
You Are Not Your Developer, Either: A Research
Agenda for Usable Security and Privacy Research

Beyond End Users
Yasemin Acar and Sascha Fahl

CISPA, Saarland University
{acar,fahl}@cs.uni-saarland.de

Michelle L. Mazurek
University of Maryland
mmazurek@umd.edu

Abstract—While researchers have developed many tools, tech-
niques, and protocols for improving software security, exploits
and breaches are only becoming more frequent. Some of this
gap between theoretical security and actual vulnerability can
be explained by insufficient consideration of human factors,
broadly termed usability, when developing these mechanisms.
In particular, security mechanisms may be difficult to use, may
conflict with other priorities, or may assume more security
knowledge than users possess. For almost 20 years, the usable
security community has investigated how to improve the usability
of security tools and interfaces aimed at end users. More recently,
the community has begun to apply similar techniques in the
context of improving security tools—such as APIs and bug-
finding software—aimed not at end users but at developers,
whose security errors are magnified across all users of their
products. In this paper, we review key lessons learned from usable
security for end users and consider how to apply them in the
context of developers. We propose a research agenda aimed at
developing a high-quality, comprehensive literature for usable
security for developers, including: investigating how to conduct
reliable research in this context; understanding developers’
attitudes, knowledge, and priorities; measuring the status quo;
and developing improved tools and interventions in the future.

I. INTRODUCTION

In recent years, attacks and data breaches have become
commonplace. Personal and corporate data is attacked over
and over again [1]. Security researchers have demonstrated
cryptographic algorithms, memory-safe applications, and ac-
cess control that can deliver provably strong (if not perfect)
protection from many such attacks. Nonetheless, the rate of
cyber attacks seems to only increase [2]. Historically, the huge
gap between the theoretical strong security offered by these
mechanisms and actual low security in practice is often caused
by the poor usability of security solutions.

Email encryption is one impressive example: asymmet-
ric encryption dates from the 1970s [3], [4] and PGP [5]
was introduced in 1991, but even in today’s environment
of organized cybercrime and nation-state surveillance, almost
no one uses end-to-end email encryption. In 1999, Whitten
and Tygar’s seminal paper analyzing email encryption as a
usability problem [6] helped to establish a new research field,
which later became the usable security and privacy community.
Since then, usability problems—broadly defined to include
other human and social science factors, such as economics
and cognitive biases—have been identified as a major factor in

users disregarding existing security and privacy mechanisms.
The usable security and privacy research community aims to
improve the usability of existing mechanisms as well as to
offer guidelines for designing new mechanisms with better
usability built in. Topics that have received significant atten-
tion from this community include email encryption [6]–[11],
passwords and alternative authentication mechanisms [12]–
[17], and security-relevant user interactions such as warning
messages and security indicators [18]–[23].

While progress has been made in improving end-users’
adherence and sometimes even comprehension of security-
critical issues, a key constituency has thus far been understud-
ied: Software developers make security and privacy decisions
that have a huge impact on end-user (and therefore overall
ecosystem) security, and they suffer from similar comprehen-
sion and adherence problems to end users. Although usable
security and privacy research focusing on developers is still
in an early stage, preliminary results illustrate a common
theme: Developers are regular users of security and privacy
mechanisms (e.g., security APIs, protocols, and tools), but
are by no means security experts [24], [25]. We argue for a
systematic approach to studying developers within the security
ecosystem. While developer-usability studies targeting specific
security tools and APIs are becoming more common [26]–
[28], topics are fragmented and quality research norms have
not yet been firmly established. In this position paper, we
argue for systematizing future research on usable security 1 for
developers, including working to validate promising research
methods and identifying key areas of focus.

II. LESSONS LEARNED FROM STUDYING USABLE
SECURITY FOR END-USERS

We briefly discuss key lessons learned from more than 15
years of research into usable security for end users, and how
these lessons can apply in the developer space.

1For simplicity, throughout this paper we refer to security and privacy as
security. We find that privacy-preserving or -enhancing behavior often requires
the use of secure mechanisms, while good security practice often protects
privacy. The research techniques and approaches we discuss generally apply
well for both.



A. You Are Not Your User

Plentiful research has demonstrated that unusable end-user
security tools and interfaces frequently arise when the de-
velopers of these tools make unfounded assumptions about
what the intended users know and understand. Examples
include everything from encryption tools that expect users to
understand the difference between encryption and signing [6],
to browser warnings and app permission descriptions that use
too much security jargon [18], to expecting users to understand
the importance of software updates [29]–[32]. In each of these
cases, security experts have expected end users to know and
care about security, perhaps because of assumed similarity
bias, in which people often assume that everyone is similar
to themselves and the people they know [33].

This lesson applies even more strongly when considering
security tools and APIs used by developers. Because develop-
ers by definition have some level of technical expertise, it is
easy for security experts to mistakenly believe that developer-
users also understand security, or that expert tools need not be
designed with usability in mind. It seems likely this fallacy is
at the root of unusable cryptography APIs, as well as difficult-
to-interpret outputs from bug-finding tools.

In the case of end users, these problems have been mitigated
somewhat by reminding tool developers to consider the differ-
ent needs and attitudes of end users, and by explicitly evalu-
ating usability rather than making assumptions about what is
usable [22], [34]. We believe similar solutions can be helpful
when building security tools for developers; in Section III-C,
we discuss potential targets for usability evaluation.

B. Security Is A Secondary Concern

The usable-security field has firmly established that security
is a secondary concern for end users; when it gets in the way
of a user’s primary goal, security becomes an annoyance to
be worked around or ignored. As examples, end users adopt
insecure password practices when requirements become too
onerous [35], [36] and ignore security icons and warnings
when they are motivated to proceed to their goal [19], [37].

This concept applies equally to developers, who have prior-
ities—functional correctness, time to market, maintainability,
economics, compliance with other corporate policies—that
sometimes appear to conflict with security and are often more
salient [38]. For end users, the usable-security community
frequently recommends taking users out of the loop as much as
possible [39], such as by making updates automatic, choosing
secure defaults, and forcing browsers to use HTTPS. When
removing the user from the loop is infeasible, the community
has often emphasized opinionated design, also called nudging
or soft paternalism, which encourages users to make more
secure choices even if they do not entirely understand the situ-
ation. For example, browser certificate warnings are designed
to discourage click-through [40]. In Section IV we discuss
ideas for applying these approaches to developers as well.

C. More is Not Always Better

A third key lesson from usable security for end users
is that simply adding more and more security advice and
recommendations is not a viable solution. Piling on advice
can overwhelm users and lead them to give up on taking any
steps to improve security; similarly, encountering too many
warnings that don’t lead to actual harms causes habituation
and disengagement. While the usable-security community
continues to struggle with this problem, recently researchers
are acknowledging the overabundance of unhelpful advice and
even advocating rollback of some overzealous policies, such as
password expiration [41]–[43]. This overabundance of security
advice has shifted the problem for end users to choosing which
information sources they trust or rely on the most [44].

Related issues are beginning to be seen in the advocacy
of secure development; for example, the proliferation of new,
sometimes incompatible, encryption libraries claiming both
security and usability with little or no empirical evaluation.
While the end-user security community has not identified any
comprehensive solution to this problem, we encourage the
developer security community to bear in mind that simply
asking developers to do more and more in the name of security
is unlikely to help and may even exacerbate the problem.

III. A RESEARCH AGENDA FOR USABLE SECURITY FOR
DEVELOPERS

We believe that thus far, usable security for developers has
been a critically under-investigated area. Recently, the topic
has begun to receive more attention, and we expect that in the
near future many researchers will address it. In this section, we
lay out a high-level research agenda covering what we believe
are the most important needs in this area. We organize our
suggestions into four areas to investigate: how best to conduct
usable security research with developers; how developers think
about security in the context of their needs and priorities; how
usable current security tools and APIs are and where they fall
short; and how to build more usable tools and paradigms in
the future.

A. Methodology and Ecological Validity

One major concern with studying usable security for devel-
opers is ecological validity: whether or not the circumstances
of a study accurately reflect the real world [45]. While this is
a challenge for most user studies, it’s especially challenging
when targeting usable security for developers, for several
reasons. Because security is a secondary concern, asking
users about it directly may not effectively reflect realistic
circumstances, in which developers may not be thinking about
security or in which other priorities may outweigh security
concerns. In addition, recruiting professional developers to
study can be challenging: depending on the researcher’s ge-
ographical area, there may not be many developers locally
available, and those who are may be too busy to attend
studies. The hourly rates these highly specialized people are
typically paid will often exceed the researcher’s available



budget. Finally, real-life development tasks are complicated
and may be difficult to simulate in a study environment.

To address this challenge, we need methodological research
investigating how to study developers’ security behavior. One
critical question is whether and in what circumstances com-
puter science students, who are often studied out of conve-
nience, can effectively substitute for professional developers.
In our work examining how information resources impact
developers’ decision making, we asked both students and
professionals to complete four time-limited, security-related
programming tasks. We found that professionals outperformed
students in functional correctness, but were no more se-
cure [46]. While this result is intriguing, further investigation
is needed. Is this result reproducible with other security tasks
and environments? What constitutes a professional? How
do professionals from big and small companies differ, and
how do they compare to graduate and undergraduate students
from different universities? Are lab studies necessary, or can
online studies be useful? To answer these questions, controlled
comparison studies are needed; we are currently conducting
one such study comparing students and professionals.

Researchers should also investigate what kind of study
tasks work best for evaluating security tools and behaviors;
to do this, researchers should aim to compare controlled
studies with field observations. We have previously applied
similar methods to evaluate ecological validity for password
studies [15], [16], while other researchers have addressed
ecological validity, e.g., for studies of security indicators [19].
We can also learn from the software engineering community’s
work investigating developers and their tools and behaviors in
non-security domains [47]–[50].

Key research questions:

• Which recruitment strategies provide representative
samples efficiently?

• Which study and task designs are most appropriate
to measure developers’ motivations, attitudes and
knowledge?

B. Understanding Developers’ Motivations, Attitudes, and
Knowledge

In a landmark 1999 article, Adams and Sasse challenged
the conventional wisdom that users reject security behaviors—
in this case password policies—due primarily to laziness or
carelessness [35]. Instead, they argued, misbehavior stemmed
primarily from misunderstandings, competing priorities, and
challenging interfaces. A similar consensus is starting to
emerge with respect to developers’ security behaviors: al-
though historically developers have been seen as “experts”
in contrast to less knowledgeable end users, many (most)
developers are not experts in security, and make errors through
misunderstandings and difficult-to-use interfaces. In addition,
developers have priorities—such as adding functionality, op-
timizing the end-user experience, reducing time-to-market,
and reducing development costs—that often appear to be in

conflict with best security practices. Before we can develop
better tools, interfaces, and educational interventions to pro-
mote secure development, we must investigate what developers
understand about security and how they view secure develop-
ment in the context of their overall goals.

Acquiring this understanding can be approached in sev-
eral ways. We can use qualitative interviews and quantita-
tive surveys to ask developers directly about their security
knowledge, attitudes, and decision-making processes. This
parallels Adams and Sasse’s work [35], as well as many
subsequent papers evaluating end-user security attitudes and
behaviors [30], [44], [51]–[53]. Balebako et al. used this
approach to investigate how mobile app developers make
privacy-relevant decisions, finding that lack of awareness and
lack of resources contribute to poor privacy decisions [25].
In the same study, the authors report on some use of third-
party security tools considered more secure than homemade
implementations. We expect that a similar study focused ex-
plicitly on security attitudes and behaviors would find related
barriers and more in-depth analysis of why and how third-party
security tools are and are not used.

While studies in which participants are asked explicitly
about their attitudes and behaviors provide valuable data
and important context, self-reporting is inherently limited by
human recall and by well-known psychological biases [54],
[55]. To get a complete picture, therefore, we must supple-
ment these findings with measurements of actual behavior.
This can be obtained via in-situ observational studies (e.g.,
following developers to design meetings, observing their work
in progress, etc.), and by field or diary studies in which
developers report on their security-relevant decisions as they
make them. This might include observing decisions like which
libraries to use, what security threat model is appropriate, and
whether to use, e.g., bug-finding or fuzzing tools. While these
studies can be complicated, expensive, and time-consuming,
they provide rich data with strong validity that often cannot
be obtained any other way.

Key research questions:

• What motivates developers to use secure mecha-
nisms and concepts, and how can we use this to
improve the status quo?

• What prevents developers from adhering to secure
recommendations, and how can we counter this?

• Which information sources do developers turn to
and trust, and how can we use this to improve
security?

• Where do developers lack knowledge, and how can
we either provide them with secure information
sources or secure their software without requiring
security education?

C. Investigating the Status Quo

In addition to understanding developers’ knowledge and
attitudes, we must investigate how existing APIs, documen-



tation, and tools encourage or discourage good security be-
haviors. By identifying which tools work well and which fail,
and why, we can improve existing tools and build new ones
that are more likely to be effective.

Existing tools and APIs can be evaluated via field and
measurement studies that capture security behaviors, imple-
mentations, and mistakes across a broad swathe of software.
For example, several studies have examined the use of TLS
and cryptography more generally in mobile apps and identi-
fied common pitfalls and errors [24], [56]–[58]. We propose
further measurements, such as examining how insecure code
propagates on GitHub, or studying how popularity of different
security libraries correlates with common errors. These kinds
of measurements can potentially be extended by contacting
involved developers for follow-up interviews concerning how
libraries were chosen or how errors were made.

While field measurements provide a valuable large-scale
look at how tools and APIs are used in practice, they do
not allow researchers to isolate and test specific hypotheses.
Thus, we also recommend controlled lab experiments to
measure how concrete factors affect developers’ decisions.
For example, in recent work we examined how using Stack
Overflow compared to official documentation affected the
security of code Android developers wrote in response to
short programming tasks [46]. We are currently deploying
an experiment comparing how different cryptography APIs
affect the code developers write. Researchers should also
measure the usability of existing bug-finding and fuzzing tools
to identify problems and pain points; these studies could be
modeled on investigations of usability for security tools used
by end users, such as [6]–[11], [19], [59].

In addition to field studies and lab measurements, expert
review (including, e.g., cognitive walkthroughs and heuristic
evaluations) of tools and APIs for usability can provide valu-
able feedback to their authors with less time and expense. We
propose that researchers evaluate groups of related APIs and
tools to provide clear evidence of the benefits and drawbacks
of each. Expert reviews are frequently used in HCI generally
and in usable security specifically [6], [60]–[62].

Key research questions:

• How well do current APIs, documentation, and
tools support secure behavior?

• In which ways should future APIs, documentation,
and tools be designed to encourage secure behav-
ior?

• Which of APIs, documentation, and tools has the
most promising impact on security; where should
we place the focus of our research?

IV. PROMISING CONCRETE NEXT STEPS

In this section we discuss how to apply the lessons learned
for end users, described in Section II, in a developer context
to improve existing mechanisms and build better ones.

a) Usable security APIs: The software engineering com-
munity has developed guidelines for designing usable APIs
and tools generally [63]–[67], and security researchers have
considered API usability at a high level as well [68], [69].
Guidelines from all these sources should be synthesized and
extended to provide concrete objectives for security APIs.
We are currently developing a framework for measuring the
usability of security APIs, and applying this framework to
evaluate security APIs in the wild. Further work should be
done both to make existing APIs more usable—including via
better documentation—as well as to introduce new APIs that
balance security and usability.

b) Secure, usable information resources: We have shown
that developers make insecure choices when the (usable)
resource they turn to for help is offering quick but insecure
fixes [46]. To address this, we advocate making official docu-
mentation (which already promotes security) more interactive
and usable, and to introduce security monitoring to usable
resources. More research is needed on how to best combine
usability with security in developer resources.

c) Developer tool support: Integrating tool support into
developer environments can both raise security awareness and
provide direct security feedback. For example, we are working
on an exemplar Android Studio plugin that applies static code
analysis to help developers to turn insecure choices into more
secure ones [70]. While developer support and IDEs that make
developing faster and easier exist, no security tools to speak
of are in use.

d) Taking developers out of the loop: We recommend
removing developers from the security loop whenever possi-
ble. We have shown in the past that developers who imple-
ment custom SSL/TLS handling nearly always make insecure
choices; in response, we suggested configurable TLS handling
at the OS level [24]. In a similar vein, we recommend
further research aimed at moving security management and
security-critical decisions from apps to the OS and framework
levels whenever possible. This includes but is not limited to
automatic security library updates, or automatic permission
requests on Android. Not only could this reduce developers’
opportunities to make errors, but it is also compatible with the
tendency to prioritize reducing development time and effort
over security correctness. Research is needed to identify cases
where this is possible as well as to suggest effective ways
to remove developers from the security loop without overly
restricting functionality.

V. CONCLUSION

In this paper we advocate a systematic, organized effort to
understand developers’ attitudes, needs, and priorities toward
security. Based on this understanding, security tools and APIs
can be improved to increase adoption and adherence. Advanc-
ing usable security for developers will be challenging, but it
has the potential to bring already-known solutions into greater
use and provide enormous benefits to the overall security
ecosystem.



REFERENCES

[1] S. Ramanan, “The top 10 security breaches of 2015,” http://www.forbes.
com/sites/quora/2015/12/31/the-top-10-security-breaches-of-2015/
#7a67d9d5694f, 2015.

[2] Symantec, “2016 Internet Security Threat Report.”
[3] W. Diffie and M. Hellman, “New directions in cryptography,” in IEEE

Transactions on Information Theory, 1976.
[4] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining

digital signatures and public-key cryptosystems,” in Communications of
the ACM, 1978.

[5] P. Zimmermann, “PGP version 2.6.2 user’s guide,” ftp://ftp.pgpi.org/pub/
pgp/2.x/doc/pgpdoc1.txt, 1994.

[6] A. Whitten and J. D. Tygar, “Why johnny can’t encrypt: A usability
evaluation of pgp 5.0,” in USENIX Security, 1999.

[7] S. Ruoti, N. Kim, B. Ben, T. van der Horst, and K. Seamons, “Confused
Johnny: When automatic encryption leads to confusion and mistakes,”
in Symposium on Usable Privacy and Security, 2013.

[8] S. Fahl, M. Harbach, T. Muders, M. Smith, and U. Sander, “Helping
johnny 2.0 to encrypt his facebook conversations,” in Symposium on
Usable Privacy and Security, 2012.

[9] S. Sheng, L. Broderick, C. A. Koranda, and J. J. Hyland, “Why johnny
still can’t encrypt: evaluating the usability of email encryption software,”
in Symposium on Usable Privacy and Security, 2006.

[10] S. L. Garfinkel and R. C. Miller, “Johnny 2: a user test of key continuity
management with s/mime and outlook express,” in Symposium on Usable
Privacy and Security, 2005.

[11] S. Ruoti, J. Andersen, S. Heidbrink, M. O’Neill, E. Vaziripour, J. Wu,
D. Zappala, and K. Seamons, “”we’re on the same page”: A usability
study of secure email using pairs of novice users,” in Conference on
Human Factors in Computing Systems, 2016.

[12] R. Biddle, S. Chiasson, and P. C. van Oorschot, “Graphical passwords:
Learning from the first twelve years,” in Computing Surveys, 2012.

[13] S. Komanduri, R. Shay, P. G. Kelley, M. L. Mazurek, L. Bauer,
N. Christin, L. F. Cranor, and S. Egelman, “Of passwords and people:
measuring the effect of password-composition policies,” in Conference
on Human Factors in Computing Systems, 2011.

[14] M. Harbach, A. De Luca, and S. Egelman, “The Anatomy of Smartphone
Unlocking,” in Conference on Human Factors in Computing Systems,
2016.

[15] M. L. Mazurek, S. Komanduri, T. Vidas, L. Bauer, N. Christin, L. F.
Cranor, P. G. Kelley, R. Shay, and B. Ur, “Measuring password
guessability for an entire university,” in Conference on Computer and
Communications Security, 2013.

[16] S. Fahl, M. Harbach, Y. Acar, and M. Smith, “On The Ecological
Validity of a Password Study,” in Symposium on Usable Privacy and
Security, 2013.

[17] F. Stajano, “Pico: No More Passwords!” in International Workshop on
Security Protocols, 2011.

[18] J. Sunshine, S. Egelman, H. Almuhimedi, and N. Atri, “Crying Wolf: An
Empirical Study of SSL Warning Effectiveness.” in USENIX Security,
2009.

[19] S. E. Schechter, R. Dhamija, A. Ozment, and I. Fischer, “The Emperor’s
New Security Indicators,” in IEEE Symposium on Security and Privacy,
2007.

[20] D. Akhawe and A. P. Felt, “Alice in Warningland: A Large-Scale Field
Study of Browser Security Warning Effectiveness.” in USENIX Security,
2013.

[21] A. P. Felt, R. W. Reeder, A. Ainslie, H. Harris, M. Walker, C. Thompson,
M. E. Acer, E. Morant, and S. Consolvo, “Rethinking connection
security indicators,” in Symposium on Usable Privacy and Security,
2016.

[22] J. Weinberger and A. P. Felt, “A week to remember: The impact of
browser warning storage policies,” in Symposium on Usable Privacy
and Security, 2016.

[23] C. Bravo-Lillo, S. Komanduri, L. F. Cranor, R. W. Reeder, M. Sleeper,
J. Downs, and S. Schechter, “Your attention please: Designing security-
decision UIs to make genuine risks harder to ignore,” in Symposium on
Usable Privacy and Security, 2013.

[24] S. Fahl, M. Harbach, H. Perl, M. Koetter, and M. Smith, “Rethinking
SSL Development in an Appified World,” in Conference on Computer
and Communications Security, 2013.

[25] R. Balebako, A. Marsh, J. Lin, and J. Hong, “The Privacy and Security
Behaviors of Smartphone App Developers,” in Workshop on Usable
Security, 2014.

[26] D. Botta, R. Werlinger, A. Gagné, K. Beznosov, L. Iverson, S. Fels, and
B. Fisher, “Towards understanding it security professionals and their
tools,” in Symposium on Usable Privacy and Security, 2007.

[27] J. Xie, B. Chu, H. R. Lipford, and J. T. Melton, “Aside: Ide support
for web application security,” in Computer Security Applications Con-
ference, 2011.

[28] K. Y, S. D. Dechand, E. Gerhards-Padilla, and M. Smith, “Helping
Johnny to Analyze Malware: A Usability-Optimized Decompiler and
Malware Analysis User Study,” in IEEE Symposium on Security and
Privacy, 2016.

[29] A. Mathur, J. Engel, S. Sobti, V. Chang, and M. Chetty, “”they keep
coming back like zombies”: Improving software updating interfaces,” in
Symposium on Usable Privacy and Security, 2016.

[30] K. E. Vaniea, E. Rader, and R. Wash, “Betrayed by updates,” in
Conference on Human Factors in Computing Systems, 2014.

[31] M. Oltrogge, Y. Acar, S. Dechand, M. Smith, and S. Fahl, “To pin or
not to pin—helping app developers bullet proof their tls connections,”
in USENIX Security, 2015.

[32] S. Fahl, S. Dechand, H. Perl, F. Fischer, J. Smrcek, and M. Smith, “Hey,
nsa: Stay away from my market! future proofing app markets against
powerful attackers,” in Conference on Computer and Communications
Security, 2014.

[33] R. Holtz and N. Miller, “Assumed similarity and opinion certainty,” in
Journal of Personality and Social Psychology, 1985.

[34] R. Reeder, E. C. Kowalczyk, and A. Shostack, “Helping engineers design
neat security warnings,” in Symposium On Usable Privacy and Security,
2011.

[35] A. Adams and M. A. Sasse, “Users are not the Enemy,” in Communi-
cations of the ACM, 1999.

[36] Y. Zhang, F. Monrose, and M. K. Reiter, “The security of modern
password expiration: an algorithmic framework and empirical analysis,”
in Conference on Computer and Communications Security, 2010.

[37] J. Lee, L. Bauer, and M. L. Mazurek, “The Effectiveness of Security
Images in Internet Banking,” in IEEE Internet Computing, 2015.

[38] R. Werlinger, K. Hawkey, and K. Beznosov, “An integrated view
of human, organizational, and technological challenges of it security
management,” in Information Management & Computer Security, 2009.

[39] L. Cranor, “A Framework for Reasoning About the Human in the Loop,”
in Usability, Psychology and Security, 2008.

[40] A. P. Felt, A. Ainslie, R. W. Reeder, S. Consolvo, S. Thyagaraja,
A. Bettes, H. Harris, and J. Grimes, “Improving ssl warnings: Com-
prehension and adherence,” in Conference on Human Factors and
Computing Systems, 2015.

[41] L. Cranor, “Time to rethink mandatory password changes,”
https://www.ftc.gov/news-events/blogs/techftc/2016/03/
time-rethink-mandatory-password-changes/, 2016.

[42] C. Herley, “More Is Not the Answer,” in IEEE Security & Privacy, 2014.
[43] S. Chiasson and P. C. van Oorschot, “Quantifying the security advantage

of password expiration policies,” in Designs, Codes and Cryptography,
2015.

[44] E. M. Redmiles, A. R. Malone, and M. L. Mazurek, “I Think They’re
Trying to Tell Me Something: Advice Sources and Selection for Digital
Security,” in IEEE Symposium on Security and Privacy, 2016.

[45] M. Höst, B. Regnell, and C. Wohlin, “Using students as subjects:
A comparative study ofstudents and professionals in lead-time impact
assessment,” in Empirical Software Engineering, 2000.

[46] Y. Acar, M. Backes, S. Fahl, D. Kim, and M. L. Mazurek, “You Get
Where You’re Looking For: The Impact Of Information Sources On
Code Security,” in IEEE Symposium on Security and Privacy, 2016.

[47] T. Scheller and E. Kühn, “Usability Evaluation of Configuration-Based
API Design Concepts,” in Human Factors in Computing and Informatics,
2013.

[48] B. Ellis, J. Stylos, and B. Myers, “The Factory Pattern in API Design:
A Usability Evaluation,” in International Conference on Software Engi-
neering, 2007.

[49] J. Stylos and B. A. Myers, “The implications of method placement on
API learnability,” in ACM SIGSOFT International Symposium, 2008.

[50] C. Burns, J. Ferreira, T. D. Hellmann, and F. Maurer, “Usable results
from the field of API usability: A systematic mapping and further
analysis,” in IEEE Symposium on Visual Languages and Human-Centric
Computing, 2012.

http://www.forbes.com/sites/quora/2015/12/31/the-top-10-security-breaches-of-2015/#7a67d9d5694f
http://www.forbes.com/sites/quora/2015/12/31/the-top-10-security-breaches-of-2015/#7a67d9d5694f
http://www.forbes.com/sites/quora/2015/12/31/the-top-10-security-breaches-of-2015/#7a67d9d5694f
ftp://ftp.pgpi.org/pub/pgp/2.x/doc/pgpdoc1.txt
ftp://ftp.pgpi.org/pub/pgp/2.x/doc/pgpdoc1.txt
https://www.ftc.gov/news-events/blogs/techftc/2016/03/time-rethink-mandatory-password-changes/
https://www.ftc.gov/news-events/blogs/techftc/2016/03/time-rethink-mandatory-password-changes/


[51] R. Wash and E. Rader, “Too Much Knowledge? Security Beliefs and
Protective Behaviors Among United States Internet Users,” in Sympo-
sium on Usable Privacy and Security, 2015.

[52] E. Chin, A. P. Felt, V. Sekar, and D. Wagner, “Measuring user confidence
in smartphone security and privacy,” in Symposium on Usable Privacy
and Security, 2012.

[53] D. K. Smetters and N. Good, “How users use access control,” in
Symposium on Usable Privacy and Security, 2009.

[54] K. Kelley, “Good practice in the conduct and reporting of survey
research,” in International Journal for Quality in Health Care, vol. 15,
2003.

[55] A. Tversky and D. Kahneman, “Judgment under Uncertainty: Heuristics
and Biases,” in Utility, Probability, and Human Decision Making, 1975.

[56] M. Egele, D. Brumley, Y. Fratantonio, and C. Kruegel, “An Empirical
Study of Cryptographic Misuse in Android Applications,” in Conference
on Computer and Communications Security, 2013.

[57] M. Georgiev, S. Iyengar, S. Jana, R. Anubhai, D. Boneh, and
V. Shmatikov, “The most dangerous Code in the World: Validating SSL
Vertificates in non-browser Software,” in Conference on Computer and
Communications Security, 2012.

[58] B. Reaves, N. Scaife, A. Bates, and P. Traynor, “Mo(bile) Money,
Mo(bile) Problems: Analysis of Branchless Banking Applications in the
Developing World,” in USENIX Security, 2015.

[59] A. P. Felt, R. W. Reeder, A. Ainslie, H. Harris, M. Walker, C. Thompson,
M. E. Acer, E. Morant, and S. Consolvo, “Rethinking connection
security indicators,” in Symposium on Usable Privacy and Security,

2016.
[60] C. A. Brodie, C.-M. Karat, and J. Karat, “An empirical study of natural

language parsing of privacy policy rules using the SPARCLE policy
workbench,” in Symposium on Usable Privacy and Security, 2006.

[61] J. Clark, P. C. van Oorschot, and C. Adams, “Usability of anonymous
web browsing: an examination of Tor interfaces and deployability,” in
Symposium on Usable Privacy and Security, 2007.

[62] S. Eskandari, D. Barrera, and E. Stobert, “A first look at the usability
of bitcoin key management,” in Workshop on Usable Security, 2015.

[63] B. A. Myers and J. Stylos, “Improving API usability,” in Communica-
tions of the ACM, 2016.

[64] J. Nielsen, Usability engineering. Morgan Kaufmann, 1993.
[65] S. Clarke, “Using the cognitive dimensions framework to de-

sign usable APIs,” https://blogs.msdn.microsoft.com/stevencl/2003/11/
14/using-the-cognitive-dimensions-framework-to-design-usable-apis/.

[66] M. Henning, “API design matters,” in Queue, 2007.
[67] J. Bloch, “How to design a good API and why it matters,” in Companion

to the ACM SIGPLAN conference, 2006.
[68] M. Green and M. Smith, “Developers are not the enemy! the need for

usable security apis,” in IEEE Security & Privacy, To appear.
[69] G. Wurster and P. C. van Oorschot, “The developer is the enemy,” in

New Security Paradigms Workshop, 2008.
[70] D. Cuong Nguyen, Y. Acar, S. Fahl, and M. Backes, “POSTER: Devel-

opers Are Users Too: Helping Developers Write Privacy Preserving and
Secure (Android) Code,” in Symposium on Usable Privacy and Security,
2016.

https://blogs.msdn.microsoft.com/stevencl/2003/11/14/using-the-cognitive-dimensions-framework-to-design-usable-apis/
https://blogs.msdn.microsoft.com/stevencl/2003/11/14/using-the-cognitive-dimensions-framework-to-design-usable-apis/

	I Introduction
	II Lessons Learned from Studying Usable Security for End-Users
	II-A You Are Not Your User
	II-B Security Is A Secondary Concern
	II-C More is Not Always Better

	III A Research Agenda for Usable Security for Developers
	III-A Methodology and Ecological Validity
	III-B Understanding Developers' Motivations, Attitudes, and Knowledge
	III-C Investigating the Status Quo

	IV Promising Concrete Next Steps
	V Conclusion
	References

