Guess again (and again and again):
Measuring password strength by simulating password-cracking algorithms

Patrick Gage Kelley, Saranga Komanduri, Michelle L. Mazurek, Richard Shay, Timothy Vidas
Lujo Bauer, Nicolas Christin, Lorrie Faith Cranor, and Julio Lépez
Carnegie Mellon University
Pittsburgh, PA, USA
{pgage,sarangak,mmazurek, rshay,tvidas,lbauer,nicolasc,lorrie julio.lopez} @ cmu.edu

Abstract—Text-based passwords remain the dominant au-
thentication method in computer systems, despite significant
advancement in attackers’ capabilities to perform password
cracking. In response to this threat, password composition
policies have grown increasingly complex. However, there is
insufficient research defining metrics to characterize password
strength and using them to evaluate password-composition
policies. In this paper, we analyze 12,000 passwords collected
under seven composition policies via an online study. We
develop an efficient distributed method for calculating how
effectively several heuristic password-guessing algorithms guess
passwords. Leveraging this method, we investigate (a) the
resistance of passwords created under different conditions to
guessing; (b) the performance of guessing algorithms under
different training sets; (c) the relationship between passwords
explicitly created under a given composition policy and other
passwords that happen to meet the same requirements; and
(d) the relationship between guessability, as measured with
password-cracking algorithms, and entropy estimates. Our
findings advance understanding of both password-composition
policies and metrics for quantifying password security.

Keywords-authentication; passwords; user study

I. INTRODUCTION

Text-based passwords are the most commonly used au-
thentication method in computer systems. As shown by
previous research (e.g., [1]-[3]), passwords are often easy
for attackers to compromise. A common threat model is an
attacker who steals a list of hashed passwords, enabling him
to attempt to crack them offline at his leisure. The many
recent examples of data breaches involving large numbers of
hashed passwords (Booz Allen Hamilton, HBGary, Gawker,
Sony Playstation, etc.), coupled with the availability of
botnets that offer large computational resources to attackers,
make such threats very real [4]-[7]. Once these passwords
have been cracked, they can be used to gain access not
only to the original site, but also to other accounts where
users reuse their passwords. Password reuse (exactly and
with minor variations) is a common and growing practice as
users acquire more online accounts [8], [9].

To mitigate the danger of such attacks, system adminis-
trators specify password-composition policies. These poli-
cies force newly created passwords to adhere to various
requirements intended to make them harder to guess. Typical

requirements are that passwords include a number or a
symbol, that they exceed a certain minimum length, and
that they are not words found in a dictionary.

Although it is generally believed that password-
composition policies make passwords harder to guess, and
hence more secure, research has struggled to quantify
the level of resistance to guessing provided by different
password-composition policies or the individual require-
ments they comprise. The two most commonly used methods
for quantifying the effect of password-composition poli-
cies are estimating the entropy of the resulting passwords
(e.g., [10], [11]), and empirically analyzing the resulting
passwords with password-guessing tools (e.g., [12], [13]).
The former, however, is not based on empirical data, and the
latter is difficult to apply because of the dearth of available
password sets created under different password-composition
policies.

In this paper, we take a substantial step forward in un-
derstanding the effects of password-composition policies on
the guessability of passwords. First, we compile a dataset of
12,000 plaintext passwords collected from different partic-
ipants under seven different password-composition policies
using an online study. Second, we develop approaches for
calculating how long it would take for various password-
guessing tools to guess each of the passwords we collected.
This allows us to evaluate the impact on security of each
password-composition policy.

Contributions. We make the following contributions:

1) We implement a distributed technique (guess-number
calculator) to determine if and when a given
password-guessing algorithm, trained with a given
data set, would guess a specific password. This allows
us to evaluate the effectiveness of password-guessing
attacks much more quickly than we could using exist-
ing cracking techniques.

2) We compare, more accurately than was previously
possible, the guessability of passwords created under
different password-composition policies. Because of
the efficiency of our approach (compared to guessing
passwords directly), we can investigate the effective-



ness of multiple password-guessing approaches with
multiple tunings. Our findings show that a password-
composition policy requiring long passwords with no
other restrictions provides (relative to other tested
policies) excellent resistance to guessing.

3) We study the impact of tuning on the effectiveness of
password-guessing algorithms. We also investigate the
significance of test-set selection when evaluating the
strength of different password-composition policies.

4) We investigate the effectiveness of entropy as a mea-
sure of password guessability. For each composition
policy, we compare our guessability calculations to
two independent entropy estimates: one based on the
NIST guidelines mentioned above, and a second that
we calculate empirically from the plaintext passwords
in our dataset. We find that both measures of en-
tropy have only very limited relationships to password
strength as measured by guessability.

Mechanical Turk and controlled password collection. As
with any user study, it is important to reflect on the origin
of our dataset to understand the generalizability of our
findings. We collected 12,000 plaintext passwords using
Amazon’s Mechanical Turk crowdsourcing service (MTurk).
Many researchers have examined the use of MTurk workers
(Turkers) as participants in human-subjects research. About
half of all Turkers are American, with Indian participation
increasing rapidly in the last 2-3 years to become about
one third of Turkers [14]. American Turkers are about two-
thirds women, while Indian Turkers are similarly weighted
toward men [15]. Overall, the Turker population is younger
and more educated than the general population, with 40%
holding at least a bachelor’s degree; both of these trends are
more pronounced among Indian Turkers [14], [15].

Buhrmester et al. find that the Turker population is signif-
icantly more diverse than samples used in typical lab-based
studies that heavily favor college-student participants [16].
This study, and others, found that well-designed MTurk tasks
provide high-quality user-study data [16]-[19].

This analysis of MTurk has important implications in
the context of studying passwords. We expect our findings
will be more generalizable than those from lab studies with
a more constrained participant base. Because we collected
demographic information from our participants, our sample
(and any biases it introduces) can be more accurately char-
acterized than samples based on leaked password lists from
various websites collected under uncertain circumstances.

A related consideration is that while our participants
created real passwords that were needed several days later to
complete the study and obtain a small bonus payment, these
passwords did not protect high-value accounts. Password
research has consistently been limited by the difficulty of
studying passwords used for high-value accounts. Lab stud-
ies have asked participants to create passwords that protect

simulated accounts, $5, a chance to win an iPod in a raffle,
or access to university course materials including homework
and grades [20]-[23]. Other studies have relied on leaked
password lists like the RockYou set [13], [24]. While this
set contains millions of passwords, it also contains non-
password artifacts that are difficult to filter out definitively,
its provenance and completeness are unclear, and it is
hard to say how much value users place on protecting an
account from a social gaming service. Other commonly used
leaked password lists come from sites including MySpace,
silentwhisper.net, and a variety of Finnish websites, with
user valuations that are similarly difficult to assess [2],
[25]. In Section VI, we briefly compare our MTurk users’
behavior to results from a survey of people using higher-
value passwords in practice.

Overall, although our dataset is not ideal, we contend that
our findings do provide significant insight into the effects
of password-composition policies on password guessability.
Because so little is known about this important topic, even
imperfect information constitutes progress.

Roadmap. In Section II we survey related work. We de-
scribe our data collection and analysis methodology in Sec-
tions IIT and IV. We convey our main results in Section V,
and address their generalizability and ethical considerations
in Section VI. We conclude in Section VII by discussing
the implications of our results for future research and for
defining practical password-composition policies.

II. BACKGROUND AND RELATED WORK

Research on passwords has been active for many years.
We first summarize the different types of data collection and
analysis that have been used. We then discuss evaluations of
the impact of password policies and metrics for quantifying
password strength.

Collection and analysis of password data. Many prior
password studies have used small sample sizes [26]-[29],
obtained through user surveys or lab studies. Kuo et al.
estimated the security of 290 passwords created in an online
survey [21]. We also use an online survey, but we consider
larger and more varied sets of passwords. In addition, we
recruit participants using Mechanical Turk, which produces
more diverse samples than typical lab studies [16].

Other studies analyze large samples of passwords os-
tensibly created by users for actual accounts of varying
importance [1]-[3], [13], [30], [31]. Unlike these studies,
we study the impact of different password policies on pass-
word strength and use passwords collected under controlled
password-policy conditions.

Impact of password policies. Several studies have consid-
ered the impact of password policies on password strength.
In lab studies, Proctor et al. [12] and Vu et al. [32] found
passwords created under stricter composition requirements
were more resistant to automated cracking, but also more



difficult for participants to create and remember. We consider
similar data for a much larger set of users, allowing for more
comprehensive evaluation. Other findings suggest too-strict
policies, which make creating and remembering passwords
too difficult, induce coping strategies that can hurt both
security and productivity [33]-[37]. Further, Floréncio and
Herley found that the strictest policies are often used not by
organizations with high-value assets to protect, but rather by
those that do not have to compete on customer service [38].
An increasingly popular password-strengthening measure
that we also investigate is subjecting new passwords to a
blacklist check. Schechter et al. proposed a password policy
in which passwords chosen by too many users are blacklisted
for subsequent users [39]. This offers many theoretical
advantages over other password-composition schemes.

Measuring password strength. Effective evaluation of
password strength requires a proper metric. One possible
metric is information entropy, defined by Shannon as the
expected value (in bits) of the information contained in a
string [40]. Massey connects entropy with password strength
by demonstrating that entropy provides a lower bound on
the expected number of guesses to find a text [41]. A
2006 National Institute of Standards and Technology (NIST)
publication uses entropy to represent the strength of a
password, but does not calculate entropy empirically [11].
Floréncio and Herley estimated theoretical entropy for the
field data they analyzed [1].

An alternative metric of password strength is “guessabil-
ity,” which characterizes the time needed for an efficient
password-cracking algorithm to discover a password. In one
example, Weir et al. divide a large set of existing passwords
into different categories based on composition, then apply
automated cracking tools to examine how well NIST’s
entropy estimates predict measured guessing difficulty [13].
Castelluccia et al. use Markov models to measure password
strength based on the distribution of already-selected pass-
words [42]. Dell’Amico et al. evaluate password strength
by calculating guessing probabilities yielded by popular
password-cracking heuristics [2]. We use a related approach
but focus on comparing password policies.

Narayanan et al. discuss a password-cracking technique
based on a Markov model, in which password guesses are
made based on contextual frequency of characters [27].
Marechal [43] and Weir [44] both examine this model and
find it more effective for password cracking than the popular
password-cracking program John the Ripper [45]. Weir et al.
present a novel password-cracking technique that uses the
text structure from training data while applying mangling
rules to the text itself [25]. The authors found their technique
to be more effective than John the Ripper. In a separate
study, Zhang et al. found Weir’s algorithm most effective
among the techniques they used [31].

In this work, we apply the Weir algorithm and a varia-
tion of the Markov model to generate blacklists restricting

password creation in some of our study conditions, and to
implement a new measure of password strength, the guess
number, which we apply to user-created passwords collected
under controlled password-composition policies.

III. METHODOLOGY: DATA COLLECTION

In this section, we discuss our methodology for collecting
plaintext passwords, the word lists we used to assemble the
blacklists used in some conditions, and the eight conditions
under which we gathered data. We also summarize partici-
pant demographics.

A. Collection instrument

From August 2010 to January 2011, we advertised a two-
part study on Mechanical Turk, paying between 25 and 55
cents for the first part and between 50 and 70 cents for the
second part. The consent form indicated the study pertained
to visiting secure websites.

Each participant was given a scenario for making a new
password and asked to create a password that met a set
of password-composition requirements; the scenarios and
requirements are detailed in Section III-C. Participants who
entered a password that did not conform to requirements
were shown an error message indicating which requirements
were not met and asked to try again until they succeeded.
After creating a password, participants took a brief survey
about demographics and password creation. Participants
were then asked to recall the password just created; after five
failed attempts, the password was displayed. For the second
part of the study, participants were emailed two days later
and asked to return to the website and recall their passwords.
We measured the incidence of passwords being written down
or otherwise stored (via detecting browser storage and copy-
paste behavior, as well as asking participants; see Section VI
for details). The second part of the study primarily concerns
memorability and usability factors. We report detailed results
on these topics in a prior paper, which uses a large subset
of the dataset we analyze here [46]; we briefly revisit these
findings when we discuss our results in Section V.

B. Word lists for algorithm training

We use six publicly available word lists as training data in
our analysis and to assemble the blacklists used in some of
our experimental conditions. The RockYou password set [24]
includes more than 30 million passwords, and the MySpace
password set [47] contains about 45,000 passwords. (We
discuss ethical considerations related to these datasets in
Section VI.) The inflection list! contains 250,000 words in
varied grammatical forms such as plurals and past tense.
The simple dictionary contains about 200,000 words and is a
standard English dictionary available on most Unix systems.
We also used two cracking dictionaries from the Openwall
Project’ containing standard and mangled versions of dic-

Uhttp://wordlist.sourceforge.net
Zhttp://www.openwall.com/wordlists/



tionary words and common passwords: the free Openwall
list with about 4 million words and the paid Openwall list
with more than 40 million. While these data sources are not
ideal, they are publicly available; we expect attackers would
use these word lists or others like them for training data. In
Section V-B, we consider the effect of a variety of training
sets drawn from these word lists as well as our collected
password data.

C. Conditions

Our participants were divided into eight conditions com-
prising seven sets of password-composition requirements
and two password-creation scenarios. We used two scenarios
in order to measure the extent to which giving participants
different instructions affects password strength. The survey
scenario was designed to simulate a scenario in which
users create low-value passwords, while the email scenario
was designed to elicit higher-value passwords. All but one
condition used the email scenario.

In the survey scenario, participants were told, “To link
your survey responses, we will use a password that you
create below; therefore it is important that you remember
your password.”

In the email scenario, participants were told, “Imagine
that your main email service provider has been attacked,
and your account became compromised. You need to create
a new password for your email account, since your old
password may be known by the attackers. Because of the
attack, your email service provider is also changing its
password rules. Please follow the instructions below to
create a new password for your email account. We will ask
you to use this password in a few days to log in again, so it
is important that you remember your new password. Please
take the steps you would normally take to remember your
email password and protect this password as you normally
would protect the password for your email account. Please
behave as you would if this were your real password!”

The eight conditions are detailed below.

basic8survey: Participants were given the survey scenario
and the composition policy ‘“Password must have at least 8
characters.” Only this condition uses the survey scenario.

basic8:  Participants were given the email scenario and
the composition policy ‘“Password must have at least 8
characters.” Only the scenario differs from basic8survey.

basicl6: Participants were given the email scenario and
the composition policy ‘“Password must have at least 16
characters.”

dictionary8: Participants were given the email scenario and
the composition policy “Password must have at least 8 char-
acters. It may not contain a dictionary word.” We removed
non-alphabetic characters and checked the remainder against
a dictionary, ignoring case. This method is used in practice,

including at our institution. We used the free Openwall list
as the dictionary.

comprehensive8: Participants were given the email sce-
nario and the composition policy “Password must have at
least 8 characters including an uppercase and lowercase
letter, a symbol, and a digit. It may not contain a dictionary
word.” We performed the same dictionary check as in dic-
tionary8. This condition reproduced NIST’s comprehensive
password-composition requirements [11].

blacklistEasy: Participants were given the email scenario
and the composition policy “Password must have at least
8 characters. It may not contain a dictionary word.” We
checked the password against the simple Unix dictionary,
ignoring case. Unlike the dictionary8 and comprehensive8
conditions, the password was not stripped of non-alphabetic
characters before the check.

blacklistMedium: Same as the blacklistEasy condition,
except we used the paid Openwall list.

blacklistHard: Same as the blacklistEasy condition, except
we used a five-billion-word dictionary created using the
algorithm outlined by Weir et al. [25]. For this condition, we
trained Weir et al.’s algorithm on the MySpace, RockYou,
and inflection lists. Both training and testing were conducted
case-insensitively, increasing the strength of the blacklist.

These conditions represent a range of NIST entropy
values: 18 bits for basic8 and basic8survey, 30 bits for com-
prehensive8 and basicl6, and 24 bits for the four dictionary
and blacklist conditions [11], [46]. We test the increasingly
popular blacklist approach (see Section II) with a wide range
of blacklist sizes.

D. Participant demographics

Of participants who completed part one of our study, 55%
returned within 3 days and completed part two. We detected
no statistically significant differences in the guessability of
passwords between participants who completed just part one
and those who completed both. As a result, to maximize data
for our analyses and use the same number of participants
for each condition, our dataset includes passwords from
the first 1,000 participants in each condition to successfully
complete the first part of the study. To conduct a wider
variety of experiments, we used data from an additional
2,000 participants each in basic8 and comprehensives.

Among these 12,000 participants, 53% percent reported
being male and 45% female, with a mean reported age of
29 years. This sample is more male and slightly younger
than Mechanical Turk participants in general [14], [16].
About one third of participants reported studying or working
in computer science or a related field. This did not vary
significantly across conditions, except between blacklistEasy
and blacklistHard (38% to 31%; pairwise Holm-corrected
Fisher’s exact test [PHFET], p < 0.03). Participants in the
basic16 condition were slightly but significantly older (mean



30.3 years) than those in blacklistHard, basic8, and com-
prehensive8 (means 28.6, 28.9, and 29.1 years respectively;
PHFET, p < 0.03). We observed no significant difference in
gender between any pair of conditions (PHFET, p > 0.05).

IV. METHODOLOGY: DATA ANALYSIS

This section explains how we analyzed our collected
password data. First, and most importantly, Section IV-A
discusses our approach to measuring how resistant pass-
words are to cracking, i.e., guessing by an adversary. We
present a novel, efficient method that allows a broader
exploration of guessability than would otherwise be possible.
For comparison purposes, we also compute two independent
entropy approximations for each condition in our dataset,
using methods described in Section I'V-B.

A. Guess-number calculators

Traditionally, password guess resistance is measured by
running one or more password-cracking tools against a
password set and recording when each password is cracked.
This works well when the exploration is limited to a
relatively small number of guesses (e.g., 10'°, or roughly
the number of guesses a modern computer could try in
one day). However, as the computational power of potential
adversaries increases, it becomes important to consider how
many passwords can be cracked with many more guesses.

To this end, we introduce the guess-number calcula-
tor, a novel method for measuring guess resistance more
efficiently. We take advantage of the fact that, for most
deterministic password-guessing algorithms, it is possible to
create a calculator function that maps a password to the
number of guesses required to guess that password. We
call this output value the guess number of the password.
A new guess-number calculator must be implemented for
each cracking algorithm under consideration. For algorithms
(e.g., [13]) that use a training set of known passwords to
establish guessing priority, a new funing of the calculator is
generated for each new training set to be tested.

Because we collect plaintext passwords, we can use a
guessing algorithm’s calculator function to look up the
associated guess number for each password, without actually
running the algorithm. This works for the common case
of deterministic guessing algorithms (e.g., [13], [27], [43],
[45]).

We use this approach to measure the guessability of a set
of passwords in several ways. We compute the percentage
of passwords that would be cracked by a given algorithm,
which is important because the most efficient cracking tools
use heuristics and do not explore all possible passwords.
We also compute the percentage that would be cracked
with a given number of guesses. We also use calculators to
compare the performance of different cracking algorithms,
and different training-set tunings within each algorithm. By

combining guess-number results across a variety of algo-
rithms and training sets, we can develop a general picture
of the overall strength of a set of passwords.

We implemented two guess-number calculators: one for a
brute-force algorithm loosely based on the Markov model,
and one for the heuristic algorithm proposed by Weir et al.,
which is currently the state-of-the-art approach to password
cracking [13], [31]. We selected these as the most promising
brute-force and heuristic options, respectively, after compar-
ing the passwords we collected to lists of 1, 5, and 10 billion
guesses produced by running a variety of cracking tools and
tunings. Henceforth, we refer to our implementations as the
brute-force Markov (BFM) and Weir algorithms.

1) Training sets: Both algorithms require a training set: a
corpus of known passwords used to generate a list of guesses
and determine in what order they should be tried.

We explore a varied space of training sets constructed
from different combinations of the publicly available word
lists described in Section III-B and subsets of the passwords
we collected. This allows us to assess whether comple-
menting publicly available data with passwords collected
from the system under attack improves the performance
of the cracking algorithms. We further consider training-set
variations specifically tuned to our two most complex policy
conditions, comprehensive8 and basic16.

In each experiment we calculate guess numbers only for
those passwords on which we did not train, using a cross-
validation approach. For a given experiment, we split our
passwords into n partitions, or folds. We generate a training
set from public data plus (n—1) folds of our data, and test it
on the remaining fold. We use each of the n folds as test data
exactly once, requiring n iterations of testing and training.
We combine results from the n folds, yielding guess-number
results for all of our passwords. Because training often
involves significant computational resources, as described
in Section IV-A3, we limit to two or three the number of
iterations in our validation. Based on the similarity of results
we observed between iterations, this seems sufficient. We
describe our training and test sets in detail in Appendix A.

We do not claim these training sets or algorithms repre-
sent the optimal technique for guessing the passwords we
collected; rather, we focus on comparing guess resistance
across password-composition policies. Investigating the per-
formance of guessing algorithms with different tunings also
provides insight into the kind of data set an attacker might
need in order to efficiently guess passwords created under a
specific password-composition policy.

2) BFM calculator: The BFM calculator determines
guess numbers for a brute-force cracking algorithm loosely
based on Markov chains [27], [43]. Our algorithm differs
from previous work by starting with the minimum length
of the password policy and increasing the length of guesses
until all passwords are guessed. Unlike other implementa-
tions, this covers the entire password space, but does not try



guesses in strict probability order.

The BFM algorithm uses the training set to calculate the
frequency of first characters and of digrams within the pass-
word body, and uses these frequencies to deterministically
construct guessing order. For example, assume an alphabet
of {A, B, C} and a three-character-minimum configuration.
If training data shows that A is the most likely starting
character, B is the character most likely to follow A, and C
is the character most likely to follow B, then the first guess
will be ABC. If the next-most-likely character to follow B
is A, the second guess will be ABA, and so forth.

Our guess-number calculator for this algorithm processes
the training data to generate a lookup table that maps each
string to the number of guesses needed to reach it, as follows.
For an alphabet of IV characters and passwords of length L,
if the first character tried does not match the first character
of the target password, we know that the algorithm will
try N1 incorrect guesses before switching to a different
first character. So, if the first character of the password
to be guessed is the k-th character to be tried, there will
be at least (k — 1)N*~! incorrect guesses. We can then
iterate the computation: when the first character is correct,
but the second character is incorrect, the algorithm will
try NZ=2 incorrect guesses, and so forth. After looking
up the order in which characters are tried, we sum up the
number of incorrect guesses to discover how many iterations
will be needed before hitting a successful guess for a given
password, without having to actually try the guesses.

3) Weir algorithm calculator: We also calculate guess
numbers for Weir et al’s more complex algorithm. The
Weir algorithm determines guessing order based on the
probabilities of different password structures, or patterns
of character types such as letters, digits, and symbols [25].
Finer-grained guessing order is determined by the probabil-
ities of substrings that fit into the structure. The algorithm
defines a terminal as one instantiation of a structure with
specific substrings, and a probability group as a set of
terminals with the same probability of occurring.

As with the BFM calculator, we process training data to
create a lookup table, then calculate the guess number for
each password. The mechanism for processing training data
is outlined in Algorithm 1. To calculate the guess number for
a password, we determine that password’s probability group.
Using the lookup table created from the training set, we
determine the number of guesses required to reach that prob-
ability group. We then add the number of guesses required to
reach the exact password within that probability group. This
is straightforward because once the Weir algorithm reaches a
given probability group, all terminals in that group are tried
in a deterministic order.

Because creating this lookup table is time-intensive, we
set a cutoff point of 50 trillion guesses past which we do
not calculate the guess number for additional passwords.
This allows most Weir-calculator experiments to run in 24

hours or less in our setup. Using the structures and termi-
nals learned from the training data, we can still determine
whether passwords that are not guessed by this point will
ever be guessed, but not exactly when they will be guessed.

Algorithm 1 Creation of a lookup table that, given a proba-
bility group, returns the number of guesses required for the
Weir algorithm to begin guessing terminals of that group. An
l.c.s. is a longest common substring, the longest substrings in
a probability group made from characters of the same type.
For example, for UUss9UUU, the l.c.s.’s would be UU, ss, 9,
and UUU. (In this example, U represents uppercase letters,
s represents lowercase letters, and 9 represents digits.)
T = New Lookup Table
for all structures s do
for all probability_group pg € s do
for all [.c.s. € pg do
¢;=Number of terminals of [.c.s.
p;=Probability of [.c.s. in training data
end for
probability = [[ pi; size =[] ¢
T .add: pg, probability, size
end for
end for
Sort(T) by probability
Add to each value in (7) the sum of prior size values

Distributed computation. Calculating guess numbers for
Weir’s algorithm becomes data intensive as Algorithm 1 gen-
erates a large number 