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Abstract

In the debate between single-route and dual-route models of
verb inflection, the dissociation between regular and irregular
verbs in the non-fluent variety of aphasia has been a key sticking
point for the proponents of the single-route model. This paper
adopts a state-of-the-art neural model which has previously
been used to learn inflectional morphology, and shows that it
can also be used to model data from non-fluent aphasia. This
challenges the assumption that a dual-route model is necessary
to capture apparent dissociations in aphasia data and encourages
a reanalysis of the deficits involved in non-fluent aphasia.
Keywords: non-fluent aphasia; Encoder-Decoder network;
past-tense debate; inflection

There has been heated debate over the past 40 years about
how people represent regular and irregular inflectional mor-
phology (Clahsen et al., 1992; Goebel & Indefrey, 2000; Hahn
& Nakisa, 2000; Hare et al., 1995; Laaha et al., 2006; Lachter
& Bever, 1988; MacWhinney & Leinbach, 1991; Marcus et
al., 1995; McClelland & Patterson, 2002; Plunkett & March-
man, 1991; Plunkett & Juola, 1999; Pinker & Prince, 1988;
Pinker, 1998; Pinker & Ullman, 2002; Rumelhart & McClel-
land, 1986). Proponents of the single-route model have argued
that the phonological relationship between inflected and unin-
flected forms can be captured within a single pattern associator.
In contrast, proponents of the dual-route model have argued
that separate mechanisms are responsible for the regular and
irregular inflections: regular inflection is performed by the
grammar, while irregular inflection is stored in the lexicon.

Recently, state-of-the-art single-route neural models have
been able to achieve high degrees of accuracy when learning
the English past-tense (Kirov & Cotterell, 2018), addressing
many of the initial issues that previous single-route models
faced (with some limitations; see McCurdy et al., 2020). How-
ever, a key sticking point for the single-route approach has
been the dissociation between regular and irregular inflections
in people with different types of aphasia, an acquired language
disorder that arises after a brain injury such as stroke (Ullman
et al., 1997). In non-fluent aphasia, there seems to be a se-
lective deficit for regular inflections, while in fluent aphasia,
there seems to be a selective deficit for irregular inflections.

In this paper, we reassess the strength of that evidence.
We apply a state-of-the-art single-route network which has
previously been used to learn the past-tense inflection, and
show that it can also model data from non-fluent aphasia in
English. This model indicates that the dissociation does not

require multiple mechanisms to capture this particular pattern
of deficits. These findings contribute to the ongoing past-tense
debate in cognitive science, providing an alternate single-route
interpretation for one of the key pieces of evidence in support
of the dual-route model.

Whereas previous work on the single-route model has cast
it in opposition to the traditional idea of grammatical rules in
linguistics, we pursue a different interpretation in our discus-
sion of these results, based on recent advances in linguistic
theory. We situate the single-route model as performing a par-
ticular function that any traditional model of grammar would
need to carry out: converting the underlying hierarchical syn-
tactic structure into a linear order and making calculations
over phonological space to determine its form. We argue that
non-fluent aphasia should be approached as a deficit not in
syntactic operations, but in phonological operations.

We begin by reviewing the evidence from aphasia, dis-
cussing empirical data as well as previous models. We then
give an overview of the model from Kirov & Cotterell (2018),
which we adopt in our simulations. The next section describes
simulation results showing that under certain training condi-
tions, this model can simulate the dissociation in non-fluent
aphasia. We conclude by discussing the relationship between
the past tense debate and linguistic theory in light of substan-
tial recent advances in both fields.

Morphological Deficits in Aphasia

As an extension of contemporary models of memory circuits,
Ullman (2004) developed the declarative/procedural model to
connect language to more domain-general cognitive processes.
This theory suggests that the grammar is a subdivision of pro-
cedural memory, like other motor and cognitive skills, while
the lexicon is a subdivision of declarative memory, which
stores arbitrary relations, facts, and events. Consequently,
their model predicts that regular and irregular forms should be
served by different neural substrates associated with the differ-
ent types of memory - procedural memory corresponding to
the basal ganglia and the frontal cortex, and declarative mem-
ory corresponding to the hippocampus and temporo-parietal
regions. Data from language disorders such as aphasia can pro-
vide exactly the kind of evidence needed to test this hypothesis.
Aphasia is an acquired language disorder that occurs as result
of a brain injury - such as a stroke, tumor, or head injury - that
impacts areas of the brain associated with language. There are
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many varieties of aphasia, but two key varieties are fluent and
non-fluent aphasia. The non-fluent variety of aphasia is char-
acterized by “telegraphic speech”, which tends to include few
function words and morphology, so it has often been analyzed
as a ‘grammatical’ or syntactic deficit. Meanwhile, the fluent
variety of aphasia often involves “empty speech”, syntactically
well-formed sentences that lack meaning or message, so it
has often been analyzed as a ‘lexical’ deficit. Though a brain
injury is not guaranteed to be isolated to one area of the brain,
analysis of lesion patterns and behavioral deficits can provide
convincing evidence for functional dissociations.

Ullman et al. (1997) identified two patients, FCL and JLU,
with opposite lesion patterns, and tested their ability to pro-
duce the past tense form of regular and irregular verbs. Their
results are shown in Figure 1. FCL, who had non-fluent apha-
sia, produced the regular past-tense with only 20% accuracy,
while producing the irregular past-tense with 69% accuracy.
In contrast, JLU, who had fluent aphasia after injury to the
left temporo-parietal area, produced regular verbs with 90%
accuracy, and produced irregular verbs with 63% accuracy.

The two patients, FCL and JLU, are the key evidence for the
proposed double dissociation between regular and irregular
inflections. They show opposite patterns of accuracy rates
for regulars and irregulars, as would be expected under the
dual-route model. Previous models have shown that dissocia-
tions can arise through a single learning mechanism (Penke &
Westermann, 2006; Plaut, 1995), but even in those cases, the
models developed functional specialization that was different
for regulars and irregulars. Based on these data points alone,
there does not seem to be an obvious explanation that would
support the single-route account.

There are several reasons why we think these data should
be reexamined. First, whereas the rhetoric surrounding the
original past tense debate characterized dual-route models as
more consistent with linguistic theory, this has changed due
to advances in linguistics. The Pinker & Prince (1988) model
was built in a ‘lexicalist’ framework, which assumes that syn-
tactic operations do not extend below the word level, making
morphological operations distinct from syntactic ones. This
assumption has been challenged in the past 40 years, espe-
cially with the development of theoretical frameworks such as
Distributed Morphology (Halle et al., 1993) and non-semiotic
approaches (Preminger, 2021). These kinds of theories ar-
gue that words and phrases are built using the same syntactic
processes, and functional morphemes such as the English past-
tense do not have a ‘built-in’ phonological form (Embick,
2015). In Distributed Morphology, their form is instead sup-
plied in the post-syntactic operation of Vocabulary Insertion;
in Preminger’s theory, the form is provided by a mapping from
sets of syntactic units to sets of phonological units. Accord-
ing to these views, from a syntactic perspective, the verbs
“ran” and “walked” do not differ in terms of their hierarchical
structure—both involve a verb and the past-tense morpheme
combined in a particular way. The only difference is how that
past-tense morpheme conditions the form of the output, and

Figure 1: Patients FCL and JLU are used to demonstrate a neu-
ral dissociation; FCL, in red, exhibits left anterior perisylvian
lesions and a greater deficit for regular inflections, while JLU,
in blue, exhibits left temporo-parietal lesions and a greater
deficit for irregular inflections (Ullman et al., 1997)

how complex and frequent those transformations may be.
Second, studies of non-fluent aphasia cross-linguistically

suggest that the pattern of deficits even in one variety of apha-
sia seems to be more nuanced, and not entirely consistent with
the predictions of the dual-route model. Faroqi-Shah (2007)’s
meta-analysis of non-fluent aphasia across seven different lan-
guages compared participants’ performance on the regular and
irregular past-tense inflection. The analysis included 25 stud-
ies published between 1980 and 2006. The resulting dataset
contains 66 different participants, and includes speakers of
Catalan, Dutch, English, German, Greek, Italian, and Spanish.
Figure 2 summarizes the participants’ performance.

According to the dual-route model, non-fluent aphasia
should be an impairment in the grammar, and thus a selective
deficit for regular verbs. If this were the case, Figure 2 would
show many more participants - from all language groups - per-
forming at or near ceiling for the irregular verbs, with lower
accuracy on regular verbs. This would mean more points near
the top of the plot or above the solid line, and few below the
line. Instead, this shows a large number of German- and Dutch-
speaking participants that have high accuracy on regular verbs
but varying accuracy on irregular verbs, as well as a number of
English-speaking participants with better accuracy on regular
verbs than irregular verbs. The ‘dissociation’, consequently, is
less straightforward than Pinker & Ullman (2002) suggested,
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Figure 2: Plot summarizing the inflection accuracy of par-
ticipants in the studies cited in the Faroqi-Shah (2007) meta-
analysis of non-fluent aphasia (n=66). The solid line cor-
responds to equal accuracy on regular and irregular inflec-
tions. The dotted line corresponds to the line of best fit
(y = 0.53x+20, R2 = 0.429).

especially cross-linguistically.
These data create a puzzle. It is not only challenging for the

dual-route model, because it does not present an obvious selec-
tive deficit for regular inflections, but also for the associated
analyses of non-fluent aphasia. Other theories of the functional
organization of language, such as Matchin & Hickok (2020),
suggest that the brain area implicated in non-fluent aphasia,
the inferior frontal gyrus (IFG), is involved in linearization and
phonological transformations rather than rule-based syntactic
operations. This model suggests that non-fluent aphasia is not
a syntactic deficit, but a phonological one.

If the deficit is phonological, rather than a strict dissocia-
tion, patterns of deficits in aphasia could be the result of an
interaction between irregularity, the complexity of the phono-
logical transformation, and frequency, or a number of other
factors. For example, whereas regular verb inflection in En-
glish can make word-final consonant clusters more complex
(as in walk ⇠ walked) or add a syllable (load ⇠ loaded), as
discussed by Bird et al. (2003), irregular verbs can vary in the
complexity of the transformation: “sing” only changes one
vowel sound, whereas “be” and “go” undergo suppletion. Ir-
regular verbs also tend to have higher frequencies than regular
verbs, partly due to factors involved in language change (By-
bee, 1995; Lieberman et al., 2007). Because every language
involves different kinds of phonological transformations with
varying complexity, and with varying frequency distributions,
non-fluent aphasia may result in different patterns of deficits
cross-linguistically based on these properties, even if the le-
sion pattern is similar across patients. This kind of explanation
could account for the differences between language groups in
Faroqi-Shah (2007), where the dual-route model cannot.

Recent work that has revisited the original past-tense de-
bate using state-of-the-art neural models, such as the Encoder-
Decoder (ED) network used by Kirov & Cotterell (2018), has
addressed many of the initial critiques that were directed at
the Rumelhart & McClelland (1986) model. Specifically, they
showed that a model trained on English inflections exhibits
high accuracy rates, produces human-like novel forms, and
mirrors some child-like learning patterns. It can also achieve
high accuracy rates when trained on multiple inflection classes
such as the gerund, past participle, and third-person singu-
lar forms. The success of this neural model suggests that a
single-route model is sufficient for both regular and irregu-
lar inflections, but it does not explain how the aphasia data
discussed above might arise. Non-fluent aphasia has been
modeled before by Penke & Westermann (2006), which sim-
ulated the pattern of deficits for German-speakers. However,
their model was not fully homogeneous, and it is not clear if
their model would see the same success for English data.

Given this background, if non-fluent aphasia is not a deficit
in rule-based syntactic operations, but in the phonological
transformations involved in inflection, then it should be pos-
sible to simulate the effects of non-fluent aphasia in a single-
route neural model that performs that kind of phonological
transformation. In this paper, we demonstrate that a state-
of-the-art single-route model can be used to account for the
pattern of deficits in non-fluent aphasia. In Simulation 1, as
a proof of concept, we show that training an ED network on
datasets with different frequency distributions leads to greater
effects of lesioning in one set of verbs. In Simulation 2, we
show that a model trained on an English-like dataset using
perplexity-based sampling can lead to an English-like pattern
of deficits. As predicted by the single-route approach, the
dissociation can be captured without appealing to separate
lexical and grammatical mechanisms.

Model

The model we use in the present study is a homogeneous,
single-route, single-mechanism model that - when lesioned
- can simulate the pattern of deficits observed in non-fluent
aphasia in English-speaking populations. In doing so, this
model indicates that the dissociation that has been a key piece
of evidence for the Dual-Route model does not, in principle,
require multiple mechanisms to capture this particular pat-
tern of deficits. The effect of fluent aphasia requires further
research and will be investigated in future work.

Simulation 1 tests datasets with different proportions of
regulars and irregulars. Simulation 2 looks at the effect of
using perplexity—essentially, the model’s degree of surprise
at a particular data point—to constrain learning.

Architecture. Our models use the Encoder-Decoder network
architecture specified by Kirov & Cotterell (2018), which
includes the architecture described by Bahdanau et al. (2014)
and hyperparameters set by Kann & Schütze (2016). This
network operates over strings of characters which represent
phonemes. The encoder includes a bidirectional LSTM with
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Figure 3: Results from Simulation 1. Left: Plot summarizing the performance of the model trained on the Regular-Bias dataset,
where less than 5% of the dataset is made up of irregular verbs. Center: Plot summarizing the performance of the model trained
on the Proportional dataset, where 26% of the dataset is made up of irregular verbs. Right: Plot summarizing the performance of
the Irregular-Bias model, where 95% of the dataset is made up of irregular verbs.

two layers. Each character has an embedding size of 300 units.
The dropout value between layers is 0.3. The encoder and
decoder have 100 hidden units each. The Adadelta training
procedure (Zeiler, 2012) was used, with a learning rate of 1.0
and a minibatch size of 20. The model was trained for 100
epochs. The decoder uses a beam search (k=12). The model
was implemented using OpenNMT-py 2.0 (Klein et al., 2020).

Training data. The base dataset is also the same one used by
Kirov & Cotterell (2018), which includes 4,039 English verbs
from the CELEX database (Baayen et al., 1996). Of these
verbs, 168 have irregular inflections, and the remaining 3,871
have regular inflections. 20% of this dataset was held out for
validation, so the training dataset included only 3,232 verbs,
141 of which were irregular. The testing dataset included 80
regular verbs and 80 irregular verbs which were all seen in
training, since we are more interested in the model’s perfor-
mance after lesioning than how accurately it can generalize to
new forms.

From this base dataset, three datasets were developed. The
Regular-Bias dataset has each verb in the corpus appear ex-
actly once, so that only 4.6% of the verbs in that training
dataset are irregular, with a total of 3,232 items. The Pro-

portional dataset had each verb appear proportional to its
COBUILD frequency, so the dataset was composed of 26%
irregular verbs, with a total of 15,424 items. In the Irregular-

Bias dataset, a subset of high-frequency regular verbs were
selected from the base dataset, and these appear only once;
the remaining 141 irregular verbs are repeated proportional to
the inflected forms’ COBUILD frequency per 1 million words.
The resulting dataset is composed of 5% regular verbs and
95% irregular verbs, with a total of 15,645 items.

The models were trained for the same number of train steps,
so that each one was exposed to the same amount of training
data despite the differences in the sizes of each dataset.

Lesioning. After training, each model was ‘lesioned’ by ran-
domly resetting connection weights to 0.1 The proportion of

1During a stroke or brain injury, lesions are not randomly dis-
tributed across a brain area, but instead localized to a set of adjacent

weights that were reset ranged from 5% to 100% by incre-
ments of 5%. After lesioning, the models’ accuracy on the
test dataset was measured. This was repeated 5 times for each
model in order to observe the effect with different random
seeds.

Simulation 1

In Simulation 1, one model was trained for each of the three
datasets, and its accuracy was measured before and after le-
sioning. We make several predictions. Firstly, if any of the
single-route models we test can simulate a dissociation simi-
lar to what was observed for FCL (Ullman et al., 1997), this
would provide a proof in principle that the dissociation can
be captured without requiring multiple distinct mechanisms.
Secondly, if models that observe different proportions of reg-
ulars and irregulars in their training data exhibit different be-
havior after lesioning, this would suggest that the frequency
distribution of regulars and irregulars impacts how those trans-
formations are encoded. This would also suggest that the
cross-linguistic differences observed by Faroqi-Shah (2007)
might depend on such factors.

Figure 3 shows the performance of each of the models.
These plots compare accuracy on regular and irregular inflec-
tions. Each point represents a different instance of the model,
with different proportions of connections lesioned, and with
different random seeds. The black diagonal line represents
equal performance on both sets of verbs, so points above the
line represent models performing better on irregular verbs,
while points below the line represent models performing better
on regular verbs.

For the model that was trained on the Regular-Bias dataset,
the performance was consistently better on regular inflections
than irregular inflections. The model trained on the Propor-
tional dataset shows better performance on irregular inflections
than the Regular-Bias model, but most points still fall below

neurons. In the neural network, there is no sense of ’adjacency’; all
of the neurons in one layer are connected to all of the neurons in the
neighboring layers. Randomly lesioning the neural network provides
a reasonable approximation of the effect of a brain injury, given the
differences between neural architectures and neural networks.
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the line of equivalence. For the model that was trained on the
Irregular-Bias dataset, the model performs better at irregular
verbs than regular verbs at nearly every point. Though the
pattern in Figure 3 does not perfectly resemble the pattern
found in Faroqi-Shah (2007), shown in Figure 2, this demon-
strates that it is possible to achieve a range of outcomes with a
model trained on regular and irregular verb inflections without
appealing to a grammatical or lexical distinction. Because the
effect was only achieved for the model that was trained on
a dataset composed predominantly of irregular verbs, these
frequency statistics must play a key role in how the two sets
of verbs are encoded in the model.

This simulation shows that the frequency distribution of
the training dataset does play a role in the pattern of deficits
observed after lesioning the model, suggesting that this factor
could be partially responsible for the cross-linguistic differ-
ences observed by Faroqi-Shah (2007). Although the lesioning
did not quantitatively replicate the proportions of regular and
irregular verbs produced correctly by FCL, it did show that a
single-route model can produce qualitative asymmetries. The
fact that the asymmetries in the model do not quantitatively
resemble FCL may be because that the models do not generate
much variety within the groups of lesioned models in terms of
accuracy; the points on the plot are relatively closely grouped
together. We return to this point in the Discussion.

While this provides a proof in principle that the relevant
patterns can be captured in a single-route model, the model
trained on the Proportional dataset, the one with the most
realistic proportions of English verb inflections, was not able
to capture the pattern of deficits observed for the patient FCL.
This difference motivates Simulation 2.

Simulation 2

In Simulation 2, a second set of models were created that used
perplexity-based sampling (Fernandez & Downey, 2018). One
model was trained on each of the three datasets.

Perplexity-based sampling involves calculating a ’perplex-
ity score’ for each item in the training dataset, which measures
how well the model was able to predict the output form given
its current state. The model then selects the items with the
highest score for the next training step. This simulates the at-
tention, surprisal, and reanalysis that a learner may experience
when presented with a form that was not predicted (Clark,
2013). If models trained using perplexity-based sampling
better capture the empirical data than models trained with ran-
dom sampling, this would suggest that surprisal, attention, and
reanalysis play a role in shaping neural representations.

The results for Simulation 2 are shown in Figure 4. The
model trained on the Regular-Bias dataset with perplexity-
based sampling exhibited similar performance to the Regular-
Bias model in Simulation 1, where most of the points fell
below the solid line. The model trained on the English-like
dataset with perplexity-based sampling falls close to the equiv-
alence line. The difference between this model and the equiva-
lent one in Simulation 1 is slight, but closer inspection shows

that the model trained with perplexity-based sampling has
higher accuracy on irregular inflections than the model trained
with random sampling when matched on the proportion of
lesions. Though this would not be able to capture patient
FCL, in Faroqi-Shah (2007), the English speaking group was
broadly centered around the equivalence line, especially at
higher rates of lesioning. Lastly, the model trained on the
Irregular-Bias dataset with perplexity-based sampling was
once again almost completely above the equivalence line, per-
forming better at irregulars than regulars at every point. The
pattern observed for the Proportional model in Simulation 2
suggests that perplexity-based sampling does shift it closer to
the pattern observed for the Irregular-Bias model, to a degree.
In addition, the difference in performance between these three
models in Simulation 2 indicates that the frequency distribu-
tion of regulars and irregulars has an impact for these models
even in the context of perplexity-based sampling.

Overall, both simulations show that a single-route model
can capture dissociations between regulars and irregulars, and
that this relationship depends on specific characteristics of
the training data. Based on the complexity and the frequency
of the transformation, a network may encode the two classes
differently, and this encoding can then affect performance. For
example, a more complex transformation may lead to lower
accuracy rates in an non-lesioned network, but if it has a more
distributed representation it may be more resilient to lesions.
The model trained on a dataset biased toward irregulars illus-
trates this effect using a dataset based on English. If the model
were trained on inflections in another language, with different
frequency distributions and different degrees of complexity,
we might observe a different pattern of results. Furthermore,
the degree of ‘perplexity’ that the learner experiences as they
encounter new forms may vary across languages, depending
on the patterns of sub-regularity. In this way, patterns that vary
across language groups can arise not because of representa-
tional differences, but because of differences in the complexity
and frequency of the transformations.

Discussion

This paper demonstrates that lesioning a fully homogeneous
state-of-the-art neural model can simulate the effects of non-
fluent aphasia. This result provides an alternate account for
the apparent dissociation between regular and irregular inflec-
tions observed by Ullman et al. (1997), which was previously
a sticking point for the single-route model in the past tense
debate. A critical component of this finding is the difference
in frequency distributions between regular and irregular in-
flections in English. Simulation 1 demonstrates that when the
model is trained on a dataset that has a greater frequency of
irregular verbs, it is able to simulate the pattern of deficits in
aphasic populations. All languages should have a frequency
distribution somewhere between these two extremes, and so
their pattern of deficits may be predicted based on that. In
Dutch, for example, the frequency distributions of regular
verbs and irregular verbs overlap more than they do in En-
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Figure 4: Results from Simulation 2, with perplexity-based sampling. Left: Plot summarizing the performance of the model
trained on the Regular-Bias dataset, where less than 5% of the dataset is made up of irregular verbs. Center: Plot summarizing
the performance of the model trained on the Proportional dataset, where 26% of the dataset is made up of irregular verbs. Right:

Plot summarizing the performance of the model trained on the Irregular-Bias dataset, where 95% of the dataset is made up of
irregular verbs.

glish (Tabak et al., 2005), so a model trained on Dutch verbs
may exhibit a greater deficit for irregular verbs when lesioned,
closer to the Regular-Bias model in Simulation 1. This would
align with the clinical data discussed by Faroqi-Shah (2007).

After training on an English-like dataset, the model is able
to mimic the patterns that Faroqi-Shah (2007) found in En-
glish speakers, particularly when the network is trained using
perplexity-based sampling. Thus, rather than assuming that
the pattern of deficits in non-fluent aphasia arises because of
syntactic or lexical features of the verbs, we can argue instead
that the process involved in the IFG is a phonological transfor-
mation, conditioned by frequency and form predictability.

By placing Ullman et al. (1997)’s findings into a broader
context of non-fluent aphasia across different languages, we
demonstrate that FCL’s performance may be an outlier when
compared to other individuals with non-fluent aphasia, con-
sistent with the argument in Plaut (1995). The data described
by Faroqi-Shah (2007) do not clearly support the dual-route
model as proposed by Pinker & Ullman (2002).

Faroqi-Shah’s meta-analysis demonstrated that there is a sig-
nificant amount of variation between individuals with aphasia,
even when the injury impacts very similar brain areas. This
could emerge due to individual differences in how each form
is encoded neurally, or due to differences in which groups of
neurons are impacted and whether they are able to be reorga-
nized through neural and synaptic regeneration processes or
by leveraging alternate pathways through the brain (Campbell
et al., 2019). Other forms of variation could be introduced
to these models by using a different lesioning method, such
as adding Gaussian noise to all weights between layers, unit
ablation—severing all outgoing connections from some units—
or adding Gaussian noise to the activations of units. Each
strategy can have a different effect on the performance of the
model, as discussed in Guest et al. (2020).

Once again, these findings should not be interpreted as a
challenge to the view that words and sentences have hierarchi-
cal structure that is relevant during on-line language compre-
hension and production. Rather, we interpret this model as per-
forming a calculation over phonological space. It represents

a post-syntactic operation such as ’Vocabulary Insertion’, as
characterized by Distributed Morphology, or ’mapping from
sets of syntactic units to sets of phonological units’, as de-
scribed by Preminger (2021).

There are many differences between our model and the ac-
tual IFG. This means that it is not a perfect model of what
might be happening at the neural level after a brain injury such
as a stroke. Designing a model to more closely reflect the
architecture of the IFG might yield different results or further
insights in future work. However, even neural networks that
are designed to have similar functions or mechanisms as the
human brain can sometimes behave very differently (Rajaling-
ham et al., 2018). Our approach is simpler, but is nevertheless
sufficiently similar to the hypothesized the function of the IFG
to allow us to test predictions of what should happen when the
mechanism is damaged in a controlled way.

Future work should simulate the effects of fluent aphasia,
or the accuracy data for the patient JLU from Ullman et al.
(1997). Fluent aphasia is not as well-understood as non-fluent
aphasia, and there are many other competing theories that
may not be as easy to test with this kind of neural network.
For example, because fluent aphasia often involves “empty
speech” (syntactically well-formed sentences that lack mean-
ing or message), it has sometimes been concluded that fluent
aphasia involves difficulties with discourse coherence (Lin-
nik, 2016), or a failure to properly inhibit incorrect lexical
items that are retrieved (Prather et al., 1997). These may be
difficult to implement as a neural model, though additional
investigation in this area could be fruitful.

In the future, it will also be important to identify where
different languages fall along the continuum between the
Irregular-Bias dataset and the Regular-Bias dataset, as dis-
cussed above for Dutch. If different languages discussed in
Faroqi-Shah (2007) fall at different points along this contin-
uum, then networks trained on different languages may exhibit
different effects of lesioning. This would allow us to observe
the impact of different language inputs and frequency distri-
butions, and to simulate the variation in non-fluent aphasia
cross-linguistically.
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