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Abstract

Learning in any domain depends on how the data for learning are represented. In the domain of
language acquisition, children’s representations of the speech they hear determine what generalizations
they can draw about their target grammar. But these input representations change over development as
a function of children’s developing linguistic knowledge, and may be incomplete or inaccurate when
children lack the knowledge to parse their input veridically. How does learning succeed in the face
of potentially misleading data? We address this issue using the case study of “non-basic” clauses in
verb learning. A young infant hearing What did Amy fix? might not recognize that what stands in
for the direct object of fix, and might think that fix is occurring without a direct object. We follow a
previous proposal that children might filter nonbasic clauses out of the data for learning verb argument
structure, but offer a new approach. Instead of assuming that children identify the data to filter in
advance, we demonstrate computationally that it is possible for learners to infer a filter on their input
without knowing which clauses are nonbasic. We instantiate a learner that considers the possibility
that it misparses some of the sentences it hears, and learns to filter out those parsing errors in order to
correctly infer transitivity for the majority of 50 frequent verbs in child-directed speech. Our learner
offers a novel solution to the problem of learning from immature input representations: Learners may
be able to avoid drawing faulty inferences from misleading data by identifying a filter on their input,
without knowing in advance what needs to be filtered.
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1. Introduction

Learning involves incrementally building on prior knowledge. This is true in language
acquisition just as in other forms of learning: A child who cannot count is not able to learn
arithmetic, and a child who cannot identify the category “verb” is not able to learn whether her
language has verb raising. Linguistic theories since Chomsky (1965) have typically abstracted
away from time and resource constraints, idealizing language acquisition as an instantaneous
process that maps an entire corpus of input onto a grammar (for example, Wexler & Culicover,
1980). Many modern approaches make similar idealizations in asking whether the data as a
whole support grammar selection, either accessed all at once or one data point at a time (for
example, Abend, Kwiatkowski, Smith, Goldwater, & Steedman, 2017; Clark & Lappin, 2012;
Fodor & Sakas, 2005; Legate & Yang, 2007; Maurits, Perfors, & Navarro, 2009; Mitchener
& Becker, 2010; Pearl & Lidz, 2009; Pearl & Sprouse, 2013, 2019; Perfors, Tenenbaum, &
Wonnacott, 2010; Perfors, Tenenbaum, & Regier, 2006, 2011; Sakas & Fodor, 2001, 2012;
Yang, 2002). But while enabling insights into language learnability at a global level, these
approaches have abstracted away from an important dimension of the learning problem: How
learners perceive and use their input, and how this changes as they learn their language.

This paper investigates a puzzle that arises from incorporating development into a model of
grammar acquisition. Children not only take in their input gradually over time, but the nature
of the data that they take in also changes during this process. The way that children perceive
their input depends on their current knowledge of their language, which they use to assign
structure and meaning to the speech that they hear. These input representations change as
children’s linguistic knowledge develops, and determine what further inferences children can
draw about their target grammar. Learning cannot wait until children can veridically parse all
of their input, or there would be nothing further to learn; instead, children must learn from
the immature parses that they can assign to their input at each stage of development (Fodor,
1998; Valian, 1990). How do learners avoid being misled if their input representations are
incomplete or inaccurate?

Our case study is the role of transitivity in verb learning. At very early stages in grammati-
cal development, learners use verbs’ distributions in transitive and intransitive clauses to draw
inferences about verb meanings and argument structure (Fisher, Gertner, Scott, & Yuan, 2018;
Fisher, Jin, & Scott, 2019; Lidz, White, & Baier, 2017). But accurately perceiving those dis-
tributions is not trivial, as transitive and intransitive clauses can be realized in variable ways
within a language and cross-linguistically. The arguments in “basic” English clause types like
(1) and (2) might be easier to recognize than those in “non-basic” clause types that do not
follow the language’s canonical word order, like (3):

(1) John ate a sandwich. Amy fixed her bicycle.
(2) John ate. (*Amy fixed.)
(3) What did John eat? What did Amy fix?

If a child knows that English has canonical subject-verb-object word order, she could rec-
ognize that the sentences in (1) contain both subjects and objects, and the sentences in (2)
contain only subjects. These data could lead her to conclude that fix is obligatorily transitive
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whereas eat can alternate between transitive and intransitive uses, which has implications for
what those verbs might mean. But transitivity might be harder to recognize in the wh-object
questions in (3), in which a fronted argument (what) stands in a nonlocal dependency with the
verb, and acts as the verb’s object even though it does not surface in canonical direct object
position. These data may be misleading for a child who has not yet learned how to identify
wh-dependencies in her language, and does not know that what is a wh-word. She might note
the absence of a direct object after the verb and perceive the sentences in (3) as intransitive,
mistakenly concluding that fix can alternate just like eat.

One solution to this problem proposes that learners somehow “filter out” nonbasic clauses
like wh-object questions early in language acquisition. Under this approach, young children
avoid learning about basic argument structure, clause structure, and verb meanings from sen-
tences that do not follow the canonical word order of their language, because these sentences
obscure the systematic relations between syntax and semantics that are useful for learning
(Gleitman, 1990; Lidz & Gleitman, 2004a, 2004b; Pinker, 1984, 1989). This approach has
implicitly assumed that learners know which sentences to filter out, but the mechanism by
which they identify these sentences has not yet been established. Furthermore, learning to
identify argument displacement in nonbasic clauses would seem to depend on knowing some
core argument structure properties of the language: Learning that what is the object of fix in
a wh-question like (3) arguably depends on knowing that fix takes a direct object (Gagliardi,
Mease, & Lidz, 2016; Perkins & Lidz, 2020, 2021). Thus, an apparent paradox arises. Learn-
ing basic verb transitivity, a first step in the acquisition of argument structure, may require
filtering out data from nonbasic clauses. But identifying which clauses are nonbasic may
require already knowing which verbs are transitive. Empirical evidence suggests that learners
face this paradox in their second year of life. Findings from behavioral studies show that verb
transitivity knowledge develops in tandem with infants’ ability to identify common nonbasic
clause types like wh-dependencies, before they turn 2 years old (Gagliardi et al., 2016; Lidz
et al., 2017; Perkins & Lidz, 2020; Perkins, 2019; Perkins & Lidz, 2021; Seidl, Hollich, &
Jusczyk, 2003).

Here, we resolve this apparent paradox computationally. We present a Bayesian model that
learns to filter its input to infer verb transitivity, without knowing what types of sentences it
should filter out. Our model does so under the assumption that it occasionally parses sentences
erroneously, and it learns how much of its parses to trust and how much it should treat as noise
for the purposes of verb learning. This allows the learner to avoid drawing faulty inferences
from nonbasic clauses, without having to know which clauses are nonbasic. In simulations
on child-directed speech, we show that our model learns appropriate parameters for filtering
its input in order to accurately categorize the majority of frequent transitive, intransitive, and
alternating action verbs. We thus provide a model for the first steps of argument structure
acquisition that have been attested in infancy, demonstrating how those steps of learning could
take place before nonbasic clause acquisition is complete. In doing so, we propose a new
solution to the problem of learning from input that a learner cannot parse veridically. It may
be possible for learners to avoid drawing faulty inferences from misleading data by identifying
a filter on their input, without knowing in advance what needs to be filtered.
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2. Nonbasic clauses in verb learning

Nonbasic clauses are problematic for theories of learning that rely on systematic relations
between verbs’ syntactic properties and their meanings, for example, semantic and syntac-
tic bootstrapping (Fisher et al., 2018, 2019; Gleitman, 1990; Grimshaw, 1981; Landau &
Gleitman, 1985; Lasnik, 1989; Pinker, 1984, 1989). Bootstrapping proposes that these corre-
spondence relations could drive learning in the following way: If learners are aware of how
the syntactic environments in which verbs distribute correspond to conceptual categories of
events, then learners can use evidence about one of these properties (syntactic or conceptual)
to draw inferences about the other.1

In semantic bootstrapping, a child who represents an event under a particular conceptual
structure might be able to use these correspondence relations to draw inferences about the
syntax of the clause describing that event (Grimshaw, 1981; Pinker, 1989, 1984). For exam-
ple, a child who perceives an event with an agent and a patient, and knows that subjects of
active transitive clauses tend to name agents and objects name patients, might then infer which
argument is the subject and which is the object in a clause describing that event. Conversely,
in syntactic bootstrapping, a child who represents a clause under a particular syntactic struc-
ture might be able to use these correspondence relations in the opposite direction to draw
inferences about which event the clause describes (Fisher et al., 2018, 2019; Gleitman, 1990;
Landau & Gleitman, 1985; Lasnik, 1989). For example, a child who hears an unknown verb
in a clause that she represents as transitive might then infer that this clause describes an event
she perceives as having an agent and a patient, allowing her to narrow down the range of
events that the verb labels.

A large body of experimental literature finds that learners begin to use these meaning-
distribution correspondence relations for verb learning in their second year of life, particu-
larly those pertaining to transitivity. In preferential looking tasks, English-learning infants as
young as 17 months can use the canonical subject-verb-object word order of English to iden-
tify that the individual named by the subject of a transitive clause is the agent of an event, and
the individual named by the object is the patient2 (Gertner, Fisher, & Eisengart, 2006; Hirsh-
Pasek & Golinkoff, 1996). By 19 months, infants reliably infer a causal meaning for a novel
verb in a transitive versus an intransitive clause, and do so under the right circumstances at
15 months as well (Arunachalam, Escovar, Hansen, & Waxman, 2013; Arunachalam & Wax-
man, 2010; Jin & Fisher, 2014; Messenger, Yuan, & Fisher, 2015; Naigles, 1990; Yuan &
Fisher, 2009; Yuan, Fisher, & Snedeker, 2012). Children draw even finer-grained inferences
on the basis of hearing novel verbs participate in particular transitive–intransitive alternations.
How a verb distributes in intransitive clauses is related to its meaning: Intransitives whose
subjects are agents (e.g., John baked) tend to describe activities of those agents, whereas
intransitives whose subjects are patients (e.g., The bread rose) tend to describe changes under-
gone by those patients (Fillmore, 1968, 1970; Levin & Rappaport Hovav, 2005; Williams,
2015). Another line of experimental work has found that 2-year-olds are sensitive to these
distinctions (Bunger & Lidz, 2004, 2008; Naigles, 1996; Scott & Fisher, 2009).

However, both bootstrapping theories acknowledge that the correspondence relations
between syntax and meaning only hold probabilistically, and may be obscured when they
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interact with other grammatical properties of the language (Gleitman, 1990; Lidz & Gleit-
man, 2004a, 2004b; Pinker, 1984, 1989). This raises a potential challenge to bootstrapping
as a feasible learning mechanism early in grammatical development. It is not trivial to iden-
tify which sentences have undergone particular transformations, and learners who do not yet
know the surface signals for these transformations might misperceive the structure of nonba-
sic clause types in their input. If so, this will disrupt learners’ attempts to put the syntactic
environments in which verbs occur into correspondence with conceptual categories of events
they perceive in the world.3 This problem was first recognized in some of the earliest boot-
strapping work in Pinker (1984). Following Keenan (1976), Pinker notes that “the semantic
properties of subjecthood hold only in what [Keenan] calls ‘basic sentences’: roughly, those
that are simple, active, affirmative, declarative, pragmatically neutral, and minimally presup-
positional. In nonbasic sentences, these properties may not hold … Thus one must have the
child not draw conclusions about grammatical relations from nonbasic sentences.”

To appreciate the full extent of Pinker’s problem, let us consider the case of the wh-object
question in (3), repeated here as (4), as well as other nonbasic clause types such as relative
clauses (5) and passives (6).

(4) What did Amy fix?
(5) I like the bicycle that Amy fixed.
(6) The bicycle was fixed (by Amy).

In each of these examples, a syntactic transformation has applied such that the argument
acting as the object of the verb no longer surfaces in canonical object position. If a child is not
aware of these transformations, she may be misled when she relates the linguistic structure she
(mis-)perceives in these clauses with her conceptual representations of events. For example,
a semantic bootstrapper who takes (6) to be a description of an event in which she perceives
Amy as an agent and the bicycle as a patient might construe “Amy” as the subject and “the
bicycle” as the object, resulting in a parse that is not only erroneous but also implies that
English has object-verb-subject (OVS) word order. Likewise, the fronted arguments in (4) and
(5), if recognized as arguments, might be taken as evidence for optional OSV word order in
English rather than as evidence for the wh-movement that actually produced this noncanonical
word order. And if these phrases are not recognized as arguments of fix, a variety of other
inaccurate parses would be available for these sentences: Perhaps English allows syntactic
null objects, or perhaps fix can take an implicit object, like eat. This could lead to faulty
inferences about the syntactic properties of particular verbs and of the grammatical properties
of the target language.

Conversely, a syntactic bootstrapper who is not aware of the transformations in these sen-
tences may draw faulty inferences about which events in the world they describe. Because
direct objects are not realized in their canonical postverbal position, a child may not recog-
nize that these clauses are underlyingly transitive, and thus may not infer that they describe
causal events. In this case, an event in which she perceives Amy to be the agent and the
bicycle to be the patient may no longer count for her as a possible “fixing.” The problem is
not necessarily solved as soon as she observes fix in a basic clause that she can recognize as
transitive. In that case, she may infer that fix belongs to some class of verbs that can alternate
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between transitive and intransitive uses, like eat or rise, leading to inaccurate inferences about
both its syntactic and semantic properties.4

2.1. Empirical evidence

Empirical evidence shows that learners encounter this problem very early in grammatical
development. Nonbasic clauses are prevalent in the input to infants. In particular, English-
learning children hear a large number of wh-questions before their second birthday (around
15% of their total input), the majority of which contain noncanonical word orders (Cameron-
Faulkner, Lieven, & Tomasello, 2003; Newport, Gleitman, & Gleitman, 1977; Stromswold,
1995). Identifying the structure of these clause types requires knowing how particular trans-
formations are realized in the target language. For example, in order to identify the structure
of wh-object questions like (4), a child must detect that a fronted argument (what) stands in
relation to a verb (fix) that needs an object and is locally missing one. But this requires the
child to know that what is an argument, even though it is a functional element that does not
distribute like other arguments in the language. The child would also need to know that fix
needs an object, and is not being used intransitively.

Experimental findings show that infants’ abilities to identify the structure of these common
nonbasic clause types develops in tandem with basic argument structure knowledge. Infants
as young as 15 and 16 months old show sensitivity to verb transitivity. Jin and Fisher (2014)
found that 15-month-olds were able to draw inferences about the meaning of a novel verb
on the basis of hearing it in a transitive frame, and Lidz et al. (2017) found that 16-month-
olds with high verb vocabulary predicted an upcoming direct object for a known transitive
verb during online sentence processing. However, infants’ wh-dependency knowledge at 15
months appears fragile. One early preferential looking study found that 15-month-olds looked
at the right answer for subject but not object wh-questions (Seidl et al., 2003). Two addi-
tional studies found apparent success with object questions at this age (Gagliardi et al., 2016;
Perkins & Lidz, 2020), but the authors argued that this behavior might arise from develop-
ing verb knowledge and pragmatic reasoning, rather than an adult-like representation of the
wh-dependencies in these sentences. For instance, if 15-month-olds know that the verb bump
requires a direct object, then a question like Which dog did the cat bump? might lead them
to look toward an individual who got bumped by a cat, even if they do not syntactically rep-
resent the fronted wh-phrase as the required object. In support of this account, Perkins and
Lidz (2020) found that 15-month-olds’ performance was predicted by vocabulary, a likely
correlate of verb knowledge.

Additional work suggests that infants begin to represent wh-dependencies syntactically
at 18 to 20 months of age. Infants begin to produce wh-questions in their own speech by 20
months (Rowland, Pine, Lieven, & Theakston, 2003; Stromswold, 1995) and reliably compre-
hend them in preferential looking tasks at this age (Gagliardi et al., 2016; Seidl et al., 2003).
Moreover, Perkins and Lidz (2021) found that infants at 18 months recognize the comple-
mentarity between a local object and an object wh-phrase in a wh-question; 18-month-olds
listened longer to basic declarative sentences where transitive verbs occur with a required
local object versus without (e.g., A dog! The cat should bump him! > *A dog! The cat should
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bump!), but displayed the opposite pattern of preference for wh-questions, where a wh-phrase
acts as the required object nonlocally (e.g., Which dog should the cat bump? > *Which dog
should the cat bump him?). However, 14- and 15-month-olds did not differentiate between
these sentence types. These results suggest that infants represent the wh-phrase as a nonlocal
object of the verb at 18 months, but not earlier.

In summary, the current experimental evidence points toward the following developmental
trajectory. Basic verb transitivity knowledge appears to develop early, at 15–16 months for
English learners, and emerges before infants represent a fronted wh-phrase as an argument in
a wh-question, at 18–20 months. This implies that infants must have a way to begin learning
argument structure and basic clause structure even before they can parse some of the most
common nonbasic clause types in their input—and even though those clause types provide
misleading data for bootstrapping.

2.2. Filtering

The solution proposed in the bootstrapping literature is for learners’ input to be filtered
in such a way as to boost the signal from basic clauses, in which core arguments will be
easier to identify and correspondence relations between syntax and meaning will hold more
reliably (Gleitman, 1990; Lidz & Gleitman, 2004a, 2004b; Pinker, 1984, 1989). That is, non-
basic clauses are somehow filtered out of the data that young children use to bootstrap basic
argument structure and clause structure.

There are two ways that this filtering might happen: Either parents might avoid producing
these sentences in their children’s presence, or children might internally filter these sentences
themselves (Pinker, 1984). Parental filtering does not seem to occur, as evidenced by the
high rate of wh-questions in speech to young infants (Cameron-Faulkner et al., 2003; New-
port et al., 1977; Stromswold, 1995). The second solution assumes that children can figure
out which sentences in their input need to be filtered out. This solution risks being circular.
Learners need to filter nonbasic clauses in order to learn argument structure, but identifying
the structure of nonbasic clauses would seem to depend on knowing some core argument
structure properties of the language. How can learners identify nonbasic clauses in order to
filter them, if they do not yet know what argument movement looks like in their language?

Pinker (1984, 1989) argues that this circularity can be avoided if children can use spe-
cial prosodic, pragmatic, or morphological cues to flag certain utterances as likely to contain
nonbasic clauses, without recognizing the structure of those clauses. The challenge with this
solution is identifying how learners know which cues to use. Attempting to define the criteria
by which children should filter their input creates its own learning problem: This introduces
a new set of categories, which the learner must know to track, and which may not always be
transparent (Gleitman, 1990).

One might imagine another solution instead: Perhaps learners acquire nonbasic clause
syntax and verb argument structure by attempting to learn both of these phenomena at
the same time. This simultaneous learning hypothesis may be in principle possible. How-
ever, the empirical evidence suggests that these phenomena are acquired in a certain order,
with verb transitivity knowledge beginning to emerge a few months before knowledge of
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argument movement. In order to understand how this is possible, it is useful to look for a
solution to the circularity problem that would allow learning to take place sequentially. We
propose a solution that does not require learners to know the criteria for identifying nonba-
sic clauses in order to learn verbs, and thereby provides a way for learning to take place in
incremental steps at this particular stage of development. This not only allows us to account
for the observed developmental trajectory for these phenomena in infancy, but also shows
how learners might arrive at a fruitful starting point from which a subsequent joint learning
process might proceed—an initial bootstrap into the system.

We propose that young learners implicitly assume that they will not accurately parse every-
thing they hear, and expect that their data will contain a certain amount of noise: erroneous
parses that they should not trust for the purposes of verb learning. Children might be able to
learn the right way to filter erroneous parses out of their input in order to solve a particular
learning problem—in this case, jointly inferring verb transitivity along with how much of
their data to trust in making that inference. Crucially, this solution does not require learners to
know where those errors came from, thereby sidestepping the problem of which cues learners
should track for identifying nonbasic clauses. Under our approach, children might filter non-
basic clauses from the data they use for verb learning without knowing that they are nonbasic
clauses. This will allow them to use relations between syntax and meaning to bootstrap into
the target grammatical system, even though they do not yet know when those relations are
masked by other grammatical properties of the language.

2.3. Computational models of verb learning

We adopt a Bayesian framework, in which a learner observes a data pattern and infers the
probability of some properties of the system that may have generated that data. This frame-
work conveniently allows us to specify the alternative systems (verb transitivity properties vs.
erroneous parses) that our learner considers for the verb distributions it observes.

Our model follows previous Bayesian approaches to argument structure acquisition
(Alishahi & Stevenson, 2008; Barak, Fazly, & Stevenson, 2014; Parisien & Stevenson, 2010;
Perfors et al., 2010), but considers a different problem than the one explored in that liter-
ature. The goal of the learners in Alishahi and Stevenson (2008) and Perfors et al. (2010)
is to identify the full set of verb classes that exist in the language, and how verbs in those
classes generalize across syntactic frames. These papers aim to provide an account for an
acquisition phenomenon that arises in preschool-aged children, who sometimes overgener-
alize verbs across argument structures that they do not actually participate in. This behavior
occurs in children at a later stage of development than the infant bootstrappers we are model-
ing in this paper. Verb overgeneralization is the output of several logically independent steps
of learning: (a) perceiving how verbs distribute in particular syntactic frames; (b) performing
an initial classification of verbs according to their argument-taking properties, for example,
as one-, two-, or three-place predicates; and finally (c) identifying how productively verbs in
a class can generalize across different types of argument structures, for example, from the
prepositional dative to the double-object dative. The primary focus of prior models is the
third step of learning, but we are concerned with the earlier processes involved in the first
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two steps. In particular, we ask how learners are able to establish a veridical percept of verbs’
distributions with subjects and objects, when they may not have the linguistic knowledge to
reliably identify these core syntactic arguments in nonbasic clauses.

This question has not yet been answered in previous models of argument structure acquisi-
tion, in which a learner’s ability to veridically represent the input has been largely assumed.
Alishahi and Stevenson (2008) acknowledge that this assumption is most likely unrealistic,
and simulate noise in their learner’s syntactic representations by randomly removing some of
the distributional features that it learns from. Yet, the “noise” faced by a learner in real life is
not random. As the authors note, “A more accurate approach must be based on careful study
of the types of noise that can be observed in child-directed data, and their relative frequency”
(Alishahi & Stevenson, 2008). This invites us to consider the ways in which learners might
misperceive the data in their input, and how a learner can avoid being misled by those data
when identifying a verb’s syntactic distribution in the language.

Our approach differs from these prior verb learners in another important way. Rather than
modeling the simultaneous acquisition of all verb classes, we focus on only verb transitivity
as the earliest attested form of argument structure knowledge in infancy, and arguably the
most basic. This allows us to explicitly model a particular developmental stage suggested
by the empirical literature, which learners transit on their way to acquiring the full argu-
ment structure system of their language. That is, we model development by breaking a large
acquisition problem into smaller steps. We ask how learners first identify the core argument-
taking properties of verbs—their distributions with subjects and objects—in order to provide a
scaffold for further inferences about the target grammar, including the finer-grained distribu-
tional classes and alternations that verbs participate in.

Other previous computational models have investigated how learners might benefit from
simultaneously making use of semantic information during this process. These models ask
how learners might use conceptual structure to identify the core grammatical rules and word
order properties of the language, and then use syntactic representations to infer the mean-
ing of words and utterances (Abend et al., 2017; Kwiatkowski, Goldwater, Zettlemoyer, &
Steedman, 2012; Maurits et al., 2009). While shedding light on how semantic and syntactic
bootstrapping might proceed in tandem, these models still presuppose the step of learning
that we are concerned with in this paper: How a learner gains access to accurate representa-
tions to form the basis of these bootstrapping inferences. As prior work has noted, the noise
introduced by nonbasic clauses types is equally disruptive for both types of bootstrapping,
semantic or syntactic (Gleitman, 1990; Pinker, 1984, 1989). We focus here on the learner’s
syntactic percept, but in doing so, we do not deny that it might be helpful to make use of
conceptual information as well. Our goal is simply to ask how far a learner could get in iden-
tifying verb transitivity on the basis of distributional information, when those distributions
may not be accurately perceived. In order to isolate this distributional signal for bootstrap-
ping, we therefore set aside the question of how conceptual information could be accessed or
used in this process, a question we will return to later in the discussion.

In the experiments below, we test the computational feasibility of our proposed solution:
whether a learner could, in principle, jointly infer verb transitivity along with the param-
eters for filtering errorful sentence representations from the data it uses for learning. In
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Simulation 1, we demonstrate that a learner can accomplish this joint inference on the basis
of the syntactic distributions of frequent English action verbs in child-directed speech. Our
learner performs this inference using only rates of overt direct objects after verbs, and does not
condition on any other utterance features, such as wh-words, prosody, or extra-linguistic dis-
course context; it succeeds even though it cannot distinguish object wh-questions from basic
intransitive clauses. In Simulation 2, we ask how much the learner’s performance in Simula-
tion 1 depended on its a priori assumption that transitive, intransitive, and alternating verbs
are equally likely. We show that our learner performs no better when it assumes these cate-
gories will occur in the proportions in which they actually do occur in child-directed English.
However, it does not differentiate transitivity categories as well when it is extremely biased
toward the alternating class, showing that the deterministic categories must be weighted suffi-
ciently in the model’s hypothesis space in order to be identified in its input. Thus, we provide
a proof of concept that a child may be able to filter nonbasic clauses from her input in order
to correctly identify verb transitivity, without knowing in advance which clauses are nonba-
sic. This inference requires prior knowledge that verbs might be transitive or intransitive, but
does not require specific knowledge about the frequency of those transitivity categories in the
learner’s target language.

3. Model

We present a Bayesian model that learns how to filter its input in order to infer verb transi-
tivity. The learner performs this inference only on the basis of observing how verbs distribute
with and without direct objects, and does not use any other syntactic or nonsyntactic cues
to identify its filter. Instead, the learner assumes that some of its parses are not trustworthy
sources of information for learning its language, because it does not have enough linguistic
knowledge to accurately parse every sentence in its input. The learner infers the right way to
filter erroneous parses out of the data it uses for verb learning, without knowing why those
parses were erroneous. This filtering allows it to identify the transitivity properties of verbs in
its input, despite misleading data from nonbasic clauses.

In this section, we first specify the generative model, which encodes the learner’s assump-
tions about how its direct object observations are generated. Then, we specify how the learner
jointly infers verb transitivity along with the parameters for filtering its input, given its data.
In the following sections, we present simulations demonstrating that this joint inference is
successful when tested on child-directed speech.5

We do not claim that the Bayesian inference performed by our model represents the exact
algorithms performed by child learners, although there is substantial literature on young chil-
dren’s statistical inference capabilities (Gomez & Gerken, 2000). Our model is framed at
Marr’s (1982) computational level: We characterize the mental computation involved in this
learning process as particular kind of joint inference, and investigate whether this type of joint
inference would lead to successful learning, given the information available to learners and
our hypothesized characterization of their perceptual abilities. This invites further algorithmic
questions about how well learners are able to access that information, and whether they put it
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to use in a way that accords with this idealized model. Our approach follows a rich tradition in
the language acquisition literature, including previous models of argument structure learning
(for example, Abend et al., 2017, Alishahi & Stevenson, 2008; Dillon, Dunbar, & Idsardi,
2013; Elman, 1990; Frank, Goodman, & Tenenbaum, 2009; Goldwater, Griffiths, & John-
son, 2009; Pearl & Sprouse, 2019; Perfors et al., 2011, 2010; Vallabha, McClelland, Pons,
Werker, & Amano, 2007). But although this model provides an idealized implementation of
children’s inference processes, it provides a more realistic account than previous models of
the steps of learning involved in bootstrapping: specifically, how learners establish a veridical
percept of verbs’ syntactic distributions in the face of messy data, in order to enable further
bootstrapping inferences.

3.1. Generative model

A generative model represents a learner’s assumptions about the processes that generated
its observed data. In our case, the observed data are counts of direct objects with particular
verbs, as the learner represents them; specifically, the learner tracks how frequently it rep-
resents an overt direct object or no overt direct object following the verb. It assumes that
there are two reasons why it might observe direct objects or no direct objects. On one hand,
the transitivity of the verb determines whether it always, never, or sometimes takes a direct
object. This means that the rate of direct objects following the verb gives the learner evidence
for inferring whether the verb is transitive, intransitive, or alternating. But on the other hand,
the learner might also misperceive whether a direct object is present, because it lacks the
grammatical knowledge to identify the full structure of some sentences in its input. If this is
the case, some of the observed data points might not reflect the true transitivity of the verb
and should be filtered from the data that the learner uses to infer transitivity. Thus, there is
some probability of error in the learner’s direct object observations, and our learner infers two
parameters for filtering this error: How frequently misparses of sentences occur, and whether
the learner is more likely to miss a direct object that is underlyingly present or mistake another
constituent for a direct object.

Fig. 1 provides the graphical model for our learner. The model’s observations of direct
objects or no direct objects are formalized as the Bernoulli random variable X . Each X (v)

represents an observation from a sentence containing verb v in the model’s input, with a
value of 1 if the sentence contains a direct object and 0 if it does not. These observations of
direct objects can be generated by two processes: the transitivity of verb v, represented by
the variables T and θ in the upper half of the model, or an erroneous parse of the sentence,
represented by the variables e, ε, and δ in the lower half of the model. We will describe each
of these processes in turn.

In the upper half of the model, each X (v) is conditioned on the parameter θ (v), a continu-
ous random variable defined for values from 0 to 1 inclusive. This parameter controls how
frequently a verb v will be used with a direct object: The learner assumes that for every obser-
vation X (v), a biased coin is flipped to determine whether the sentence contains a direct object,
with probability θ (v), or does not, with probability 1 − θ (v). The parameter θ (v) is conditioned
on the variable T (v), which represents the transitivity of verb v. T is a discrete random variable
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Fig. 1. Graphical model.

that can take on three values, corresponding to transitive, intransitive, and alternating verbs.
Each of these values determines a different distribution over θ . For the transitive category of
T , θ always equals 1: The verb should always occur with a direct object. For the intransitive
category, θ always equals 0: The verb should never occur with a direct object. For the alternat-
ing category, θ takes a value between 0 and 1 inclusive. The prior probability distribution over
θ in this case is a uniform Beta(1, 1) distribution. We begin with the simplifying assumption
that all three values of T have equal prior probability—that is, the learner assumes that any
verb in the language is equally likely a priori to be transitive, intransitive, or alternating. In
later simulations, we explore our model’s behavior when this assumption is changed.

In the lower half of the model, each X is conditioned on a Bernoulli random variable e,
which represents the input filter. If e(v)

i = 0, the observation in X (v)
i was generated by θ (v) and

T (v), and accurately reflects the transitivity of verb v. But if e(v)
i = 1, the observation in X (v)

i
was generated by an erroneous parse, meaning the learner did not have adequate grammatical
knowledge to parse the sentence correctly. This observation was not generated by θ (v) and
T (v), and may not accurately reflect the transitivity of verb v, so it should be ignored for the
purpose of inferring T (v). Each e(v) is conditioned on the variable ε, which represents the
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probability of an erroneous parse occurring for any sentence in the input. The model learns a
single parameter value for ε across all verbs.

The second parameter of the input filter is δ, which represents the probability of generating
a direct object in error. Thus, the learner assumes that the direct objects in its parses depend
on one of two biased coins, which are flipped via the following process. An accurate versus
erroneous parse is generated with probability ε. If an accurate parse is generated (e(v)

i = 0),
then one biased coin is flipped and the sentence contains a direct object with probability
θ (v): This direct object comes from the verb’s transitivity properties. If an erroneous parse
is generated (e(v)

i = 1), then a different biased coin is flipped and the sentence contains a
direct object with probability δ: this direct object comes from a noise process. Like ε, δ is
a shared parameter across all verbs. We assume that both ε and δ have a uniform Beta(1, 1)
prior distribution.

3.2. Joint inference

We use Gibbs sampling (Geman & Geman, 1984) to jointly infer the transitivity of each
verb (T ) and the two parameters of the input filter (ε and δ). In this form of sampling, we
start with randomly initialized values for ε and δ, and use those values to calculate the pos-
terior probability of each transitivity category T for each verb, given the observed data and
those filter parameters. We sample values for T from this posterior probability distribution.
Then, we use the sampled transitivity categories to sample new values for ε and δ from esti-
mates of their posterior probability distributions. This cycle is repeated over many iterations
until the model converges to a stable distribution over T , ε, and δ, which represents the opti-
mal joint probability solution for these three variables. See the Appendix for details of the
sampling procedure.

4. Simulation 1

In Simulation 1, we ask whether inferring the parameters of an input filter will allow a
learner to accurately identify the transitivity categories of verbs in the speech that children
hear, assuming the immature representational abilities of a 15- to 17-month-old infant. We
tested our joint inference model on a data set containing distributions of the 50 most frequent
transitive, intransitive, and alternating verbs in corpora of child-directed English. In order to
determine whether this inference is successful, we compare our model’s performance to an
oracle model that already knows appropriate parameters for filtering its input, and baseline
models with inappropriate filter parameters.

4.1. Data

We prepared a data set of four corpora selected from the CHILDES Treebank (Pearl &
Sprouse, 2013). This resource provides parse trees for several corpora of child-directed speech
on CHILDES (MacWhinney, 2000), generated by the Charniak or Stanford parser and hand-
checked by undergraduates. The selected corpora contain 803,188 words of child-directed
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Table 1
Corpora of child-directed speech

Corpus # Children Ages # Words # Utterances

Brown- Adam, Eve, & Sarah (Brown, 1973) 3 1;6–5;1 391,848 87,473
Soderstrom (Soderstrom, Blossom, Foygel, & Morgan, 2008) 2 0;6–1;0 90,608 24,130
Suppes (Suppes, 1974) 1 1;11–3;11 197,620 35,904
Valian (Valian, 1991) 21 1;9–2;8 123,112 25,551

speech, heard by 27 children between the ages of 6 months and 5 years. See Table 1 for
corpus details.

Our data set was created by extracting sentences with the 50 most frequent action verbs
in these corpora that could be characterized as transitive, intransitive, or alternating. We
excluded verbs whose other argument-taking properties would preclude them from being cat-
egorized into the three argument structure classes under consideration. These included obli-
gatorily ditransitive verbs or those that frequently take clausal or verbal complements: mental
state verbs (e.g., want), aspectual verbs (e.g., start), modals (e.g., should), auxiliaries (e.g.,
have), and light verbs (e.g., take). We sorted the selected 50 verbs into transitive, intransitive,
and alternating categories according to the English verb classes described in Levin (1993),
supplemented by our own intuitions for verbs not represented in that work. These classes
provide a target for learning meant to align with adult speaker intuitions, independent of the
corpus data that the model learns from. The transitive and intransitive categories are con-
servative; any verb that could occur in a transitivity alternation was classified as alternating,
regardless of the frequency or type of alternation. So, verbs like jump are considered alternat-
ing even though they occur infrequently in their possible transitive uses (e.g., jump the horses
over the fence). These target categories thus set a very high bar for our model to reach.

We then conducted an automated search over the Treebank trees for the total occurrences of
each verb in the corpora, in all inflections, and the total occurrences with overt direct objects
following the verb (right NP sisters of V). We ignored all other constituents and features of
the sentences, including direct objects that were fronted in nonbasic clauses. For example,
sentences like You’re eating a cookie and Who’s eating a cookie? were both coded as obser-
vations of eat with a direct object. Sentences like You’re eating or What are you eating? were
both coded as observations of eat without a direct object from the perspective of our learner,
even though the second sentence of this pair is actually transitive. That is, we assume a learner
with the knowledge of 15- to 17-month-old English-learning infants as determined by previ-
ous behavioral studies: one who can use the canonical word order properties of English to
identify direct objects when they occur after verbs, but does not yet know how to identify
arguments in noncanonical positions, like the fronted wh-phrase what. Table 2 lists the com-
plete data set provided to the learner: counts of the selected 50 verbs, along with their counts
of overt postverbal direct objects. For legibility we also report the percentages of direct objects
with each verb, although our model learns from raw counts rather than percentages. Notice
that our heuristic for identifying direct objects in the manner of a 15-month-old infant creates
substantial noise in these data: All transitive verbs appear to have rates of direct objects less
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Table 2
Data set: Counts and percentage uses with overt direct objects (DO) of 50 verbs

Verb Total # DO % DO

Transitive Verbs
Feed 220 205 93%
Fix 337 305 91%
Bring 605 541 89%
Throw 312 275 88%
Hit 214 187 87%
Buy 358 299 84%
Catch 185 141 76%
Hold 579 406 70%
Wear 477 287 60%
Alternating Verbs
Pick 331 299 90%
Drop 169 149 88%
Lose 185 160 86%
Close 166 141 85%
Touch 183 153 84%
Leave 356 297 83%
Wash 195 161 83%
Pull 331 268 81%
Push 352 274 78%
Open 342 265 77%
Cut 263 198 75%
Bite 191 140 73%
Turn 485 350 72%
Build 299 215 72%
Knock 160 115 72%
Read 509 350 69%
Break 550 347 63%
Drink 366 221 60%
Eat 1318 777 59%
Sing 306 161 53%
Blow 255 132 52%
Draw 375 193 51%
Move 238 112 47%
Ride 281 114 41%
Hang 151 53 35%
Stick 192 57 29%
Write 583 155 27%
Fit 227 49 22%
Play 1568 308 19%
Stand 294 21 7%
Run 228 13 6%
Walk 253 11 4%
Jump 197 8 4%
Swim 180 7 4%
Sit 859 11 1%

(Continued)
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Table 2
(Continued)

Verb Total # DO % DO

Intransitive Verbs
Wait 383 57 15%
Work 256 11 4%
Cry 275 8 3%
Sleep 451 13 3%
Stay 308 4 1%
Fall 605 3 0%

Fig. 2. Posterior distributions over verb categories (T ), joint inference model.

than 100%, and nearly all intransitive verbs have direct object rates greater than 0%. This
means that filtering is necessary for our modeled learner to recover transitivity categories that
align with adult intuitions.

4.2. Results

4.2.1. Verb transitivity inference
Our joint inference model infers a probability distribution over transitivity categories for

each verb in its data set. These distributions are displayed in Fig. 2. Black bars represent the
posterior probability assigned to the transitive category, dark gray bars represent the probabil-
ity assigned to the intransitive category, and light gray bars represent the probability assigned
to the alternating category. The target categories for each verb are shown below the horizon-
tal axis.

We calculated accuracy by determining which transitivity category was assigned highest
probability to each verb by our model, and comparing these category assignments to the tar-
get categories for each verb. The proportion of verbs categorized correctly by the model is
reported in Table 3. Overall, the model infers the correct transitivity properties for 2/3 of the
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Table 3
Proportions of verbs categorized correctly, Simulation 1

Model Transitive Intransitive Alternating Total Verbs

Joint Inference 0.67 0.83 0.63 0.66
Oracle 0.78 0.83 0.51 0.60
No-filter baseline 0.00 0.00 1.00 0.70
Chance 0.33 0.33 0.33 0.33

verbs in our data set. This is substantially better than chance performance (p < .001, bino-
mial test): A model that randomly assigned categories to verbs would achieve 33% accuracy,
because there are three possible options for each verb. Our joint inference model performs
nearly twice as well overall. It also performs numerically better on all three verb classes,
a result that reaches statistical significance for both the intransitive and alternating verb
classes and is marginally significant for the transitive class (transitive: p < .067, intransitive:
p < .017, alternating: p < .001, binomial tests6).

The model achieves highest accuracy in categorizing the intransitive verbs: For all but
one of these verbs, the model assigns highest probability to the intransitive category. The
exception is the verb wait, which the model assigns highest probability under the alternating
category. This is due to prevalent uses of wait with temporal adjuncts, as in wait a minute, that
were indistinguishable from NP direct objects in the CHILDES Treebank parse trees. Thus, a
learner who cannot differentiate these adjuncts from direct objects would infer that wait is an
alternating rather than intransitive verb.

The model assigns six out of the nine transitive verbs highest probability under the tran-
sitive category. Three transitive verbs are assigned highest probability under the alternating
rather than the transitive category: catch, hold, and wear. This is likely because these verbs
display different behavior than the other transitive verbs in the corpus. The verb hold occurs
frequently in verb-particle constructions (e.g., hold on), which might be treated differently
than simple verbs by learners. The verbs catch and wear appear to occur at much higher rates
than other transitive verbs in nonbasic clauses: Catch occurs frequently in passives (e.g., get
caught), and wear occurs frequently in wh-object questions (e.g., what are you wearing?). We
leave for future work the question of whether children likewise mis-classify these verbs, or
whether they can accommodate their different distributional behavior by using more sophis-
ticated information than our modeled learner.

The model assigns highest probability for most of the alternating verbs to the alternating
verb category. There are 13 exceptions. The verbs pick, drop, lose, close, touch, leave, and
wash are assigned highest probability under the transitive category because they infrequently
occur in their possible intransitive uses in child-directed speech. The verb pull is assigned
equal probability under the transitive and alternating categories for the same reason. (This
verb was not considered to be correctly assigned to the alternating category in our accu-
racy calculation.) The verbs run, swim, walk, jump, and sit are assigned highest probability
under the intransitive category because these verbs very infrequently occur in their possible
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Fig. 3. Posterior distributions over ε and δ, Simulation 1.

transitive uses.7 Thus, the model overregularizes the alternating verbs that alternate infre-
quently, preferring the more deterministic transitive and intransitive verb categories.

4.2.2. Filter parameter inference
Recall that our model identifies verb transitivity categories by jointly inferring parameters

for filtering its input. These parameters are ε, which represents the frequency of erroneous
parses, and δ, which represents whether those errors are likely to cause direct objects to go
missing, or to spuriously appear. Fig. 3 displays the posterior probability distributions inferred
by the model for ε and δ. In order to evaluate the model’s inference of these parameters, we
estimated their true value in our data set. The proportion of transitive verbs without overt
postverbal direct objects in the data set (e.g., who did you feed?) gives us an estimate of
(1 − δ) × ε, and the proportion of intransitive verbs with spurious direct objects (e.g., wait
a minute) gives us an estimate of δ × ε. Solving these two equations, we find that δ = 0.18
and ε = 0.24. The posterior probability distribution over δ inferred by our model has a mean
of 0.25, and the probability distribution over ε has a mean of 0.19. Our model thus slightly
overestimates the value of δ and underestimates the value of ε, but it infers values for these
parameters that are close to the true values in the corpus.

4.3. Model comparisons

4.3.1. Oracle model
The primary contribution of our model is demonstrating that a learner can filter its input

without knowing anything in advance about what needs to be filtered out. Therefore, it makes
sense to compare our model against an “oracle” that knows a lot about what needs to be
filtered out. We instantiated an oracle model in which δ is fixed to 0.18 and ε to 0.24 in order
to reflect their true values in our data set, as estimated in the previous section. This oracle
model thus knows the parameters for the input filter in advance: It knows how frequently
erroneous parses are likely to occur, and how they will behave. By comparing our model to
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Fig. 4. Posterior distributions over verb categories (T ), oracle model.

this oracle, we can determine whether our model’s performance is impaired by having to learn
these parameters.

The posterior probability distributions over verb categories inferred by the oracle model
are displayed in Fig. 4. The posterior probabilities inferred by the oracle are less graded than
those inferred by our joint inference model; this is unsurprising, as the oracle considers only
one value each for δ and ε instead of sampling over multiple values. But when considering
which transitivity category is assigned highest probability to each verb, the two models clas-
sify most of these verbs in the same way, and achieve comparable performance overall (60%
vs. 66%, p = .87 [n.s.], Fisher’s exact test). Our joint inference model classifies intransitive
verbs identically to the oracle model, and performs almost as well with transitive verbs: The
oracle succeeds in identifying one more transitive verb, catch, as transitive. Our model per-
forms qualitatively better than the oracle in categorizing alternating verbs: The oracle has
a slightly higher tendency to overregularize the verbs that alternate infrequently. Inferring
the parameters of the input filter thus results in comparable accuracy in categorizing verbs
compared to a model that knows these parameters in advance.

4.3.2. Random filter parameters
If the values of the filter parameters are not important, then it would not be remarkable

that our joint inference model performs comparably to the oracle model. To test whether
the filter parameters actually matter, we ran 500 model simulations in which ε and δ were
fixed to randomly sampled values. Fig. 5 displays the model’s resulting accuracy in inferring
transitivity categories given each set of filter parameters, with ε along the x-axis and δ along
the y-axis. Lighter colors denote higher percentages of verbs categorized correctly. The gray
rectangle marks the range of filter parameter values that were considered highest probability
by our joint inference model—specifically, these are the values within one standard deviation
of the mean in the posterior probability distributions that our model inferred.

A visual scan of these plots shows that it is not trivial to infer filter parameters that will
result in high accuracy across all three transitivity categories. Higher values of ε yield higher
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Fig. 5. Accuracy (% verbs categorized correctly) by varying values of ε and δ.

accuracy on categorizing transitive and intransitive verbs, but lower accuracy for alternating
verbs. This is because the learner assumes there is more error in its transitive and intransi-
tive verb observations, and lowers the threshold for assigning verbs to those categories. The
learner thus assigns more verbs in its data set to the transitive and intransitive categories
rather than the alternating category. On the other hand, higher values of δ yield lower accu-
racy for transitive verbs, but higher accuracy for intransitive verbs. With higher values of δ,
the learner assumes that more of its errorful sentence observations contain mistaken direct
objects, rather than missing direct objects. The learner therefore expects more error in its
intransitive verb observations because there should be more intransitive verbs appearing with
spurious direct objects. This lowers the threshold for assigning verbs to the intransitive class,
resulting in higher accuracy for intransitives. Conversely, the learner expects less error in its
transitive verb observations because there should be fewer transitive verbs appearing with
missing direct objects. This raises the threshold for assigning verbs to the transitive class,
resulting in lower accuracy for transitives.

Thus, successfully categorizing verbs in all three transitivity classes requires inferring filter
parameters that fall within a somewhat narrow range. Our model performs comparably to
the best-case oracle model not merely because it infers an input filter, but because it infers
the best parameters for such a filter given our data set. Note that our model is not actually
optimizing for the accuracy values plotted in the graph in Fig. 5, because it is not trained on
our target classifications for verb transitivity. Instead, the model is optimizing for probability:
It is searching for the best joint-probability solution for verb transitivity categories and filter
parameters to explain the distributions in its data. The fact that our model performs well
with respect to our target verb classifications means that the parameter values that have high
probability under our model also result in good accuracy across all three verb classes.

4.3.3. No-filter baseline
Our model accurately categorizes verbs across transitivity categories by inferring appropri-

ate parameters for a filter on its input, and the model comparisons above show that the values
of these filter parameters are important. Models with grossly inappropriate filter parameters
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might have better accuracy on some verb classes, but do not perform as well across all three
transitivity categories. A special case of these models would be those where ε equals exactly
zero, representing zero probability of parsing errors: This produces models that do not have
an input filter at all. Comparing against a no-filter baseline tells us how much having a filter
matters in identifying verb transitivity.

As values of exactly zero were never randomly sampled in the simulations reported in
Fig. 5, we conducted an additional simulation setting ε to zero. The value of δ in this case
does not matter, because it is never used. Because every verb in our data set occurs some
but not all of the time with overt postverbal direct objects, and this no-filter model assumes
there are no parsing errors to filter out, it assigns every verb to the alternating category. It thus
categorizes 100% of the alternating verbs correctly, achieving 70% overall accuracy because
alternating verbs make up 70% of our data set. This overall accuracy is comparable to that
of our joint inference model (70% vs. 66%, p = .88 [n.s.], Fisher’s exact test). However, this
accuracy comes at the cost of failing to categorize any verbs as transitive or intransitive. Our
joint inference model performs substantially better in this regard, categorizing the majority of
transitive and intransitive verbs correctly. This demonstrates that an input filter is important
for differentiating alternating from nonalternating verbs.

4.3.4. Threshold comparisons
By inferring how frequently parsing errors occur in its sentence observations and the behav-

ior of those errors, our model is essentially inferring where to put thresholds for classifying
verbs as transitive or intransitive based on rates of observed direct objects. Another way of
evaluating our model’s performance is to compare it against a simple threshold model, which
classifies verbs as transitive if their percentage occurrence with overt direct objects falls above
a certain threshold, and as intransitive if their percentage occurrence with overt direct objects
falls below a certain threshold. There are several differences between this type of threshold
model and our model. Instead of setting hard thresholds that delineate each of these cate-
gories, our model uses soft thresholds that take into account how much data it has available
for any particular verb. And the primary advance in our model is that these soft thresholds
are learned: The model does not need to know the true distributions of transitive and intran-
sitive verbs in advance. If our model performs comparably to a model that knows the best
thresholds for classifying its data, this will give us another indication that it is learning
successfully.

To create these comparisons, we hand-fit the thresholds for classifying verbs by percent-
age overt direct objects to maximize accuracy on the model’s data set. Table 4 reports the
accuracy of the best-performing threshold models, compared to our joint inference model.
The thresholds that yielded the best performance overall were 87% and 4%: This model clas-
sifies verbs as transitive if they occur with direct objects above 87% of the time, and verbs
as intransitive if they occur with direct objects less than 4% of the time. This model was
able to achieve 80% accuracy overall. However, its performance on classifying transitive and
intransitive verbs was lower than for our joint inference model. Our second threshold com-
parison thus aimed to maximize overall accuracy without performing lower than our joint
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Table 4
Proportions of verbs categorized correctly: Best-performing threshold models

Model Transitive Intransitive Alternating Total Verbs

Joint inference 0.67 0.83 0.63 0.66
Thresholds of 87%, 4% 0.56 0.66 0.89 0.80
Thresholds of 83%, 5% 0.67 0.83 0.71 0.72
Thresholds of 76%, 15% 0.78 1.00 0.54 0.64

inference model on these two verb classes. Thresholds of 83% and 5% allowed the model
to achieve 72% overall accuracy, while achieving the same accuracy as our joint inference
model on transitive and intransitive verbs. Finally, our third threshold comparison attempted
to maximize overall accuracy while achieving higher accuracy than our joint inference model
on transitive and intransitive verbs. The best thresholds for this model were 76% and 15%.
This threshold model’s higher performance on transitive and intransitive verbs led to lower
accuracy on alternating verbs, and it only achieved 64% accuracy overall.

Although our joint model is not explicitly learning thresholds, we can use the filter model
parameters that our model inferred to estimate the soft thresholds it is effectively using.
Because ε is the inferred rate of error and δ is the inferred proportion of error that has direct
objects, ε × (1 − δ) gives an estimate of the rate of missing direct objects for transitive verbs.
Therefore, 1 − ε × (1 − δ) can be interpreted as a threshold of direct object rates above which
verbs are more likely classified as transitive. Conversely, ε × δ estimates the rate of spuri-
ous direct objects for intransitive verbs, and thus provides an estimate for a threshold below
which verbs are more likely classified as intransitive. When we estimate thresholds based on
the means of the distributions over ε and δ that our model inferred (0.19 and 0.25), we obtain
estimated thresholds of 85% and 5%. These are very close to the thresholds that yielded the
best performance in our threshold models.

In summary, these comparisons show that it is possible for a simple threshold model to
achieve higher overall accuracy than our joint inference model, if it is allowed to use thresh-
olds that are hand-fit to maximize performance on this data set. However, it is not trivial to
find hard thresholds that will ensure high performance across all three verb classes. In particu-
lar, the best-performing threshold models may have exceeded the overall accuracy of our joint
inference model, but they never exceeded our model’s accuracy on both transitive and intran-
sitive verbs without reducing overall accuracy. This shows us that the soft thresholds that our
model is essentially learning are appropriate to its data set: Our model performs just as well
as the best-performing threshold models on identifying these deterministic verb categories.
And this is true even though our model is not optimizing for accuracy. Unlike the threshold
models, our model does not have access to the target classifications for verb transitivity in
its data set, and cannot use those classifications to identify its thresholds. Instead, our model
learns where to put these soft thresholds by finding the best joint probability solution for verb
transitivity categories and the parameters for error in its data set.
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4.4. Discussion

Our model accurately categorizes 2/3 of the most frequent transitive, intransitive, and alter-
nating verbs in child-directed speech on the basis of their distributions with and without direct
objects, by learning to filter out sentences that were likely misparsed. This enables the learner
to avoid drawing faulty inferences about verb transitivity from nonbasic clause types that may
be mistaken for intransitive clauses. Our model performs comparably to an oracle model that
knows in advance the best parameters for a filter given its data set, and better than many
models with inappropriate filter parameters. It performs substantially better in categorizing
transitive and intransitive verbs than a baseline model that lacks an input filter altogether,
and performs twice as well overall as would be expected by chance. It also performs just as
well on categorizing transitive and intransitive verbs as the best-performing threshold models,
which categorize verbs using thresholds of direct object rates that are hand-fit to the data set.
These results demonstrate that an input filter both matters for verb transitivity learning, and
can be learned.

The model makes two types of mistakes in inferring verb categories. First, it is unable to
correctly categorize some transitive and intransitive verbs that behave differently than other
verbs in their category, such as catch, hold, wear, and wait. Further investigation is necessary
to determine whether these verbs pose difficulties for child learners as well. A second type of
mistake is overregularizing alternating verbs that alternate infrequently: The model prefers to
assign these verbs to the transitive and intransitive categories. This is an example of a learner
preferring a more deterministic analysis for probabilistic input, a tendency also found in child
learners in artificial language studies (Hudson Kam & Newport, 2009). The error-filtering
mechanism we present here could thus potentially provide a way to model other forms of
overregularization in learning.

There are three factors that contribute to our model’s ability to regularize its input. First, our
learner only needs to infer two parameters for its input filter: It makes the simple assumption
that there is a single value for ε and δ shared across all verbs, rather than having to infer
separate values for these parameters on a verb-by-verb basis. This allows the learner to use
distributions of direct objects across verbs to inform its estimates of how much error is present
in its sentence representations, and what that error looks like. If instead the learner expected a
different ε and δ for each verb, it would be difficult for the learner to tell whether a particular
rate of direct objects observed for a verb is due to a particular rate of transitivity alternation
(θ ) or due to a particular type of error that occurs only with that verb.

Intuitively, the expectation of a single shared value for these filter parameters corresponds
to the expectation that the noise process generating the error in the learner’s sentence repre-
sentations reflects some properties that are independent of the particular verbs in those sen-
tences. We believe that this expectation is not only a helpful simplification, but also a realistic
one. While our learner has no commitment to what this noise process is, in reality it reflects
the contribution of a variety of grammatical operations that the learner has misparsed. These
operations are due to independent properties of the grammar, and apply to entire classes of
verbs, not on a verb-by-verb basis. A more sophisticated learner might identify that there
are several noise processes at work, corresponding to these different grammatical properties,
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and use distributions of direct objects across verbs along with other surface features of these
sentences to infer a different ε and δ for each of these properties.

Additionally, the learner’s inference of its input filter is successful because it encounters a
wide variety of verb behavior in its data. Some verbs appear more deterministic than others:
They alternate less frequently, instead showing a stronger preference for solely transitive or
intransitive frames. Just as we used the true transitive and intransitive verbs in the data set to
arrive at our estimates of the true values for ε and δ, our learner can anchor its estimates of
these parameters by using the distributions of direct objects with the more deterministic verbs
it observes—those that it thinks are more likely to be transitive or intransitive. If instead all
verbs alternated at exactly the same rate, the learner would have difficulty knowing whether all
verbs have exactly the same transitivity properties, or whether there is additional error present.
This raises the question of whether all languages have enough variety in verb distributions to
enable successful learning by this filtering mechanism. Answering this question would require
testing this model with cross-linguistic corpora of child-directed speech, a future direction that
we discuss more in Section 6.

Finally, our learner’s ability to successfully regularize depends on having deterministic
categories in its hypothesis space: It expects that some verbs will only occur in transitive or
intransitive frames, and makes the simplifying assumption that these verbs are equally likely
a priori as verbs that can alternate. However, we might ask how realistic it is for a learner
to have this assumption, as in reality these categories will occur in different proportions in
the target language. Will a learner perform just as well if it expects transitive, intransitive, and
alternating verbs to occur with different frequency? We can answer this question by examining
the model’s performance when it has different prior beliefs about the probability of these verb
classes. If there is no difference in performance, then it suffices to merely have transitive or
intransitive categories in the learner’s hypothesis space, regardless of how they are weighted.
But if there is a difference in performance, this would show that the model’s prior beliefs
about the relative probabilities of transitivity classes matter for its ability to identify these
classes in its input.

5. Simulation 2

In Simulation 2, we ask whether our model will still accurately identify the transitivity
categories of verbs in child-directed speech if it does not expect transitive, intransitive, and
alternating verbs to be equally likely a priori. Instead of setting a uniform prior over transitiv-
ity categories (P(T (v)) in Eq. (A1)), we biased the model’s prior in favor of alternating verbs.
In Simulation 2a, we set the model’s prior to match the actual frequencies of verb transitivity
categories in its input: We set a prior probability of .70 for alternating verbs, .18 for transitive
verbs, and .12 for intransitive verbs, to match the proportion of the target verb categories in
our data set. This allows us to determine whether our learner’s verb transitivity inference is
affected if it expects to find verb categories in the same proportions as they will actually occur
in its input. In Simulation 2b, we skewed the model’s prior even more heavily in favor of the
alternating category: We set a prior probability of .90 for alternating verbs and .05 each for
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Fig. 6. Posterior distributions over verb categories (T ), Simulation 2a.

Table 5
Proportions of verbs categorized correctly, Simulations 1 and 2

Model Transitive Intransitive Alternating Total Verbs

Simulation 1 0.67 0.83 0.63 0.66
Simulation 2a 0.67 0.83 0.66 0.68
Simulation 2b 0.33 0.67 0.94 0.80

transitive and intransitive verbs. By giving the alternating category substantially greater prior
probability than the two deterministic verb categories, we can determine whether simply hav-
ing transitive and intransitive categories in the learner’s hypothesis space, in any proportion,
is sufficient for identifying them in its input.

5.1. Data

We tested our skewed-prior models on the same data set of transitive, intransitive, and
alternating verbs in child-directed speech that we prepared for Simulation 1.

5.2. Results

5.2.1. Verb transitivity inference
Fig. 6 displays the posterior probability distribution over transitivity categories that our

model inferred for each verb in Simulation 2a, when it expected 70% alternating verbs. Fig. 7
displays the distribution over transitivity categories inferred in Simulation 2b, when the model
expected 90% alternating verbs. Table 5 reports the proportion of verbs categorized correctly
in each transitivity category, compared to our original joint inference model in Simulation 1.

In Simulation 2a, the inferred distribution over transitivity categories is very similar to
the distribution inferred by our original model in Simulation 1. This model assigns highest
probability under the transitive category to the same six out of nine transitive verbs as our
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Fig. 7. Posterior distributions over verb categories (T ), Simulation 2b.

original model, and it assigns highest probability under the intransitive category to the same
five out of six intransitive verbs. The model also assigns highest probability under the alter-
nating category to 23 alternating verbs, and considers the remaining 12 to be either transitive
or intransitive, overregularizing at nearly the same rate as our original model. Thus, skewing
the model’s prior to expect alternating verbs 70% of the time resulted in very little difference
in verb categorization compared to our original model (68% vs. 66%, p = .99 [n.s.], Fisher’s
exact test).

In Simulation 2b, when we skewed the model’s prior to expect alternating verbs 90% of the
time, the model still achieved comparable accuracy to our original model (80% vs. 66%, p =
.54 [n.s.], Fisher’s exact test), but it inferred a different distribution over transitivity categories.
There are two general trends to observe in these data. First, even though this learner was
heavily biased against the transitive and intransitive categories, there are still several verbs
that it assigns high probability under these categories. To an extent, the model was able to
overcome its biased prior and identify some deterministic verbs in its input.

On the other hand, there are fewer verbs that this model assigns highest probability under
the transitive and intransitive categories, and more verbs that it assigns highest probability
under the alternating category. This results in higher accuracy for alternating verbs: This
model only overregularizes one of these verbs (pick) as transitive, and one of these verbs (sit)
as intransitive. Because alternating verbs are most frequent in the model’s data, the model’s
higher accuracy on alternating verbs leads to higher total accuracy as well. But the model
achieves lower accuracy for the transitive and intransitive categories. The model assigns high-
est probability to the transitive category for only three of the nine transitive verbs, and it
assigns highest probability to the intransitive category for only four of the six intransitive
verbs. Of the target transitive verbs, the model now considers throw, hit, and buy to be alter-
nating, along with catch, hold, and wear. Of the intransitive verbs, the model now consid-
ers work to be alternating along with wait. The model still performs better than chance in
categorizing alternating verbs, but it is no better than chance in categorizing transitive and
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Fig. 8. Posterior distributions over ε and δ, Simulation 2a.

Fig. 9. Posterior distributions over ε and δ, Simulation 2b.

intransitive verbs (alternating: p < .001, transitive: p = 1.0, intransitive: p < .10, binomial
tests).

In summary, we found comparable performance to our original model when we skewed the
model’s prior to expect transitive, intransitive, and alternating categories in the same propor-
tions as they actually occur in the input. However, when we biased the model more strongly
toward the alternating category, it identified transitive and intransitive verbs at a much lower
rate. The model’s rate of regularization was not affected by its bias against deterministic cat-
egories in Simulation 2a, but was affected by its stronger bias in Simulation 2b.

5.2.2. Filter parameter inference
Figs. 8 and 9 display the posterior probability distributions over ε and δ inferred by the

skewed-prior models. Although the shapes of these distributions are different, they are cen-
tered around similar values as those inferred by our original model in Simulation 1. The mean
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of the distribution over ε is 0.22 in Simulation 2a and 0.19 in Simulation 2b, compared to 0.19
for our original model. The mean of the distribution over δ is 0.23 in Simulation 2a and 0.21
in Simulation 2b, compared to 0.25 for our original model. Just as for our original model,
these values are close to the estimated true values of ε = 0.24 and δ = 0.18 in the model’s
data set, as calculated for Simulation 1.

Thus, changing the learner’s prior beliefs about how transitivity categories distribute in its
input did not substantially affect its inference about the parameters of its input filter: It still
inferred appropriate values for the frequency and behavior of error in its data. This result is
somewhat surprising: One may have expected that a prior heavily skewed in favor of alter-
nating verbs would lead the learner to filter less, as the learner’s data set appears to support
a large number of alternating verbs even with very low rates of filtering. Instead, the learner
filtered in approximately the same way as in previous simulations. This might be because
the learner is anchoring that inference on the distributions of the verbs that it considers to be
transitive and intransitive with the highest probability. Because both models in Simulation 2
did identify some transitive and intransitive verbs, and those verbs are a subset of the verbs
that our original model categorized as transitive and intransitive with highest probability, it is
not so surprising that all three models found similar parameters for their input filters. More-
over, inferring these parameters is what allowed the model in Simulation 2b to still categorize
some verbs as transitive and intransitive, despite its strong bias against those categories. With-
out a filter, the model would perform identically to the no-filter baseline in Simulation 1, and
categorize all verbs as alternating.

5.3. Model comparison: Random prior parameters

We found different results for the model’s verb transitivity inference depending on how
much we biased its prior against transitive and intransitive verbs. This raises the question:
Under what circumstances does the model’s prior substantially affect its ability to identify
verb transitivity, and under what circumstances does it not matter? That is, how much bias
against deterministic verb categories can our learner accommodate and still accurately iden-
tify those categories in its input?

To answer this question, we ran 500 model simulations in which the model’s prior probabil-
ities over transitive, intransitive, and alternating categories were fixed to randomly sampled
values that summed to 1. Because the models in Simulations 1 and 2 inferred similar val-
ues for ε and δ, for ease of computation we set these filter parameters to the mean values
of ε = 0.20 and δ = 0.23 that were inferred in those previous simulations. Fig. 10 plots the
learner’s accuracy in categorizing transitive, intransitive, and alternating verbs as its prior
becomes more skewed toward the alternating category. The x-axis displays varying values of
the model’s prior on alternating verbs, and the y-axis displays the average percentage of verbs
in each class categorized correctly at each of those values. A curve of best fit is plotted using
a running LOESS regression (local nonparametric regression; Cleveland and Devlin (1988)).

This plot shows that the learner’s accuracy in verb categorization remains steady across a
large range of prior parameter values. When its prior probability on alternating verbs is less
than approximately .75, the learner’s performance is fairly consistent: It correctly categorizes



L. Perkins, N.H. Feldman, J. Lidz / Cognitive Science 46 (2022) 29 of 43

Fig. 10. Accuracy (% verbs categorized correctly) by prior probability on alternating verbs.

on average 6/9 transitive verbs, 5/6 intransitive verbs, and 22/35 alternating verbs. Perfor-
mance only begins to vary when its prior probability on alternating verbs is pushed above
.75. Above this value, its accuracy on categorizing transitive and intransitive verbs declines
and its accuracy on alternating verbs increases, as it categorizes fewer verbs as transitive and
intransitive. Thus, it appears that there is a large range of bias toward or against determinis-
tic verb categories that our learner can accommodate without affecting its ability to identify
those verbs in its input. It only begins to lose that ability when its bias against deterministic
categories becomes extreme.

5.4. Discussion

While Simulation 1 shows that an appropriate input filter is important for learning verb
transitivity, Simulation 2 shows that learning is also affected to some extent by the learner’s
prior beliefs about the relative frequency of transitivity categories in its input. Skewing the
model’s prior to expect verb transitivity categories in the same proportions that it would actu-
ally encounter in its input did not affect its performance; its accuracy in categorizing transi-
tive, intransitive, and alternating verbs was nearly identical to our original model. However,
skewing the model’s prior more extremely in favor of alternating verbs resulted in different
performance. With a heavy bias against deterministic categories, the model overregularized
alternating verbs much less, leading to higher accuracy on that verb class and higher accuracy
overall. But the model did not perform above chance levels at identifying the target transitive
and intransitive verbs.

This behavior reveals two properties of our learner. First, it did not matter whether the
learner expected transitive, intransitive, and alternating verbs to be equally likely a priori, or
whether it expected them to occur in the same proportions as they actually do occur in child-
directed English. In fact, it appears that our model’s performance would be very similar across
a large range of prior parameters. It is desirable that our learner can succeed at identifying verb
transitivity without prior expectations that match the proportions of transitivity categories
in the input—this will allow learners to be somewhat flexible in learning different target
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languages, even if transitivity categories distribute differently in those languages compared to
English or compared to the learners’ own priors. However, there is a point where the learner’s
prior does exert an influence on its verb categorization. When it was extremely biased to
expect alternating verbs, our learner was not able to successfully categorize transitive verbs.
This means that merely having deterministic categories in the learner’s hypothesis space, in
any proportion, does not suffice for accurately identifying those categories in the learner’s
input. A learner must give those categories sufficient prior weight in order to find them.

Second, even a learner strongly biased in favor of alternating verbs was able to infer appro-
priate parameters for filtering sentences that were likely misparsed. This allowed it to identify
at least some of the transitive and intransitive verbs in its input, and to avoid drawing the
mistaken inference that all verbs are alternating. This filtering was less effective for a learner
with an extreme bias against the transitive and intransitive categories: Its bias hampered its
ability to detect the signals of these deterministic categories in the data that it let through
its filter. However, the fact that the learner inferred appropriate filter parameters even in this
case points toward a promising direction for future research. A more sophisticated learner
might incrementally update its prior over transitivity categories given more evidence about
their distribution in its input, inferring the parameters of that distribution in a hierarchical
model. In this case, the learner’s correct initial estimates of its input filter parameters could
be very helpful in identifying the right distribution over transitivity categories. Thus, even if a
learner’s prior beliefs about transitivity are grossly inaccurate, inferring an input filter might
allow it to appropriately adjust those beliefs as it learns more about its language.

6. General discussion

Learning in any domain depends on how the data for learning are represented. To the degree
that representations of the input change over development, either due to learning or matura-
tion, this will have an impact on how learners form categories and generalize from their data.
We examine this phenomenon in the domain of language acquisition, focusing on an apparent
paradox concerning the input to argument structure learning.

Learners use verbs’ distributions in transitive and intransitive clauses to draw inferences
about their argument-taking properties and meanings. Nonbasic clauses interfere with these
inferences because young learners might not recognize when arguments of the clause have
been displaced from their canonical positions, and therefore might not represent clause tran-
sitivity when it is present. We have followed a proposal that children need to filter non-
basic clauses out of the data they use for verb learning (Lidz & Gleitman, 2004a, 2004b;
Pinker, 1984, 1989), but this creates an apparent paradox. Identifying the structure of non-
basic clauses—in which transformations have applied to displace clause arguments—would
seem to depend on knowing some of the core argument structure properties of the language,
and yet learners need to filter nonbasic clauses in order to bootstrap their learning of those
very properties. Empirical findings indicate that this paradox is not merely hypothetical, but
is faced by learners prior to their second birthdays. Experimental work suggests that English-
learning 1-year-olds begin acquiring basic argument structure slightly before they learn to
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identify displaced arguments in common nonbasic clause types (Gagliardi et al., 2016; Jin &
Fisher, 2014; Lidz et al., 2017; Perkins, 2019; Perkins & Lidz, 2020, 2021; Seidl et al., 2003).

We offer a new solution to this paradox, which does not require the learner to detect any
direct or indirect signals to nonbasicness (Gleitman, 1990; Pinker, 1984, 1989). We instantiate
a learner that considers the possibility that it occasionally parses sentences erroneously. The
learner infers how to filter out errors from the data it uses for verb learning, without knowing
where those errors came from. It observes only verbs’ distributions with and without direct
objects, and does not track any additional syntactic or nonsyntactic cues that might correlate
with nonbasicness—to this learner, a wh-object question is indistinguishable from an intran-
sitive clause. Nonetheless, our model successfully infers appropriate parameters for filtering
its input in order to identify the transitivity of the majority of frequent verbs in child-directed
speech. We therefore demonstrate that it is possible for a learner to filter nonbasic clauses
for verb learning, without knowing which clauses are nonbasic and without needing to infer
what the features of nonbasic clauses are. This provides an account for how the first attested
steps of verb argument structure learning in infancy can take place even as nonbasic clause
acquisition is still developing.

More broadly, by introducing a mechanism for a learner to filter erroneous parses of its
input, our model helps answer what has remained an open question in bootstrapping and verb
learning: how learners manage to avoid drawing faulty inferences about grammar and mean-
ing, at stages of development when they lack the linguistic knowledge to arrive at veridical
syntactic representations of sentences they hear. This ability has been traditionally assumed
by theories of both syntactic and semantic bootstrapping (Gleitman, 1990; Lidz & Gleitman,
2004a, 2004b; Pinker, 1984, 1989), and has been presupposed by previous computational
models of verb learning (Alishahi & Stevenson, 2008; Barak et al., 2014; Parisien & Steven-
son, 2010; Perfors et al., 2010). These previous models assume that learners can veridically
represent the arguments in a clause, and use those syntactic percepts to identify verbs’ core
argument-taking properties and their ability to productively generalize across different argu-
ment structure alternations. Our model addresses the question of how this process begins. We
propose that a learner equipped with a filtering mechanism can still identify a verb’s basic
argument structure, even before that learner can reliably identify all of the arguments in sen-
tences she hears.

Our case study focuses on only one argument structure property—transitivity—but one that
is arguably at the core of early grammar learning. The categories “subject” and “object” form
the core arguments of the clause, providing the skeleton for infants’ earliest clause structure
representations. Furthermore, transitivity is robustly correlated with clause meaning cross-
linguistically, making it a particularly useful cue for early verb learning (Fisher et al., 2018,
2019; Gleitman, 1990; Hopper & Thompson, 1980; Lidz & Gleitman, 2004a; Naigles, 1990).
Although other argument structures and alternations, such as datives, have received consider-
able attention in prior literature (Baker, 1979; Barak et al., 2014; Parisien & Stevenson, 2010;
Perfors et al., 2010; Pinker, 1989), many of these alternations involve more language-specific
and idiosyncratic form-meaning relations. These alternations are thus less central to the core
problem that syntactic and semantic bootstrapping proposed to solve: how to initially break
into a grammatical system whose abstract representations can be realized as many different
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surface forms. At the onset of learning, principled correlations between syntactic and concep-
tual categories, such as those that exist between transitivity and causative meanings, might
provide the learner with the foothold needed to bootstrap into this system.

Modeling the initial steps of argument structure acquisition in this way limits the learner to
only consider the set of verbs in the input that can be classified as transitive, intransitive, or
alternating. Our model did not attempt to classify verbs with other types of argument-taking
behaviors, because doing so would require expanding the learner’s hypothesis space to include
the full set of possible argument structure classes in the language. We believe that restricting
the learner’s data at this stage of learning may be a helpful simplification. This allows a
young learner to focus on the portion of the input—the subset of transitive, intransitive, and
alternating action verbs—that provides the best signal for transitivity acquisition and supports
the most robust bootstrapping inferences between syntax and meaning cross-linguistically.
In making this simplification, we follow the majority of the previous infant bootstrapping
literature, which has focused on these verb classes for similar reasons (see Fisher et al., 2018,
2019).

But considering a wider range of data at this stage of learning might be possible for a learner
with a different goal.8 For instance, a learner whose goal is merely to characterize verbs’
distributions in transitive frames, as opposed to any other type of structure, could consider
verbs like start or want, which can take both direct objects and clausal or verbal complements.
This would also be possible for a learner whose goal is not to form discrete transitivity classes,
but merely to infer the transitivity rates for any given verb. While our learner assumes that
there exist some verbs (e.g., fix) that deterministically require a direct object and other verbs
that do not (e.g., eat), some theories propose no such categorical difference between these
verb types: Verbs can occur in various syntactic frames at varying rates (for example, Borer,
1994, 2003; Goldberg, 1995).

However, it may be useful for a learner to hypothesize deterministic transitivity categories
at this stage of grammar acquisition, even under approaches where such categories do not
ultimately characterize the adult grammar. Having deterministic categories in the hypothesis
space predisposes the learner to expect more regular uses of verbs with direct objects, pro-
viding an impetus to filter when presented with noisy data. Without a regularization bias, a
learner will have no a priori reason to expect that some verbs will have direct object rates
close to zero or one. Indeed, in informal simulations, we found that this type of unbiased
model filters its data less, and infers rates of direct objects that more closely mirror the noisy
distributions in its data. That is, even if a learner begins with the assumption that it might
be misparsing its data, without the expectation of deterministic categories, it lacks guidance
about what it could be misparsing: Why filter in a way that pushes direct object rates closer to
zero or one, rather than, say, .5? Some form of bias in the learner’s hypothesis space is needed
for a learner to identify regularity in the presence of noise.

Further work is needed to determine whether our implementation of this regularization
bias, in terms of deterministic verb categories, provides the best model for children’s initial
knowledge and learning in comparison to other alternatives. For instance, it is possible that a
softer version of this bias could be implemented by skewing the model’s prior over verb alter-
nation rates, without assuming discrete verb classes.9 The current empirical data showing
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emerging transitivity knowledge in infancy do not tell us the precise nature of infants’ tran-
sitivity representations at this stage of development (Fisher et al., 2018, 2019; Jin & Fisher,
2014; Lidz et al., 2017; Perkins, 2019; Perkins & Lidz, 2021). In particular, it is still an
open question whether 1-year-old infants assume discrete verb transitivity classes, and if so,
how their categorization of individual verbs at this age compares to that of our model. Thus,
our findings provide an invitation for additional computational and behavioral work that will
speak to the question of how best to model the transitivity hypotheses that children bring to
this learning task.

Our model diverges from previous computational models of bootstrapping (Abend et al.,
2017; Kwiatkowski et al., 2012; Maurits et al., 2009) by learning only from distributional
data: Our learner identifies verb transitivity only by using rates of overt direct objects, and
does not have access to any additional syntactic or nonsyntactic features of the sentences or
the discourse environment. By limiting our learner’s data in this way, we do not imply that
real-life learning proceeds only from this type of distributional information. On the contrary,
it is likely that children make simultaneous use of a much fuller set of information in inferring
a grammar, including conceptual representations of the extra-linguistic contexts of the sen-
tences they hear. But by investigating how much can be learned solely from verbs’ syntactic
distributions, we are testing the viability of the proposal that infants can use syntactic infor-
mation to draw helpful generalizations even if they do not know which event in the world a
particular sentence describes (Gleitman, 1990).

This issue has not been fully examined in prior bootstrapping models, which assume that
learners begin by accessing the exact meaning (or set of possible exact meanings) of a sen-
tence, represented under a structure that is homomorphic to the syntactic structure (Abend
et al., 2017; Kwiatkowski et al., 2012; Maurits et al., 2009). Given access to this full concep-
tual representation, or instead to the full syntactic representation of a sentence, these models
show that it is simple to learn how to convert from one representation to the other. This
is because the learner’s meaning representation is in a form that encodes all and only the
predicate–argument relations in the syntactic representation of the sentence, and there is an
assumption built into the learner that those two representations will mirror each other. The
bootstrapping task thus reduces to the problem of identifying which lexical items express
which predicates and arguments in the learner’s conceptual structure. Given this information,
the learner can infer the syntactic representation of a sentence by reading off of its structured
conceptual representation, and vice versa.

But bootstrapping is not so simple if learners only have access to approximations of these
representations, or if conceptual structures encode more relations than those expressed in the
sentence’s argument structure. Even if children can perceive events and event relations in the
world in the same way as adults do, it is not straightforward to identify which event relations
a sentence expresses solely from its context of use (Gillette, Gleitman, Gleitman, & Lederer,
1999; Gleitman, 1990). And when we consider the wide range of syntactic relations that
might be instantiated in a particular sentence, including the various nonlocal dependencies
found in nonbasic clauses, it seems even less straightforward for the child’s nonlinguistic
perception of the world to yield a meaning in a form that is homomorphic to the syntax of
that sentence. Here, we ask whether learning can still succeed in cases where a child might
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not have access to conceptual and syntactic representations that mirror each other in their
structure. If either of these representations is approximate or incomplete, then children must
use whatever partial information might be useful in one domain—syntax or meaning—as
probabilistic evidence for drawing inferences about the other domain. We show how learners
might accommodate error in their syntactic percepts, such that those percepts are still useful
as evidence for drawing further generalizations about their language.

Crucially, an input filtering mechanism like the one we propose can flexibly adapt over the
course of a learner’s development. As a learner gains more knowledge of the grammar of her
language, her syntactic percepts will change: She will be learning from more complete and
more accurate parses of the sentences she hears. This means that the error in her syntactic
percepts will also reduce over time, and she will not need to filter as much of her data for
learning. In our case, our model is learning from data that reflect the parses of an immature
learner at a particular stage of development: one who cannot identify objects when they are
realized in noncanonical positions, and who mistakes certain NP adjuncts for arguments.
These data do not veridically reflect the distributions of verbs with direct objects in the actual
input to the learner. Thus, the learner is not inferring filter parameters to fit its actual input—
instead, the learner is inferring filter parameters to fit its erroneous representations of that
input. A more mature learner who has learned to identify argument displacement in English
will have access to a different data set, one that has a lower rate of error. This more mature
learner would identify different parameters for filtering its data in order to learn more about
its grammar.

Our model is merely a starting point, beginning with one corner of English argument struc-
ture. But having presented a proof of concept that our filtering solution is possible, we can
ask how far it could generalize. In future work, we aim to test whether this model could
be extended to languages with freer word order or rampant argument-drop. These linguistic
properties may make it difficult for learners to identify clause transitivity even in simple,
active, declarative clauses. For example, the relatively free word order of Japanese com-
pared to English means that word order is less helpful for identifying subjects and objects
in a clause, and learners must use language-specific case morphology instead; furthermore,
the ability of Japanese speakers to freely drop the subject and/or object of a clause if it is
salient in the discourse means that a learner must use discourse cues to recognize when silent
arguments are present. For these reasons, Japanese and other languages with some of these
properties, like Mandarin and Korean, are potentially problematic for syntactic bootstrapping
strategies that rely on learners accurately identifying transitive verbs (Lee & Naigles, 2005,
2008), but see Fisher et al. (2019) and Suzuki and Kobayashi (2017) for evidence that learn-
ers do nonetheless succeed. If our model can learn appropriate parameters for filtering out the
relatively higher rate of potentially misleading data in languages like Japanese, this may help
clarify how syntactic bootstrapping is possible in these languages.

An additional question for future work is how children learn to identify the structure of non-
basic clauses in their language. How do learners identify which transformations are present
in sentences that may have initially been parsed in error? Following Gagliardi et al. (2016)
and Stromswold (1995), Perkins (2019) argues that verb transitivity may be an important first
step: If a learner expects a particular argument for a verb and encounters sentences where that
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argument does not appear in its canonical position, the learner may be compelled to examine
those sentences to determine the cause of the missing argument. Thus, a strategy of identify-
ing sentences that were likely parsed in error may help learners not only filter their input for
learning verb transitivity, but also eventually learn how the target language realizes various
grammatical transformations.

More broadly, we might ask whether this filtering mechanism could generalize beyond
verb transitivity learning, to other cases in language acquisition where learners must ignore
misleading data in order to draw correct inferences about their language. For example, prior
work has proposed that some form of input filtering is helpful in other cases where noise
masks regularities that are present in the learner’s input: for instance, in the identification of
vowel categories (Adriaans & Swingley, 2012), and in acquiring the correct constraints on
the antecedent of anaphoric one in English (Pearl & Lidz, 2009). Filtering may also provide
a mechanism for understanding why young learners tend more strongly than adults to regu-
larize probabilistic input in artificial language studies (Hudson Kam & Newport, 2009), and
how learners can acquire correct generalizations about their first language from noisy input
by second-language speakers (Schneider, Perkins, & Feldman, 2020; Singleton & Newport,
2004). When our learner expects that noise might be masking regularities in its data, filter-
ing allows it to identify those regularities, and even to overregularize in some cases. As the
current work does not tell us precisely how much noise this filtering mechanism would be
able to tolerate, an important direction for future work would be to determine when filtering
can enable successful regularization and when additional learning mechanisms are needed.
A combination of determinism in children’s hypothesis spaces, along with the expectation of
error in their input representations, may help advance our understanding of when children
draw deterministic generalizations about their language and how they draw the right ones.

Finally, the filtering mechanism we propose offers a new perspective on the use of data in
learning. Typically-developing children acquire a language on the basis of only a few years’
worth of linguistic input—far exceeding the ability of our most advanced language process-
ing technologies, and using only a fraction of the data that is necessary to train those systems.
Despite the received wisdom that more data is always better, our case study suggests that
children’s success may be in part due to their ability to be strategic about what data to learn
from. By suggesting an advantage to learning from smaller data, this filtering mechanism is
similar in some ways to Newport’s (1990) “Less is More” hypothesis, under which young
children’s language learning is facilitated by extralinguistic cognitive limitations that restrict
the amount of data they can process. But our model’s filter differs in an crucial way: instead
of being a by-product of external processing limitations, this filter is an integral part of the
learning mechanism, arising from the learner’s assumption of a noisy relationship between
its data and the hypotheses it is evaluating. Under our approach, learners jointly infer the
regularities underlying a particular phenomenon in their input, and what data to use in order
to best identify those regularities. This type of input filtering is with respect to a specific
learning goal—a child attempting to acquire a different phenomenon might filter her input
in an entirely different way—and therefore provides more flexibility than an approach that
imposes a hard constraint on the amount of data a learner can access. This flexibility invites
further investigation into how broadly this filtering mechanism might generalize beyond
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language learning: It is possible that we might find strategic input filtering in learning in
many other domains in which learners must generalize from noisy or unreliable data. Under-
standing when learners choose to learn from their input, and when they choose not to learn,
may help illuminate why learning in these cases can be so remarkably successful.
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Notes

1 Here we abstract away from the precise characterization of these correspondence rela-
tions (also known as “linking principles”), a topic with a substantial literature (for exam-
ple, Baker, 1997; Dowty, 1991; Grimshaw, 1990; Jackendoff, 1972; Levin & Rappa-
port Hovav, 2005; Pearl & Sprouse, 2019; Williams, 2015).

2 We note that these data do not tell us whether infants at this age represent subjects and
objects within a hierarchical clause structure, or merely encode their linear order (Fisher,
1996).

3 This problem is not unique to transformation-based grammatical theories. Under theo-
ries in which transitive clauses, wh-object questions, and passives are separate “construc-
tions” (Fillmore, Kay, & O’Connor, 1988; Goldberg, 1995; Langacker, 1999), the learner
must still ultimately recognize that only verbs that occur in transitives can also occur in
wh-object questions and passives. Whether this is encoded transformationally or via a
construction hierarchy, the same logical problem holds.

4 This problem is also not solved under the hypothesis that verb meanings play a role in
acquiring verb alternation properties (Pinker, 1989). A learner who believes that a verb
describes an event with an agent and a patient still cannot be certain whether the verb
will syntactically alternate (although subtler conceptual correlates may be informative;
see Resnik (1996)). Eatings always involve an eater and a thing eaten, and fixings always
involve a fixer and a thing fixed, but eat can freely drop its object and fix cannot. This
means that a learner who fails to recognize the displaced objects in (4-6) now has a
choice: If she knows that fixings always involve something fixed, she might be suspicious
that these sentences have objects after all, or she might conclude that fix allows object-
drop just like eat.

5 Code for running these simulations is available at https://github.com/perkinsl/noise-filter.

https://github.com/perkinsl/noise-filter
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6 We interpret these statistical comparisons for individual verb classes with caution given
the small numbers of transitive and intransitive verbs in the data set.

7 Note that four out of these five verbs are manner of motion verbs (run, swim, walk, jump),
and their transitive uses do not typically involve agent–patient relations (e.g., walk a mile,
swim the channel, jump the turnstile). Even when a causative meaning may be used, as
in the case of jump the horse, this implies less direct causation than a typical alternating
verb such as break or open. So, even though our conservative target categories treated
these verbs as alternating, in some ways they behave more typically like intransitives.

8 We thank Lisa Pearl for this suggestion.
9 That is, an alternative approach could manipulate the model’s Beta prior over θ , fol-

lowing the approach to regularization taken in, for example, Reali and Griffiths (2009),
Culbertson and Smolensky (2012), and Culbertson, Smolensky, and Wilson (2013).
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Appendix: Details of Gibbs Sampling

We use Gibbs sampling (Geman & Geman, 1984) to jointly infer T , ε, and δ, integrating over
θ and summing over e, with Metropolis-Hastings (Hastings, 1970) proposals for ε and δ.

We begin by randomly initializing ε and δ, and sampling values of T for each verb given
values for those input filter parameters. From observations of a verb with and without direct
objects, the model determines which value of T was most likely to have generated those
observations. For k(v) direct objects in n(v) sentences containing verb v, we use Bayes’ Rule
to compute the posterior probability of each value for T (v),

P(T (v)|k(v), ε, δ) = P(k(v)|T (v), ε, δ)P(T (v) )∑
T ′(v) P(k(v)|T ′(v), ε, δ)P(T ′(v) )

. (A1)

Bayes’ Rule tells us that the posterior probability of a particular value of T given k(v) and
the other model parameters is proportional to the likelihood, the probability of k(v) given that
value of T and those parameters, and the prior, the probability of T before seeing any data.
We assume that T is independent of ε and δ. In Simulation 1, we set a uniform prior over T ,
which is adjusted to reflect different biases about the proportions of transitivity categories in
Simulation 2.

To calculate the likelihood, we must sum over e. This sum is intractable, but because all of
the values of e for the same verb and the same direct object status are exchangeable, we make
the computation more tractable by simply considering how many errors were generated for
sentences with and without direct objects for a particular verb. We divide the k(v) observed
direct objects for a verb into k(v)

1 direct objects that were observed accurately and k(v)
0 direct

objects that were observed in error. The total n(v) observations for verb v are likewise divided
into n(v)

1 accurate observations and n(v)
0 errorful observations. We then calculate the likelihood
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by marginalizing over n(v)
1 and k(v)

1 , again assuming independence among T , ε, and δ,

p(k(v)|T (v), ε, δ) =
n(v)∑

n(v)
1 =0

⎡
⎣ k(v)∑

k(v)
1 =0

p
(

k(v)|k(v)
1 , n(v)

1 , δ
)

p
(

k(v)
1 |n(v)

1 , T (v)
)⎤
⎦p

(
n(v)

1 |ε
)
. (A2)

The first term in the inner sum is equivalent to p(k(v)
0 |n(v)

0 , δ), assuming we know n(v), the
total number of observations for a particular verb. This is the probability of observing k(v)

0

errorful direct objects out of n(v)
0 errorful observations, which follows a binomial distribution

with parameter δ,

p
(

k(v)|k(v)
1 , n(v)

1 , δ
)

= p
(

k(v)
0 |n(v)

0 , δ
)

=
{(n(v)

0

k(v)
0

)
δk(v)

0 (1 − δ)n(v)
0 −k(v)

0 if k(v)
0 ≤ n(v)

0

0 otherwise.
(A3)

The second term in the inner sum in (A2) is the probability of observing k(v)
1 accurate direct

objects out of n(v)
1 accurate observations, which follows a binomial distribution with parameter

θ (v),

p
(

k(v)
1 |n(v)

1 , T (v)
)

=
{(n(v)

1

k(v)
1

)
(θ (v) )k(v)

1 (1 − θ (v) )n(v)
1 −k(v)

1 if k(v)
1 ≤ n(v)

1

0 otherwise.
(A4)

Recall that θ (v) = 1 for the transitive category of T , and θ (v) = 0 for the intransitive cate-
gory of T . For the alternating verb category, θ (v) is unknown, so we integrate over all possible
values of θ (v) to obtain 1

n(v)
1 +1

.

The last term in (A2) is the probability of observing n(v)
1 accurate observations out of the

total n(v) observations for verb v, which follows a binomial distribution with parameter 1 − ε,

p
(

n(v)
1 |ε

)
=

(
n(v)

n(v)
1

)
(1 − ε)n(v)

1 (ε)n(v)−n(v)
1 . (A5)

After sampling values for T for each verb in the data set, we then sample values for ε and δ.
If T denotes the set of values T (1), T (2), . . . , T (V ), and k denotes the full set of observations of
direct objects k(1), k(2), . . . , k(V ) for all V verbs in the input, we can define functions propor-
tional to the posterior distributions on ε and δ, f (ε) ∝ p(ε|T, k, δ) and g(δ) ∝ p(δ|T, k, ε),
as

f (ε) = p(k|T, ε, δ)p(ε), (A6)

g(δ) = p(k|T, ε, δ)p(δ), (A7)

where the likelihood p(k|T, ε, δ) is the product over all verbs v of p(k(v)|T (v), ε, δ), as calcu-
lated in (A2).

Within the Gibbs sampler, we resample ε using 10 iterations of a Metropolis-Hastings
algorithm. We begin by randomly initializing ε. At each iteration, we propose a new value ε′,
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sampled from the proposal distribution Q(ε′|ε) = N (ε, 0.25). Because the proposal distribu-
tion is symmetric, this new value is accepted with probability

A = min

(
f (ε′)
f (ε)

, 1

)
. (A8)

If the new value ε′ has higher probability given T , k, and δ under Eq. (A6), it is accepted. If
it has lower probability under Eq. (A6), it is accepted at a rate corresponding to the ratio of
its probability and the probability of the old value of ε. After sampling ε, we resample δ with
10 iterations of Metropolis-Hastings. The proposal and acceptance functions are analogous to
those for ε.

We ran multiple chains from different starting points to test convergence of T , ε, and δ. For
the simulations reported here, we ran 1,000 iterations of Gibbs sampling. We took every 10th
value from the last 500 iterations as samples from the posterior distribution over T , ε, and δ.


