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ABSTRACT 
Creating a human-robot interface is a daunting experience.  
Capabilities and functionalities of the interface are dependent on 
the robustness of many different sensor and input modalities.  For 
example, object recognition poses problems for state-of-the-art 
vision systems.  Speech recognition in noisy environments 
remains problematic for acoustic systems.  Natural language 
understanding and dialog are often limited to specific domains 
and baffled by ambiguous or novel utterances.  Plans based on 
domain-specific tasks limit the applicability of dialog managers.  
The types of sensors used limits spatial knowledge and 
understanding and constrains cognitive issues, such as 
perspective-taking. 

In this research, we are integrating several modalities, such as 
vision, audition, and natural language understanding to leverage 
the existing strengths of each modality and overcome individual 
weaknesses.  We are using visual, acoustic, and linguistic inputs 
in various combinations to solve such problems as the 
disambiguation of referents (objects in the environment), 
localization of human speakers, and determination of the source 
of utterances and appropriateness of responses when humans and 
robots interact.  For this research, we limit our consideration to 
the interaction of two humans and one robot in a retrieval 
scenario.  This paper will describe the system and integration of 
the various modules prior to future testing.  
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1. INTRODUCTION 
To be effective, a human-robot interface should handle not only 
the sensor information from all of its independently operating 
modules, such as its vision and auditory components, but it should 
also handle verbal input, and deal with various types of ambiguity 
that beset vision, acoustic, and natural language understanding 
systems.  The robot must not only be able to see where it is going 
and discriminate both objects and people, but hear verbal 
interactions, know who is talking and to whom, know what is 
being spoken about, and cooperatively interact with humans for 
effective and efficient communication.  To accomplish these 
tasks, our independent efforts in robot vision, acoustics, spatial 
reasoning, and natural language interfacing are brought together 
to overcome some of the bottlenecks in our separate areas, to 
achieve more robust human-robot interaction. 



To accomplish an adequate level of interaction and the ability to 
disambiguate sensor and verbal input in successfully completing a 
task, we are integrating several sensor components on a B21r 
mobile robot, along with a natural language and gesture interface.  
Earlier shortcomings of the interface are discussed in the literature 
[21], but our main concern in integrating the various technologies 
here is to facilitate the disambiguation of referents in a human-
robot dialog, by using the strengths of the various modules in 
whatever combination seems most appropriate when sensor data 
or verbal input/output is insufficient to unambiguously identify 
either humans or objects in the environment.  This paper describes 
the system and integration aspects of our work, as well as 
algorithms. Therefore, it is not a user study, but we plan to 
conduct an integration experiment using human subjects in the 
near future. 

2. RELATED WORK 
This research is based on our previous work on natural language 
understanding, gesture recognition, and spatial reasoning [21,24] 
and can be compared with other research efforts; however, we 
differ from them in several ways. For example, while Leonardo 
[7] is designed as a stationary platform, our research focuses on a 
mobile one, placing restrictions on processing capabilities utilized 
for the task.  We also require algorithms capable of working on a 
moving platform where it is necessary to re-orientate the sensors 
constantly while suppressing motion noise.  Furthermore, our 
robot operates in a dynamically changing environment.  Also, 
unlike Leonardo [7], our work does not focus on the mimetic 
aspects of human-robot interaction. 
Like the robot Mel [23], we focus on human-robot interaction in a 
dialog-based setting.  Our work overlaps with theirs; however, we 
believe the interaction in our retrieval scenario expands the 
requirements for robot scene analysis, since it integrates dialog 
and sensor issues affected by mobility.  
The integration of sensors and language understanding is not 
emphasized in other research, such as the Hermes robot of [3].  
While Hermes is mobile, as is our robot, Hermes is a service 
robot, designed to perform actions independently.  We, like [7] 
and [23], focus on the process(es) necessary to disambiguate real 
world settings through sensors and human interaction, but are 
doing so in a dynamically changing environment. 
Finally, unlike many previous investigations which utilize limited 
pattern matching, we are committed to robust natural language 
processing to achieve full language understanding.  We do not 
believe dialog issues can be resolved without full language 
understanding. 

3. SYSTEM OVERVIEW 
To achieve a collaborative dialog in which humans and a robot 
disambiguate objects and locations, we employ a blackboard 
architecture [9] (Figure 1). 
Three components—Vision, Acoustics, and Natural Language—
provide input to the Multi-Modal Reasoning Component 
(MMRC).  MMRC determines if the input can be mapped to an 
appropriate Robot Action.  If so, actions, such as movement to a 
location or identification of an object, occur.  If not, MMRC 
determines what element is missing to produce a Robot Action 
and either prompts the user for additional verbal, visual or 
acoustic information, or queries one or more of the three input 

modalities for additional information.  MMRC re-integrates the 
input with the missing information, or corrects the inappropriate 
information, for an appropriate Robot Action.  This architecture is 
being implemented on a B21r mobile robot named George (Figure 
2). 
 

 
Figure 1. Architecture 

 

In this research we are integrating more sophisticated vision 
technology, giving us better gesture recognition, as well as human 
and object detection (Section 4).  We also introduce an auditory 
component for sound localization (Section 5). A new Spatial 
Reasoning component (Section 6) incorporates the recognition 
and localization of objects in a 3D model of the world.  The 
natural language understanding system, NAUTILUS, (Section 7) 
incorporates a dialog manager (Section 8). The basic plan for the 
dialog scenario is one in which humans converse with each other 
and with a robot that reacts and interacts with the humans, trying 
to locate a soda can in a laboratory environment.  In Section 9 we 
present our conclusions and discuss our future plans. 

 

 
Figure 2. George, a B21r mobile robot 

4. VISION 
An important aspect of our vision research is the ability to detect 
and interpret gestures for disambiguating directions and the 
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locations of objects.  To do so, we incorporate a stereo vision 
system consisting of two cameras mounted on a pan-tilt base (see 
Figure 2).  In this section we discuss gesture recognition input 
generated by 3D hand and face tracks.  We also discuss an 
additional component of the vision system, an omnidirectional 
camera, used for human detection and recognition.  The latter 
capability enables the robot to locate human team members with 
whom it is interacting. 

4.1 Gesture Recognition 
While previous work in gesture recognition focuses mainly on 
Hidden Markov Models [11,26], segmental Hidden Markov 
Models (SHMMs) provide a more tractable system for many 
types of gestures.  SHMMs have been used to recognize speech 
[19], handwriting [2], and generic waveforms [13].  Our system 
employs variable length SHMMs for real time recognition of 
static and dynamic hand gestures, such as “Stop,” or “Go over 
there.”  The combination of dynamic processor allocation and 
varying hand speeds produces gestures with both intra- and inter-
gesture sampling rate variation.  We use SHMMs to accommodate 
these sampling rate variations and allow sparsely and densely 
sampled gestures to share common error metrics.  By 
incorporating a priori error models and speed invariant features, 
training gestures can be generated by a single user action or 
drawn using a pen-based input.   
The novel use of SHMMs for gesture recognition has several 
advantages; such as, the choice of features facilitates hand speed 
invariant recognition. Rapid training is made possible by using a 
priori models.  Also, the combination of features and gesture 
models provides a tractable user interface for rapid training in 
addition to robust recognition.  

4.2 Gesture Model 
Gestures are modeled as left to right SHMMs.  Each gesture is 
modeled as a sequence of directed line segments.  Each node in 
the model records a line segment, bounded by a pair of 
measurements, and a direction: 

<(x1,y1,z1),(x2,y2, z2), (dx,dy,dz)>                                 (1) 
where (x1,y1,z1) is the starting location, (x2,y2,z2) is the ending 
location, and (dx,dy,dz) is the direction. Direction is calculated by 
normalizing the velocity:  

d =  ( Vx / |V|,  Vy/  |V|, Vz  / |V|  )                                (2) 
where  Vx=x2-x1, Vy=y2-y1, Vz=z2-z1.  
Dynamic gestures are defined by a variable length sequence of 
nodes.  For static gestures, only one node is necessary and 
direction information, d, is not recorded.  In this context, static 
gestures map a specific volume of space to a specific action.  To 
distinguish between static and dynamic gestures during training, a 
minimum distance for dynamic gestures is defined. 
The use of line segments provides invariance to sampling rates 
and hand speeds.  Storing gestures as piece-wise linear motions 
allows user actions to be compared against a line, not individual 
measurements.  By comparing measurements against line 
segments, not individual measurements, sparsely sampled 
gestures that are produced by rapid user actions or slow sampling 
rates generate models that can share the same error metrics as 
densely sampled gesture models do.  

4.3 Training 
Two forms of training are available, permitting users to introduce 
deictic (pointing) or iconic (symbolic) gestures:  a pen-based 
input for drawing gestures and an online training mode that 
records user actions.  While drawing gestures is efficient for 
entering static gestures, natural curves associated with human 
movements are difficult to draw and are best introduced based on 
user actions. A database of training gestures is maintained for 
recognition.  Adding and viewing gestures is performed using a 
Gesture Recognition Interface (GRI) (Figure 3). 
To add a new gesture, users can press the START button, perform 
the gesture and then press STOP.  Pressing SAVE adds the new ges- 
ture to the database.  An a priori error model for hand and face 
tracking measurements makes training via a single training 
sample possible. Removing the cumbersome process of 
generating many examples for each new gesture facilitates rapid 
retraining for new environments.   In addition to recording and 
playback capabilities, the GRI provides the user with configurable 
error boundaries that facilitate the teaching of gestures to new 
users. 
New users are taught gestures with large error boundaries that are 
made smaller as a gesture is learned.   Eventually, the perceived 
gesture is mapped to a natural language utterance, so that the 
gesture can be used in isolation or in conjunction with a spoken 
utterance.  The GRI also provides a mapping between gestures 
and robotic actions.  This mapping capability allows gesture- 
based robotic control. 
 

 
Figure 3. Gesture Recognition Interface 

 

4.4 Recognition 
Gesture recognition is performed by solving the Viterbi equation 
for each training sequence, normalizing the output based on the 
length of the sequence and comparing the result against a 
minimum recognition probability.  If two gestures exceed the 
minimum recognition probability, the gesture with greater 



probability is returned.  Distance traversed by a gesture, rather 
than time, is used to determine the number of states necessary for 
two gestures to be compared.  A motion record equal to the 
longest gesture is stored.  Each candidate gesture is compared 
against the most recent user motion of the same length.   

4.5 Pointing Gestures 
While using gestures to disambiguate speech has a long history, 
going back to [4], we are focusing on using 3D visual tracking in 
a dynamic environment and investigating user-originated spatial 
references.  In this environment, pointing gestures are recognized 
based on the orientation of a user's right arm.  A 3D vector is 
formed between the elbow and forearm to determine pointing 
directions as depicted in Figure 4.  
To transfer the point of reference from the user to the robot, the 
system translates the origin of the pointing gesture from the user’s 
elbow to the robot.  Pointing gestures are recorded based on 
speech or in combination with other gestures. 
 

 
Figure 4. Pointing gesture 

4.6 Stereo Tracking and Identification 
The stereo tracking system is responsible for identifying and 
tracking the user’s face and hands, extracting 3D coordinates for 
gesture recognition.  Although some others, e.g. Pacquin and 
Cohen [20], utilize 2D motion tracking to provide motion control 
for mobile robots, we use 3D tracking.  For us, depth information 
from the stereo camera provides accurate foreground 
segmentation and facilitates robustness in the presence of multiple 
people.  In addition to detecting and tracking people, the stereo 
vision system is used for object identification.  

4.7 Person Detection 
In the person-detection phase, the system looks for frontal views 
of faces in the scene. Once a face is found, skin color is learned 
by creating a color histogram of the ellipse enclosed in the 
detected face region. We use the HSV color model for the 
histogram, keeping only hue and saturation and ignore the 
brightness component [25].  For face detection, we use an 
algorithm based on the boosted cascade object detection 
algorithm [15], implemented in the OpenCV open source 
computer vision library [5]. 
To prevent false positives due to background distractions, we 
include depth information to segment foreground pixels from 
background pixels. Thus, only pixels that are within a certain 
distance from the camera are used as input to the face detector. 

4.8 Tracking 
Once the system is initialized with a face location and skin color 
histogram, it tracks the skin-colored regions corresponding to the 

face and hands across frames.  We assume that the three regions 
of interest are all of the same skin color, and we track those 
regions, extending the work of [1]. 
The algorithm we use represents hypotheses by ellipses and 
attempts to match hypotheses to observed skin-colored regions in 
each frame. When a skin-colored region is not explained, a new 
hypothesis is created. Similarly, when a hypothesis is no longer 
explained by any observed points, it is removed from the list of 
tracked hypotheses. The algorithm deals with cases in which one 
region explains two hypotheses, such as when two skin-colored 
arms touch or intersect. However, it does not handle the case in 
which two skin-colored regions explain one hypothesis, such as 
when an arm’s skin-colored region is split by a watch into two 
skin-colored regions.  We extended the algorithm by allowing 
blobs to be merged if they satisfy some criterion (for example, if 
they are close enough to each other), and by accepting blob pixels 
for the tracker only if they are within the sphere of a certain 
radius from the face of the currently tracked person. 
When a face is first detected, it is assigned a hypothesis.  At each 
frame, if any of the hands have not been found or were lost in 
previous frames, newly detected skin-colored regions are 
classified as either left or right arms using simple heuristics based 
on the relative position of the blobs to the face and to each other.  
When the head track is lost, the system reenters the detection 
phase. 
In cases where the whole forearm is visible, such as when a 
person is wearing a short-sleeved shirt, the ends of the ellipse 
representing a tracked arm are classified as either ‘hand’ or 
‘elbow’.  For this classification, we use simple heuristics based on 
the distance of the endpoints from the head.   

4.9 Object Identification 
To provide the system with the capability of identifying objects, 
such as a soda can in our scenario, we use an appearance- and 
scale-based object identification algorithm.  Object identification 
is performed based on stereo camera input where both distance 
and color information is available.  The process of performing 
object identification requires two distinct phases: training and 
recognition.  In the training phase, scene regions are selected and 
used for generating models.  In the recognition phase, modeled 
objects are located in the environment.   
To generate a model, users perform online training.  Users select 
an image region for later recognition by dragging a mouse around 
a region of interest.  Upon selection, a hue histogram and size are 
recorded and stored.   
Object recognition is based on the color and size of a region.  
Scenes are segmented, and regions with similar hue to the target 
object are selected.  The selected regions are then utilized to seed 
a CAMSHIFT algorithm [6] that adaptively selects regions based 
on color properties.  Scale information is utilized to evaluate the 
region size compared to the training sample.  To scale each 
region, the candidate region’s depth is estimated using depth 
information from the stereo camera.  If more than one region 
exhibits similar colors and size to the training region, the user is 
queried for additional information to disambiguate. 

4.10 Omnidirectional Person Tracking  
To detect and track persons in its nearby surroundings, the robot 
uses an omnidirectional camera mounted on top of the robot (see 



Figure 2).  At every frame, the detector searches for persons and 
initializes a new track when a person is detected whose bounding 
box does not overlap with existing tracks.  A particle filter [12] 
then locates each person in translation and scale in subsequent 
frames using color-based features. 

4.11 Initialization 
To initialize each track, we use the cascade of boosted Haar-like 
features described in [15] and implemented in OpenCV [5].  First, 
we use the full body detector of [14] to find regions that resemble 
upright humans.  To reduce the occurrence of false positives, we 
search in the upper portion of the detected body region for faces 
using a detector trained on profile views of faces.  Once both 
body and face are detected, the tracker learns the person’s 
appearance model and instantiates a new track. 
A person’s appearance model is learned by calculating the 
discriminative color features described in [8].  To obtain the most 
discriminative feature, we obtain histograms of the person and 
non-person regions in the detected window and surrounding 
neighborhood, and calculate the likelihood of a color belonging to 
the foreground using the two histograms.  To avoid including 
background pixels in the person region, we do not use all pixels in 
the person’s bounding box.  Instead, we use a figure-ground 
expectation sampling (ES) technique [28] to segment the person 
from the background region (Figure 5), and calculate the most 
discriminative features between the person and background.  To 
encode spatial information, we subdivide the person region into a 
rectangular grid, and obtain the color distribution of each sub-
region using the most discriminative color features. 
 

 
Figure 5. (top) 360° panoramic view obtained from 
omnidirectional camera.  Small interior box around person’s 
face shows face detector result.  Next larger, interior box 
encloses segmented person, and outer box shows person 
detector result.  (bottom) Person template is segmented into 
background and foreground regions. 
 

4.12 Tracking 
Once we obtain the appearance model of a person, we use it to 
track the person across frames.  Exhaustively searching for the 
best match in translation and scale is computationally prohibitive, 
even for small neighborhoods.  Thus, we use a particle filtering 
framework to obtain the optimum scale and translation.  Particle 
filtering takes into account previous positions by assuming some 
dynamics that provide a transition probability and evaluates 

positions in scale and translation using the observation likelihood.  
The observation likelihood can be estimated by summing the 
probability that each pixel in the target region does not belong to 
the model and by using the exponential function, as in [27], to 
obtain a probability estimate.  The observation likelihood is 
computed once for each of the samples, so tracking becomes 
much more computationally feasible.  Although our current 
implementation uses only color for representing a person's 
appearance (which can sometimes fail in the presence of similarly 
colored regions), the algorithm can be easily extended by 
incorporating other cues in the evaluation of a target region.  One 
of many examples is the use of color and edge information in the 
evaluation of the observation likelihood [27]. 

5. ACOUSTICS 
For a robot to know it is being spoken to, who is speaking to it, 
and what the relative locations of speaker(s) and robot are, the 
interface requires auditory capabilities beyond speech 
recognition.  With this goal in mind, we have added an auditory 
component to provide the robot with certain auditory skills useful 
in disambiguating information from other components. 

5.1 Robot Audition 
In order to gather acoustic data, we employ an array of 4 AT831b 
lavalier microphones mounted on top of the robot (see Figure 2).  
These microphones are each connected to battery-powered 
preamps mounted inside the robot body and then to an 8-Channel 
PCMCIA data acquisition board.   
Using this audio equipment, the robot has two auditory tasks to 
perform, speech detection and sound localization:  (1) to detect 
the presence of speech sounds in the environment, and (2) to 
localize short speech utterances in the vicinity of the robot.  We 
turn now to a discussion of these tasks. 

5.2 Detecting Speech 
Before a robot can localize speech sounds, it first needs to detect 
that they are present in the environment.  For this task, we 
calculate the first two mel-cepstrum coefficients [22] for each 
microphone in the array.  Each coefficient is averaged across all 
microphones, and then compared to an environment-dependent 
threshold.  Although relatively simple and prone to errors when 
classifying a single sound sample, the speech detection system 
works well over time to augment vision sensors tracking humans 
in the environment. 

5.3 Localizing a Human Speaker 
Once speech has been identified in the environment, the robot 
may also need to know the location or origin of the speech 
sounds.  If there is only one person in the room, then a vision 
system can help identify the most likely source, but if there are 
multiple people, or if there is no vision system available, then 
audition can help the robot identify who is speaking.  The 
algorithm we use for this speech localization task is spatial 
likelihoods [18]. 
Spatial likelihoods are based on the principle of time difference 
on arrival.  As the speed of sound is finite, and the microphones 
are physically separated in space, the signal received by each 
microphone due to a single source is offset by some measurable 
time.  If the value of this time difference between the two 
received signals can be determined, the possible positions of the 
sound source is constrained to all positions in the room whose 



geometrical position relative to the array corresponds to a 
measured time difference.  Spatial likelihoods are calculated using 
a maximum likelihood method that utilizes time differences to 
estimate the likelihood associated with every possible location in 
the room.  Figure 6 shows the spatial likelihood output of a 
sample containing speech, plotted on a contour plot. 
 

 
Figure 6.  A spatial-likelihoods result for detecting human 
speech.  This result demonstrates the common problem of a 
strong angular performance, but poor distance estimates. 
 

In theory, given enough microphones in an array, it is possible to 
localize exactly on the sound source, using the principle of time 
differences.  In practice, however, given the small distances 
between microphones in the on-robot array, as well as the levels 
of ambient noise and echoes from the environment, we have 
observed high amounts of error in the localization from one loca- 
tion.  Error tends to be concentrated mostly along the axis 
stretching from the center of the array out through the sound 
source location.  Thus, cross correlation results are generally 
better at estimating the angle to the sound source rather than the 
distance. 

6. SPATIAL REASONING 
A subcomponent of the Multi-Modal Reasoning Component 
(MMRC) is the Spatial Reasoning Component (SRC) (see Figure 
1) where visual and linguistic data combine to provide spatial 
descriptions.  We are in the process of extending our previous 
work [24] and integrating it into MMRC.  

6.1 Spatial Reasoning 
Since the scenario (Section 8) involves locative information and 
spatial interactions, we have extended our existing work in spatial 
reasoning to incorporate a 3D model of the world and to interact 
in more complex ways to disambiguate locative information.  
Previous versions of SRC computed robot goal locations to the 
LEFT, RIGHT, FRONT, BEHIND, and BETWEEN objects that were 
within one standard deviation of a human’s location, or given the 
same instruction, of where the human user wished the robot to 
move [17].  Also, the previous SRC described the current 
environment using spatial referencing terms.  Evidence Grid (EG) 
maps of range sensor data generated representations of objects in 
the robot's environment.  While this was sufficient for robot 
navigation to various spatial localities, we wanted to create a 
more useful dialog, based on spatial references, for our robots. 
To do so, we first employed Lowe's SIFT [16] algorithm with the 
stereo camera system to generate 3D SIFT point-cloud models 
[17].  SIFT uses these models to recognize and place objects in 
the environment through an affine transform.  An interesting 

added benefit to this approach is that once we have the models 
created, only one camera is necessary to recognize and place the 
object in 3D space. 
3D point clouds are generated (Figure 7 top) and placed into the 
robot's environment (Figure 7 bottom), projected onto virtual 
horizontal and vertical planes.  These separate planes are fed 
individually into the SRC to determine the following:  (1) the 
strongest relationship between the objects, (2) the selection of 
linguistic descriptions from a predetermined language dealing 
with locations on the horizontal and vertical planes. 
 

 
 

Figure 7. (top) The SIFT point-cloud model demonstrates 
recognition of SIFT keypoints (in light gray) and placement of 
the whole model in the robot's environment (in dark gray).  
(bottom) The scene consists of a large box and can as 
presented to the vision system.  After projection onto vertical 
and horizontal planes, the language generated is “The box is 
to the right of the can and extends rearward.” 
 

For each of the generated descriptions, a primary description (e.g. 
FRONT, BEHIND, etc.) is associated with the fuzzy numbers m1 and 
degree1, and a secondary description is associated with the fuzzy 
numbers m2 and degree2.   These numbers are generated for each 
of the planes, and we take the max(min(m*, degree*)) to decide 
whether to use primary or secondary linguistic descriptions from 
the horizontal or vertical planes.   
This information is useful as it allows the robot to describe its 
environment in three dimensions, thereby enhancing the human-
robot dialog.  Further, it is a useful tie-in for related work in 
perspective-taking, allowing the robot to tell its collaborators 
what and where it sees objects in relationship to each other, to 
itself, and to the users, or from different perspectives if desired. 

7. NATURAL LANGUAGE 
UNDERSTANDING 
As we argued elsewhere [21], natural language provides an 
intuitively appropriate mode for interaction.  We, therefore, 
incorporate speech to provide human users a natural way of 
interacting with the robot.  Along with the other modules, natural 
language assists in disambiguating locations and objects.  For 
example, users can verbally provide explanations and 
clarifications for sensed objects, coupled with the visual and 
auditory information available in the other components of the 
system. 

7.1 Natural Language Interactions 
To permit natural language interactions between humans and the 
robot, ViaVoiceTM maps spoken utterances, such as “Go to the 
pillar over there,” or “Over there”, into strings. NAUTILUS, an 



in-house natural language understanding system [21], robustly 
parses and regularizes the utterances for further processing. These 
representations are combined with gesture information from the 
vision component to form context predicates.  Combined with the 
semantic information of the utterance, context predicates are used 
to determine if a gesture is needed, and if one is obtained, that it is 
appropriate.  For example, if the human user tells the robot, “Go 
over there” but does not gesture to an appropriate location, the 
robot requests additional information:  “Where?”  If a gesture is 
not appropriate, the natural language system provides corrections, 
and once ambiguities are resolved, either verbally or gesturally, 
the utterance is mapped to robot commands.  We also endeavor to 
distinguish extraneous gestures, such as scratching one’s nose 
while speaking or indicating beats during a conversation, from 
truly disambiguating deictic or iconic gestures.   
Interactions with the other sensor inputs and with SRC permit 
humans to describe the locations of objects, as well as to name 
them for the robot. But difficulties can arise.  For example, upon 
receiving a deictic gesture and an object name (e.g. “That’s a 
chair” +<gesture>), multiple internal representations may result in 
the SRC.  Should this condition arise, the system will ask “Which 
one?” whereby the human can say “The object nearest to/furthest 
from you.”   The robot uses its perspective to determine which of 
the objects the human is referring to.   

8. THE SCENARIO 
We have developed a prototype scenario involving two humans 
and a B21r mobile robot to test the integration of our system.  The 
scenario is a typical retrieval scenario in which two humans give 
directions to the robot to find a particular object, perhaps in a 
location deemed unsafe for humans.  Further, the humans talk to 
each other; therefore, the robot needs a natural language 
understanding system that, with the help of the other perceptual 
systems discussed here, is robust enough to deal with the human 
exchange and perhaps even glean useful information from it.  The 
scenario demonstrates the robot’s ability to disambiguate 
information, not only for determining if it is being spoken to, but 
which objects to retrieve, and to discern which human is directing 
the robot in a human-robot team.  
To assist the robot in identifying its target, a team member holds a 
replica of the target in front of the robot’s video camera. The 
person states, “George, this (soda can) [the object is held in front 
of the robot] is your target.” To disambiguate who instigated the 
utterance to the robot, we implement a speech disambiguation 
algorithm similar to [10].  The robot triangulates to focus on the 
sound source, the position of the speaker, and moves toward it. 
An omnidirectional camera assists in identifying the whereabouts 
of the suspect speaker. The robot is now in adequate range to 
track the speaker’s gestures should any be used in subsequent 
interactions. 
If the speaker did not mention the target when initiating 
interaction with the robot, the robot prompts for the target. As the 
speaker describes the target, the robot checks if the speaker made 
any relevant gestures that may assist in finding the goal location.  
NAUTILUS, the Natural Language Understanding component, 
and the MMRC (see Figure 1) determine if help is needed during 
several stages of the interaction:  (1) if enough information is 
provided in the spatial language (e.g. “The target is over there”) to 
determine a goal; (2) if a gesture is provided toward an 

approachable location; and (3) if more information is needed to 
proceed (e.g., “Now turn left of the pillar”). 
If the linguistic and reasoning components identify a mismatch 
between a gesture and an utterance, such as an unintended hand 
motion, the robot requests additional assistance, shaping a 
question toward the ambiguity (e.g., “Can you point me in the 
right direction?”). Once the robot has received sufficient 
information from the speaker, it scans the environment for the 
target.  
The human user(s) follows the robot, remaining in view of the 
omnidirectional camera (within a one meter radius), suggesting 
adjustments to the robot’s current path at any time.  The robot’s 
gesture-tracking camera determines if it has reached the goal by 
comparing a viewed object to the target’s representation stored in 
memory. The robot achieves the goal when it arrives at the 
target’s location and reports to the speaker that it has found the 
target. 

9. CONCLUSION 
Using the scenario involving two humans and a robot that must 
find an object, we can evaluate how people interact with a robot 
capable of handling multiple simultaneous feedback from the 
environment.  By combining the various modalities and 
integrating them in a human-robot interface, we are attempting to 
leverage the existing strengths of the various modules, and to 
overcome ambiguities that might arise from their outputs.  For 
example, information from our acoustic module to recognize and 
further localize human speakers can offset limitations in our 
vision system.  Also, ambiguities that might arise in visual and 
acoustic signals, when object detection is not robust enough to 
disambiguate various objects, can be offset by using the natural 
language component to clarify them.  Furthermore, the dialog 
component directs the discourse along appropriate channels of 
interaction, noting visual and auditory cues for determining who 
the correct speaker is and to whom the utterance is intended.  By 
integrating the various vision, auditory, and linguistic modules, 
we hope to develop a human-robot interface that will allow 
natural interaction between collaborating humans and robots to 
achieve a task. 
In this report, we have discussed visual, auditory, and natural 
language components to be integrated in a human-robot interface. 
We have discussed the components of the interface, noting their 
individual functionalities as free-standing modules.  However, in 
performing a cooperative human-robot task, ambiguities are 
bound to arise.  Knowing the locations of speakers, who is being 
spoken to, what topic is being addressed, or what object is being 
referred to are all problems for completing a task and pose 
problems for each of the various modules discussed here.  The 
scenario which we have chosen, retrieving a soda can in a 
laboratory environment, is filled with these and similar problems.   
In future, we plan to integrate the various components discussed 
in this report and to perform a user study using the scenario 
outlined to test how well this integration overcomes the various 
types of disambiguation mentioned here. 
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