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Abstract

Speech perception involves storing and integrating sequentially
presented items. Recent work in cognitive neuroscience has
identified temporal and contextual characteristics in humans’
neural encoding of speech that may facilitate this temporal
processing. In this study, we simulated similar analyses with
representations extracted from a computational model that was
trained on unlabelled speech with the learning objective of pre-
dicting upcoming acoustics. Our simulations revealed temporal
dynamics similar to those in brain signals, implying that these
properties can arise without linguistic knowledge. Another
property shared between brains and the model is that the encod-
ing patterns of phonemes support some degree of cross-context
generalization. However, we found evidence that the effective-
ness of these generalizations depends on the specific contexts,
which suggests that this analysis alone is insufficient to support
the presence of context-invariant encoding.

Keywords: speech processing; speech representations; compu-
tational model

Introduction

Many perceptual processes involve tracking items that occur
sequentially and integrating them to extract information. One
such process is speech perception, where successive phones’,
or speech sounds, are stored and combined before they are
mapped onto lexical items. Although this process is typi-
cally effortless for human listeners, it is a non-trivial task
because neighboring phones blend into each other due to co-
articulation, and the same set of phonemes can form multiple
words (e.g. cats, task). There has been considerable recent
interest in studying the neural representations that support this
process (Gwilliams, King, Marantz, & Poeppel, 2022; Kha-
lighinejad, Cruzatto Da Silva, & Mesgarani, 2017; Mesgarani,
Cheung, Johnson, & Chang, 2014; Yi, Leonard, & Chang,
2019; Hamilton & Huth, 2020).

Here we use computational modeling to better understand
the representations that support listeners’ temporal processing
of speech. Our focus is on a recent study by Gwilliams et
al. (2022) that investigated this question by analyzing MEG
recordings from human listeners. Gwilliams et al. replicated
previous findings that the brain processes multiple phones
simultaneously, showing that brains simultaneously encode
at least three consecutive phones. They further showed that
the encoding patterns of each phone are not static, but rather

I'We use “phones’ to refer to audio segments that form the basic
units of speech, which are instantiations of the abstract “phoneme”
categories.
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evolve over time. Additionally, they explored the extent to
which each phone is encoded independently to its neighboring
phones, and concluded that at least some part of the phone
encoding is context-invariant. These characteristics of neural
speech processing are likely to play a role in supporting human
listeners’ ability to integrate information across time, but it is
not known how or why these characteristics arise.

Our simulations build on Gwilliams et al.’s findings by per-
forming similar analyses on representations extracted from a
self-supervised computational model that is trained to predict
the upcoming acoustics based on context. We find that, like
humans, the model processes multiple phones simultaneously
and its representations of those phones evolve over time. More-
over, like humans, both our model and an acoustic baseline
show at least some context invariance. This suggests that many
of the properties of speech representations that Gwilliams et al.
found can arise through predictive learning, without requiring
prior linguistic knowledge. We further identify properties in
our models’ representations that appear to deviate from those
found in humans, and thus may not be direct representational
consequences of the prediction task. As a whole, our work
illustrates how modern architectures from speech technology
can help provide insight into the factors that shape speech
representations in human listeners.

Method

This work consists of three simulations that tested (1) the win-
dow of phonetic decodability (2) the time course of phone
encoding and (3) cross-context generalization of phonetic de-
coders. Fundamental to all three simulations is training de-
coders to track phonetic encodings in representations from a
predictive speech model. In this section, we first introduce
the model and the corpus we used to extract representations
and acoustic features to be examined in our simulations. Then
we describe how we decoded phonetic categories from the
representations. The analysis procedures and the results are
grouped by simulation and presented following this section.

Model and representations

In this work, we used a recurrent neural network model that
was pre-trained with self-supervised learning (SSL), meaning
that it learns just by being exposed to raw input data (in this
case speech audio), with no external training signal or anno-
tated labels. SSL models have become widespread as repre-



sentation learning methods in machine learning of speech and
language (Devlin, Chang, Lee, & Toutanova, 2019; Baevski,
Zhou, Mohamed, & Auli, 2020; Hsu et al., 2021), and have
also been evaluated as models of speech perception in recent
years (Millet & Dunbar, 2022; Millet et al., 2022; Tuckute,
Feather, Boebinger, & McDermott, 2023).

The SSL model we used is based on the contrastive predic-
tive coding (CPC) framework (Oord, Li, & Vinyals, 2018),
and uses cognitively plausible mechanisms (prediction and
error-driven learning) to learn a 512-dimensional vector repre-
sentation for each 10ms frame (time slice) of the input. The
model’s learning objective is to find representations that can
be effectively used to predict the representations for upcoming
frames (specifically, the next 12 frames, or 120ms of speech).

The model was implemented and trained by Nguyen et al.
(2020), and consists of 3 LSTM layers on top of 5 convolu-
tional layers, all trained jointly. The model was trained on
6000 hours of audiobooks from the “clean-light” subset of the
Librilight corpus (Kahn et al., 2020).

In our simulations, we applied our analyses to CPC repre-
sentations and acoustic features extracted from a distinct set of
audiobooks, the “dev-clean” subset of Librispeech (Panayotov,
Chen, Povey, & Khudanpur, 2015). The subset contains 8
minutes of read speech from 40 speakers, of which there are
21 females and 19 males. We obtained time-aligned phoneme
labels of the audio through forced alignment with the transcrip-
tions. 39 phonemes occurred in the transcriptions, of which
there are 15 vowels and 24 consonants.

We extracted the output of the second LSTM layer as the
model’s representations, since that layer gave the best per-
formance in phone classification (Nguyen et al., 2020). For
acoustic features, 40-dimensional logmel spectrogram features
were extracted using the torchaudio package?.

Decoding for phonetic information

To analyze the representations learned by the CPC model,
we fit ridge regression models to identify the phoneme label
of each representation vector, and computed the accuracy of
these decoders on a held-out test set. The choice of training
and testing data varies by simulation, according to the specific
question under investigation. We consider phonetic informa-
tion to be represented if the decoding accuracy is higher than
the majority class baseline (most common phoneme label).
The decoders are implemented using the ridge regression func-
tion from the sklearn package with the default regularisation
parameter. Phone boundaries and labels are obtained through
forced alignment with an acoustic model created according to
the official Kaldi recipe for LibriSpeech data?.

Gwilliams et al. pointed out that phonetic information is
partly confounded with low-level acoustic properties such as
amplitude and pitch, and they therefore preprocessed their
neural recordings using a linear model to regress out these two
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factors. For CPC representations, we performed preprocessing
by training two ridge regression models to predict amplitude
and pitch values from each representation, and regressing out
the variance in the direction given by the regressors’ coeffi-
cients. While this operation made little difference to the results
of our experiments, all the results reported in this paper were
obtained with preprocessed CPC representations. We followed
Gwilliams et al. in not preprocessing logmel features.

The window of phonetic decodability

In this simulation, we examine the time window during which
the phoneme category of a phone can be decoded from model
representations or acoustic features. While the average dura-
tion of a phone is around 80ms, phoneme identity could be
decodable for longer than 80ms due to coarticulation, although
a decodable window considerably longer would imply that
information about multiple phones is maintained at the same
time. Neuroimaging studies have found that phonetic features
and/or phone identity are decodable from brain recordings
for between 200-400ms, starting around 10-50ms after phone
onset (Khalighinejad et al., 2017; Gwilliams et al., 2022).

Procedure

For each phone token, we considered a time window of
1600ms centered at phone onset, which corresponds to 160
10ms frames. A separate decoder is trained for each of the
160 time steps to determine whether phones are decodable up
to 800ms before or 800ms after their onset. For example, the
-70ms decoder is trained on all frames occurring 70ms prior to
a phone boundary, and must predict the phoneme label of the
phone that starts 70ms later. We used 5 utterances from each
of the 40 speakers to train the decoders and 5 more for testing.

Results and Discussion

As shown in Figure 1, phones started to be decodable from
CPC representations 180ms before phone onset and remained
decodable for 540ms. Thus, like human brains, the model
maintains phone representations for far longer than their dura-
tion, implying that multiple phones are represented simultane-
ously (as explored further in the next simulation). In contrast,
decoders trained on logmel features achieved accuracy above
baseline 110ms before phone onset and dropped to baseline
230ms later. While the window of decodability from acous-
tic features is also longer than the average phone duration of
84ms, it is still far shorter than that of the CPC representations.
We attribute the long window from acoustic features to a com-
bination of coarticulation effects, variable duration of phones
(i.e., the decoder will have a longer decodability window for
phones that are longer than average), and perhaps some errors
in the forced alignment. In future work we plan to replicate
our experiment on hand-aligned data and consider durations
of phones in our analysis.

Two other points are worth noting regarding these results.
First, phones can be decoded with a much higher accuracy
from CPC representations than from acoustic features, which
implies that different phones become more linearly separable
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Figure 1: Accuracy of decoding for phoneme categories with
CPC representations and logmel features. The shaded area
represents the average duration of a phone.

in the learned representations. Second, CPC representations
seem to support predictive decoding, since phones are decod-
able 70ms prior to logmel features. While this is not surprising
given that the model is trained to predict the upcoming speech,
it does differ from the findings of neuroimaging studies—a
point we return to in the General Discussion.

The time course of phone encoding

Having found that multiple phones are encoded simultaneously
in CPC representations, the question we aim to answer in this
simulation is: how does the model maintain information about
successive phones without interference between them?

Procedure

One way of exploring this question with phonetic decoders is
through temporal generalization (TG) analysis. After training
decoders for each time step as in the previous analysis, we
apply each decoder to all the time steps to test generalization.
Since each decoder has learned the most informative neural
patterns for identifying the phonetic category at a certain mo-
ment, the extent that each decoder generalizes to neighboring
time steps would reflect the time course of the encoding pat-
terns. The result of TG analysis is a training X testing matrix,
which we visualize as a contour plot.

To enable closer comparison with Gwilliams et al.’s results,
we followed them in splitting the phone tokens according to
their position in the word and performing TG analysis for each
set. This resulted in four TG matrices corresponding to the first
to the fourth phone within each word (denoted p1-p4), which
were visualized in the same plot (Figure 2), with matrices 2—4
shifted to the right by the average duration of their preceding
phones. Since the baseline decoder accuracy is 0.11, we plot
contours at accuracy levels of 0.2—a clear improvement over
the baseline but still far below maximum decoder accuracy
(when training and testing time are the same)—and 0.4.

Since this is a computationally intensive analysis, we only
used representations extracted from speech produced by two
female and two male speakers, which are 32 minutes in total .

Results and Discussion

As shown in Figure 2b, the temporal generalization patterns
of CPC representations resemble those of the MEG signals

(replotted in Figure 2a) in two important aspects. Firstly,
for all four positions and regardless of accuracy threshold,
the diagonal axis of the contour is much longer than any of
its horizontal widths. While the diagonal axis signifies the
period that a phone is decodable from the representations, the
horizontal slices of the contour represent the duration that
each neural pattern persists. For example, with an accuracy
threshold of 0.4, a phone occurring in p1l to p4 is decodable
for more than 200ms on average, while each specific neural
pattern is maintained for no longer than 100ms. In other
words, the encoding pattern of a phone evolves dynamically
throughout the period that it is decodable.

The second similarity between TG patterns of CPC and
brains is that word-initial phones remain decodable for a longer
period than phones in later positions. Granted that p3 and p4
had fewer training samples than p1, which could be why p3
and p4 had narrower decodable windows. However, pl and
p2 had almost the same number of training samples (p1:4793,
p2:4757, p3:3202, p4:1852), and the distribution of phonetic
categories at p2 even had lower entropy than p1 (p1:4.45 bits,
p2:4.24 bits), although pl is just slightly longer in average
duration (p1:83.5ms, p2:81.9ms, p3:84.3ms, p4:83.2ms). Still,
the difference in the duration of decodability between p1 and
p2 could imply that word-initial phones are maintained longer
in the CPC model.

Neither of these properties was observed in the TG matrices
of logmel features (Figure 2 (c)), which means that they were
acquired by the CPC model during self-supervised training.

Figure 2(b) also shows an interesting effect related to the
model representation of upcoming phones. Note that contours
dropping below 0 on the y-axis indicate decoders that can
successfully predict the upcoming phone after being trained
on representations prior to the phone onset. While this effect
was already noted in our first simulation, the TG plots reveal
an additional subtlety, which is that phones in later word posi-
tions seem to be predictable further in advance (contours are
lower on the y-axis). This effect aligns with the long-standing
observation that transitions between sub-word units are more
predictable within words than at word boundaries, a fact that
has been hypothesized to help infants begin to segment words
(Saffran, Aslin, & Newport, 1996).

Generalizing decoders across contexts

While the previous simulation addresses the interaction be-
tween consecutive phones in their temporal dynamics, the
third simulation was targeted at ~ow neighboring phones are
encoded. Specifically, we aim to examine whether phones are
encoded in a context-invariant manner in the representations.
We say there is context-invariant encoding if at least some part
of the representations depends only on the current phoneme
category and remains constant regardless of different surround-
ing contexts. Since the acoustics of a phone are affected by
co-articulation with neighboring phones, neighboring phones
might be impossible to fully disentangle in the representations.
Alternatively, it might be that context-invariant patterns of
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Figure 2: Temporal generalization (TG) results superimposed for 4 phone positions, the first to the fourth phone in each word
(p1-p4), obtained with (a) MEG signals with contours at ¢-value = 4 (reproduced from source data provided by Gwilliams et al.);
(b) CPC representations, with accuracy contours at 0.4 (solid) and 0.2 (dotted); and (c) Log mel features, with accuracy contours

at 0.2.

each phone can be extracted through predictive learning.

We examined the presence of context-invariant phonetic
encoding by testing cross-context generalization, namely train-
ing phonetic decoders for phones occurring in one specific
context and testing them on phones in other contexts. The
generalization tests have three possible outcomes. If the de-
coders fully generalize to all other contexts, it would be strong
evidence for the notion that context-invariant encodings are
present. On the other hand, the decoders may fail to gener-
alize at all, which would imply that phones are encoded as
a whole with their co-articulatory neighbors. In between the
two extremes is the possibility that there is some degree of
generalization. This situation is what Gwilliams et al. found
in neural representations, and concluded from it that the repre-
sentations are at least partly context-invariant. However, we
argue that this finding is more difficult to interpret, since par-
tial generalization could simply be due to acoustic similarity
between the phonetic realizations of the same phoneme in
different contexts, with no additional context-invariant encod-
ing being present. To begin to tease apart this question, we
compare the level of contextual generalization achieved by
learned representations against those of the acoustic features.

Procedure

We defined contexts in two ways: position in a word and pho-
netic context. Neural data are available only for the former,
since this was the definition of context used by Gwilliams et
al.. Choosing training and test cases for the latter can pose a
challenge, since different contexts tend to feature distinct dis-
tribution of phones. To evaluate generalization in a controlled
setting, we chose to focus on decoding phoneme labels for
vowels only, so that the class distribution is relatively consis-
tent across different phonetic contexts as well as positions.
For cross-position generalization, we worked with four
phone positions, pl—p4 as before. For the different phonetic
contexts, we simplified the analysis by only considering the
manner of articulation of the previous and the following phone,
i.e., plosive, fricative, or nasal. This yielded six contexts,
each denoted as preceding phone__following phone, e.g., plo-

sive__plosive. 4500 phone samples were subsampled for each
context type across all 40 speakers, with 80% of those used for
training decoders and the remaining 20% for testing general-
ization. We used the same number of subsamples and train-test
split ratio for the four position classes. Decoders were trained
for each position/context class, and then tested on all of the
position/context classes.

Results and discussion

We first look at the part of our analysis that is analogous to
the experiment in Gwilliams et al., namely training decoders
on word-initial phones and testing on other positions. From
Figure 3b (left), we can see that the decoders trained on pl
showed significant generalization effects on p2, p3, and p4—
that is, the curves for each of those positions are well above
their respective baselines, which are computed as the accuracy
obtained by picking the most common vowel in the training
data (in this case, at pl) when evaluating on p1—p4.

This result is qualitatively similar to Gwilliams et al.’s re-
sults (Figure 3a). However, as noted above, to better interpret
this level of generalization, we also need to consider the extent
to which acoustic similarity alone might explain patterns of
generalization in the model representations. First, we note that
for the decoder trained on acoustic features from p1, there is
also some (albeit minimal) degree of generalization to p2—p4,
as shown in Figure 3b (right). In addition, Figure 4a illustrates
how the degree of generalization depends on both the train-
ing and testing sets: for example, decoders trained on p4 and
tested on the other three positions generalize somewhat better
than those trained at p1.

Turning to generalization across phonetic contexts, we can
again see from Figure 4b (left) that the decoders trained
on fricative__fricative generalized to different degrees when
tested on other context types. Specifically, the improvement
over baseline in the test context of plosive__nasal was rela-
tively modest. Meanwhile, Figure 4b (right) shows that the
decoders trained for logmel features also struggled to general-
ize to the same test context. A possible explanation is that the
acoustics of vowels in this context differed more significantly
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Figure 3: Generalizing from word-initial position to other word positions: (a) results from brain recordings (taken from Gwilliams
et al. 2021) and (b) accuracy of our decoders. Decoders are trained on word-initial vowels (p1) and tested on vowels in p1-p4.
The lefthand plot shows decoding accuracies for model representations, and the righthand plot for acoustic features. The faded
lines are the baseline accuracy for each position obtained by picking the most common vowel category in the training set. (Note
that /a/ is the most common category in all positions, but to differing degrees, which leads to the different baselines.)

due to nasalization. This hypothesis is consistent with the
fact that the generalization for logmel features in the test con-
text fricative__nasal was initially strong around phone onset
before the performance dropped below baseline, since this
test context shared the same preceding phone as the training
context but had a nasal as the following phone. This pattern
of dropping below and then returning to the baseline was not
observed in the results for CPC representations. Nevertheless,
the results considered so far suggest that the generalization
effects in CPC representations may be dependent on acoustic
similarities in general.

To evaluate this hypothesis more systematically, we quan-
tified the degree of generalization in CPC or logmel for each
(training, test) context pair, as illustrated in Figure 5(left). The
relationship between generalization effects in CPC and in log-
mel was then visualized in Figure 5(right), where each data
point corresponds to a particular (training, test) context pair,
with the (x,y) coordinates indicating that pair’s generalization
effect in CPC and logmel respectively. We only include pairs
where the training and test sets are different contexts.

The 12 blue dots in Figure 5 show the generalization effects
across phone positions, which has a Pearson correlation of 0.97
(p < 1077). The 30 orange data points represent generaliza-
tion effects across phonetic contexts, with Pearson correlation
of 0.60 (p < 1073). Both correlations are strong enough to
suggest that both cross-position and cross-context generaliza-
tion in CPC representations depend on similarities between the
acoustics of the training and the test contexts. While it is still
possible that the learning induces some additional context in-
variance beyond acoustic similarity, the partial generalization
found here does not seem sufficient to conclude that.

General Discussion

This paper analyzed the representations in a computational
model to gain insight into the neural representations that sup-
port human listeners’ encoding of phonetic information across
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(b) Decoders trained on vowels surrounded by two fricative sounds
and tested on vowels in five other contexts.

Figure 4: Additional generalization tests across (a) different
phone position and (b) different phonetic contexts. The faded
lines represent the baseline accuracy obtained by picking the
most common vowel at the training position/context.

time. We found that a self-supervised predictive model simu-
lated key aspects of phonetic encoding found in brain signals,
specifically with respect to temporal dynamics and contex-
tual invariance. In particular, we showed that, like the neural
representations but unlike the acoustic signal, the model rep-
resentations support tracking of multiple successive phones
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simultaneously using a rapidly evolving representation. Fur-
thermore, like the neural representations, the model’s repre-
sentations of phones can generalize across contexts to some
extent. However, unlike previous work, we also examined
cross-context generalization in decoders trained on acoustic
features, and found that these, too, show partial generaliza-
tion. Moreover, the extent of cross-context generalization in
the model representations is strongly correlated with acoustic
similarity (i.e., generalization using acoustic features). We
conclude that there is little evidence that the model has learned
context-invariant representations beyond acoustic similarity.
This result also suggests that further analysis of the neural data
is required before concluding that context-invariant represen-
tations have been found. These concerns aside, the success of
this model in simulating key aspects of the brain data suggests
that a purely predictive model with no top-down supervision
could potentially explain some of the computational princi-
ples underlying the processing of speech and other sequential
processing tasks.

As well as the above similarities between model and brain
representations, we also found one important difference be-
tween the temporal dynamics of our model and that found
by brain imaging studies to date: our model’s representations
encode predictions about the upcoming phone, whereas neu-
roimaging studies of continuous speech have mainly found
evidence of phonetic decodability only after phone onset
(Mesgarani et al., 2014; Khalighinejad et al., 2017; Gwilliams
et al., 2022). A notable exception is that word-initial phones,
but not those in other positions, appear to be decodable at
phone onset in Gwilliams et al.’s study. Given the predictive
nature of our model, it is not surprising to find predictive rep-
resentations, but our finding does highlight the surprising lack
of such findings in brain imaging studies. It is well-established
behaviorally that human listeners make predictions about up-
coming linguistic material (Ryskin & Nieuwland, 2023). Re-
cent studies have also argued that fMRI and ECoG data from
listening to speech and reading text are well-modelled by pre-

dictive models of text (Schrimpf et al., 2021; Goldstein et
al., 2022; Caucheteux, Gramfort, & King, 2023), and have
found evidence that specific words are decodable from ECoG
recordings prior to word onset, indicating word-level predic-
tive representations (Goldstein et al., 2022). An important
question for future work is therefore whether current tools
are simply not sensitive enough to identify lower-level predic-
tive representations in the brain, or whether these are indeed
absent—implying that prediction operates only over higher-
level representations.

This research provides insight into the factors that shape
speech representations in humans and machines, but leaves a
number of open questions. For example, the recurrent neural
network architecture used here differs from the transformer
architecture that is now more often used in speech technol-
ogy, and future research can explore whether attention-based
architectures, such as transformers, also yield speech represen-
tations that exhibit similar characteristics. The field’s interest
in characterizing human speech representations also stems, in
large part, from a desire to understand how the structure of
these representations support higher-level tasks, such as word
recognition. Here, computational models can be particularly
useful in enabling a controlled comparison between differ-
ent representations, especially because representations from
these models have enabled large advances in the accuracy with
which speech technology performs those higher-level tasks.

Finally, although this work is primarily aimed at cognitive
scientists, it may also be relevant for speech technology re-
searchers, since the model we use shares many characteristics
with current state-of-the-art SSL models for speech. Within
the speech technology community, analyses of DNN models’
phonetic representations have mainly focused on how accessi-
ble phonetic or phonemic information about the current phone
is, either in different models (Ma, Ryant, & Liberman, 2021)
or across model layers (Belinkov & Glass, 2017; Chrupata,
Higy, & Alishahi, 2020; Cormac English, Kelleher, & Carson-
Berndsen, 2022; Martin, Gauthier, Breiss, & Levy, 2023;
Ten Bosch, Bentum, & Boves, 2023; Pasad, Chou, & Livescu,
2021; Pasad, Shi, & Livescu, 2023). There is less work on how
such information is encoded, although a few researchers have
used clustering or visualization to investigate this question
(Nagamine, Seltzer, & Mesgarani, 2015, 2016; de Seyssel,
Lavechin, Adi, Dupoux, & Wisniewski, 2022; Wells, Tang, &
Richmond, 2022), while others have shown that formants are
represented in a structured way (Choi & Yeo, 2022) and that
phonetic and speaker information are represented in orthogo-
nal subspaces (Liu, Tang, & Goldwater, 2023). We know of no
analyses examining the temporal dynamics of speech represen-
tations, or of any that investigate context-invariance by testing
decoders for generalization to unseen contexts. These ques-
tions and methods, inspired by work in cognitive neuroscience
and demonstrated on SSL models by this study, could prove
fruitful for other researchers interested in analyzing speech
model representations for their own sake.
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