directly from the native language data. Nevertheless,
it is worthwhile to note that this model is able to use the cost matrix that was
derived from the native language to correctly map a distribution of unlabeled VOT
values to their corresponding labels.

The Bayesian model is tested on native language (Spanish-like) acoustic values
drawn from the distribution in Figure 2 (left). We find that the Bayesian model
also derives the correct pattern (Figure 5b) for the native language speakers. This
is also an expected result as the model’s prior and likelihood encode the correct
joint distribution over acoustics and categories in the native language, and thus
yield an accurate posterior for categorizing each sound. Therefore both the optimal
transport model and Bayesian classifier correctly predict patterns of categorization
for the native language listeners.



4.1.1 Simulation 2: L2 Assimilation

The goal of Simulation 2 is to extend the models to the L2 learning scenario. To
behave like human second language learners, the model should be able to shift the
category boundary to account for a novel distribution of acoustics.

Again, we first discuss the optimal transport model. The L2 simulation differs
from the native simulation only in the input acoustic distribution, p. Rather than
deriving a transport plan for the acoustic distribution of the native language (left of
Figure 2), it utilizes the acoustic distribution of the L2 (middle). The distribution
over category labels and the cost matrix remain the same. Intuitively, this can be
understood as maintaining the same phonemic categories and native-language filter,
but receiving an unfamiliar acoustic distribution of VOT values. Of main interest
to the current work is the application of this L1-derived cost matrix to the novel
distribution of VOT from the L2 (Figure 2 middle).

We find that when the optimal plan is derived for the L2 acoustic distribution
(English-like) via the L1-derived cost matrix, the result is a transport plan that
shifts category labels to accommodate the novel distribution, such that the Gaussian
distribution around Oms is now mapped to /d/ whereas the Gaussian distribution
around 100ms is mapped to /t/ (Figure 4 right and Figure 5¢). As can be seen
from Figure 5 which shows both the native and non-native transport plans, the
distribution of acoustics is mapped not according to the phonetically most similar
category, but rather the overall distribution over category labels. Thus, VOT values
are mapped to both categories.

We now discuss the results for the Bayesian model. We find that the model over-
generalizes the voiceless category, /t/ label (Figure 5d). The model overgeneralizes
because its likelihood is based on the native language. The L2 boundary shift cannot
be achieved from the Bayesian classification model since there is no constraint on
the marginal distribution over categories. In effect, all the VOT values are moved
to only one category, the category that is phonetically most similar.

The difference in the models’ categorization behavior arises despite the fact
that both the Bayesian and the optimal transport model are trained on distribu-
tions derived from the native language. The optimal transport model arrives at
the human-like solution because it constrains the transport plan to maintain the
marginal distributions over both the acoustics and category labels. The result of
this constraint is that acoustic values must be assigned to both of the labels. The
optimal plan results in a shift in categorization boundary along VOT rather than
assigning all of the VOT values to a single category. The Bayesian model has no
such constraint that requires the data to be distributed over each label, resulting in
the collapse to the closest L1 category.

5 Discussion

We introduced a model that formalizes second language speech assimilation using
optimal transport. Through two simulations, we show that the optimal transport



model is able to account for initial categorization patterns in L1 and subsequent
shifts in L2 utilizing a single filter (i.e., cost matrix) derived through the L1. The
result of L2 mapping can thus be explained as the result of an optimization problem
that aims to find the best coupling between categories in the native language and
the acoustics of the second language.

Our model differs from previous accounts in its focus on deriving the optimal
mapping between acoustics and categories (but see Escudero, 2005). It is able to
predict L2 assimilation patterns that previous accounts have assumed a priori. The
Perceptual Assimilation Model (PAM) (Best, 1995) and its L2 extension PAM-L2
(Best and Tyler, 2007) aims to explain discrimination patterns in perception through
assimilation patterns. L2 contrasts are assimilated to native language categories
dependent on articulatory similarity between sounds in the contrasts. The theory
does not account for how this metric of similarity is determined, but rather relies
on the outcome of assimilation studies with humans as the basis for predicting
discrimination. The Speech Learning Model (SLM) (Flege, 1995; Flege and Bohn,
2021) also claims that the difficulty of perceiving L2 speech sounds is dependent
on phonetic similarity to L1 categories, but does not provide a method through
which to determine how these equivalences may take place. The current model
addresses this gap in previous theories by modeling assimilation as the optimal
result of mapping L2 acoustics to native categories.

The model also differs from previous theories that appeal to phonological
similarity (Best and Tyler, 2007; Chang, 2015) in that it bypasses the phonological
structure of the L2 entirely, and imposes the categories of the native language
on the acoustics of the L2. This aspect of our model may need to be revised in
future work. For example, it may be that learners derive the category-based optimal
transport constraint from their L2 rather than from their native language, or that
they only force the native category structure onto their L2 once they know that
there is a relevant contrast in their L2 that they should map their L1 categories
onto. Importantly, our model also explicitly requires the maintenance of two
categories in perception in both the L1 and L2 scenarios. Depending on how these
categories are defined, this could suggest that phonological information in the
native language, such as the structure of categories along a dimension (VOT), plays
a role in perception of non-native languages.

Finally, the proposed model differs from previous accounts of perceptual adapta-
tion in which supervised training led to shifts in category boundaries (Kleinschmidt
and Jaeger, 2015). This difference is crucial because supervised training requires
a learner to already know the correct mapping between categories and acoustics.
Our model derives this mapping from first principles, which allows it to capture a
shift in the category boundary without requiring labeled training data in the L2.

There are several questions that remain. As we discussed before, in the current
work and the broader literature, it’s unclear what the correct level of abstraction is
when considering the influence of the native language on L2 perception (Chang,
2015; Best and Tyler, 2007; Broselow and Kang, in press; Bohn, 2017) or whether
this should take place along an acoustic, articulatory, or featural basis (Yazawa et al.,



2023; Brown, 1998; Archibald, 2023). In the current model, we do not specify
whether the L1 categories under discussion are phonetic or phonological in nature.
Given that the acoustic distributions used in our simulations are intended to mimic
those that occur in word-initial position, either interpretation is possible. However,
given the flexibility of the optimal transport framework, future simulations need
not be restricted to considering only the sounds that occur in a single context. For
example, one could derive a cost matrix based on more complex distributions in
which allophonic variation is mapped to a single phonological category in the
native language (e.g., Rohena-Madrazo, 2013). More generally, to tackle these
questions, it is desirable to have a way to compare second language learners’
predicted assimilation patterns under different modeling assumptions. The optimal
transport framework we have introduced can facilitate this type of comparison
because it provides the precision of mathematical optimization while allowing
considerable flexibility in specifying the relevant probability distributions.

The proposed model provides an initial formalization of speech assimilation
in a second language. While the model captures the expected pattern, several
simplifications were made that should be addressed in future work. For example,
the Gaussian distributions for each category were assumed to have the same
frequency and variance across languages; however, generally, this doesn’t prove to
be true (Lisker and Abramson, 1964). Additionally, we only focus on the situation
in which the number of categories across languages is the same. How listeners may
deal with differing numbers of categories cross-linguistically, and the situations
in which categories must be created is an interesting future direction. Optimal
transport provides a promising tool for exploring cases in which learners need to
create new categories because it explicitly assigns a cost for transport between
acoustics and categories. This could provide a concrete method of quantifying
predicted cost of assimilation to native language categories relative to creation of
new categories altogether. More broadly, the cost assigned for mapping a particular
set of native language categories to an acoustic distribution in a second language
can be explored in future work as a way of predicting the difficulty of a particular
second language learning scenario.
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