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Abstract. A tree-based approach to integrated action segmentation,
localization and recognition is proposed. An action is repr esented as a
sequence of joint hog-ow descriptors extracted independently from each
frame. During training, a set of action prototypes is �rst le arned based
on a k-means clustering, and then a binary tree model is constructed
from the set of action prototypes based on hierarchical k-means cluster-
ing. Each tree node is characterized by a shape-motion descriptor and a
rejection threshold, and an action segmentation mask is de� ned for leaf
nodes (corresponding to a prototype). During testing, an ac tion is local-
ized by mapping each test frame to a nearest neighbor prototype using
a fast matching method to search the learned tree, followed by global �l-
tering re�nement. An action is recognized by maximizing the sum of the
joint probabilities of the action category and action proto type over test
frames. Our approach does not explicitly rely on human track ing and
background subtraction, and enables action localization and recognition
in realistic and challenging conditions (such as crowded backgrounds).
Experimental results show that our approach can achieve recognition
rates of 100% on the CMU action dataset and 100% on the Weizmann
dataset.

1 Introduction

Action recognition has become an active research topic in computer vision. In
this paper, we propose a simultaneous approach to localize and recognize multi-
ple action classes based on a uni�ed tree-based framework.

Realistic actions often occur against a cluttered, dynamicbackground and
are subject to large variations in people's posture and clothing, illumination
variations, camera motions and occlusion. Figure 1 shows examples of action
frames in realistic environments (with cluttered backgrounds and moving ob-
jects). In these cases, it is not easy to detect and segment the actors from the
backgrounds. Consequently, they pose a signi�cant challenge for those action
recognition approaches which perform simple preprocessing such as background
subtraction [1{4]. Even though many previous works have been done for action
recognition [5{9], robustly localizing and recognizing actions viewed against a
cluttered and dynamic background is still important to expl ore.
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(a) (b) (c)

Fig. 1. Examples of action localization and recognition. (a) The ju mping-jacks action is
recognized even though large background motion ows created by crowds; (b) The two-
handed-wave action is recognized correctly while the actor is partially occluded; (c) The
one-handed-wave action is recognized while there is a signi�cant motion interruption
from vehicles in the background.

Localizing an action in a video is more computationally complex than search-
ing for an object in a 2D image. For example, a video sequence with size
120� 160� 1000 frames can produce more than 1014 subvolumes with variable
spatial and temporal dimensions, which is approximately 106 times larger than
the number of subwindows produced when searching for an object in a 120� 160
image. Although there are some recent approaches for e�ciently searching sub-
windows in a 2D image for object detection [10], they cannot be easily extended
to volume search in 3D spatial and temporal spaces. Most prior work employs
the sliding window scheme for detecting actions. Actions are usually described by
adopting spatial-temporal features and combined shape andmotion information.
The classi�ers are based on cascade classi�ers [11, 12], vocabulary trees [7] and
branch-and-bound schemes [10, 13]. However, most previousapproaches for ac-
tion detection and retrieval built action detectors independently for each action
class, which may not scale well for detecting a large number of action types.

We introduce an e�cient, tree-based approach to localize and recognize an
action simultaneously. This approach extends our previouswork [9]. Compared
to [9], the di�erences between two approaches include: (1) the shape feature in
this paper is based on HOG while the shape feature in [9] is based on binary
silhouette or appearance-based likelihood; (2) the prototype tree in this paper is
used to localize and recognize actions while the tree in [9] is used to speed up the
process of prototype matching and actor location re�nement; (3) the probabilistic
framework in this paper is constructed to determine action category labels and
action prototypes, while the probabilistic framework in [9] is built to determine
actor location and action prototype.

The block diagram of our approach is shown in Figure 2. In the training
phase, an action interest region1 is speci�ed in each frame of a set of training
videos. Action prototypes are learned viak-means clustering on the entire set
of the computed hog-ow descriptors. Next, a binary tree model is constructed
using the set of learned action prototypes. In this tree model, each leaf node cor-

1 Its center is on the vertical central axis of human bounding b ox, and its side length
is proportional to the height of the bounding box.
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Fig. 2. Overview of our approach.

responds to a learned action prototype and contains a list ofparameters including
the probability of the prototype belonging to an action category, frame indices
of all the training descriptors which matched to this protot ype, and a rejection
threshold. These parameters allows us to integrate action localization, recogni-
tion and segmentation in a video. In the testing phrase, we use the conventional
sliding-window-based scheme to generate a sequence of initial bounding boxes of
an action. These initial bounding boxes are rapidly obtained by traversing the
learned binary tree using a fast matching approach (see sec.2.2) to �nd the near-
est neighbor prototypes. This is followed by a Kalman �lteri ng-based re�nement
on their scales and positions. Finally, given the re�ned bounding boxes at each
frame, the action category is identi�ed by maximizing a sum of joint probability
method. Our main contributions are three fold:

{ A HOG-based shape feature is adopted for modeling shape information to
enhance the joint shape-motion descriptors proposed in Linet al. [9].

{ A binary-tree-based approach is introduced to e�ciently lo calize and rec-
ognize multiple action classes against cluttered, dynamicbackgrounds and
under partial occlusions.

{ Action recognition is modeled as a maximum probability estimation problem
of the joint probabilities of action category labels and action prototypes.

1.1 Related Work

Numerous approaches have been proposed for action detection and recognition
recently. Some approaches use motion trajectories of humanbodies or body in-
terest points (or landmarks) to recognize actions, mainly based on visual track-
ing [14{17]. Other approaches represent an action as a space-time volume or use
human silhouettes as shape models for action recognition [1{4, 18]. But the lat-
ter typically requires background subtraction, which faces severe di�culties in
real world scenarios (i.e. cluttered, dynamic backgrounds). Recently, space-time
interest points, or local feature-based approaches, have been applied to action
detection and recognition [6, 19{21, 8]. Many approaches combine multiple fea-
tures to improve action recognition performance [22, 7, 23,12, 24]. Commonly
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used classi�ers for action recognition includek-NN classi�ers [25, 26], support
vector machine (SVM) [21, 22, 6, 27, 28], boosting-based classi�ers [16, 12, 20, 11],
hidden markov model (HMM) [29], dynamic time warping (DTW)- based classi-
�ers [24, 9, 30] and Hough voting schemes [31].

In analogy to object detection, sliding window-based schemes have been em-
ployed for action detection. Laptev and Rerez [12] combinedhistograms of ori-
ented gradients (HOG) [32] and histograms of optical ow for action detection.
Thurau and Hlavac [25] extended the standard HOG-based posedescriptor to
cope with background clutter and usedn-Gram models for sequence matching.
Mikolajczyk and Uemura [7] used a large number of local motion-appearance
features and represented them in a vocabulary forest. Features extracted from
a test sequence are matched to the trees in the forest to vote for the action
categories and locations.

However, most of the action detection approaches [5, 13, 12]built a detec-
tor for each action class independently. Detection is then very expensive when
the number of action classes is large. For multi-class action recognition, shar-
ing feature computation and basic classi�cation steps between action categories
is desirable. This has been investigated in [33] for multi-class object detection.
Motivated by this work, we introduce a simultaneous multi-class action localiza-
tion and recognition approach by sharing information (feature computations) to
reduce redundancy and improve e�ciency.

2 Action Representation and Learning

We use hog-ow descriptors for representing actions. Here we regard a sliding-
window region as a potential action interest region. A hog-ow descriptor is
extracted from each potential action interest region in an image for determining
whether the action of interest exists. An action interest region2 is de�ned as a
square region around the human body.

2.1 Hog-ow Descriptor

We compute a shape descriptor based on the histogram of oriented gradients
introduced in [32]. A simpli�ed HOG descriptor for an action interest region is
represented as a feature vectorDh = ( h1:::hn h ) 2 R n h by dividing the action
interest region into nh non-overlapping square grids (or sub-regions)R1:::Rn h .
Unlike [32] which computes HOG descriptors from a dense overlapping grid,
we compute them on a non-overlapping square grid. More speci�cally, we com-
pute the descriptor as follows: The input imageI is �rst smoothed by a Gaus-
sian �lter with standard deviation � g = 2; then we use a simple 1-D centered
mask [-1, 0, 1] to compute the image spatial gradientx component gx (x; y) =

2 For the training data, we compute the action interest region from background sub-
traction. The action interest region is de�ned as a square re gion around the localized
bounding box. For the test data, the action interest region i s obtained by global �l-
tering re�nement (see sec. 3.2).
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(a) (b) (c) (d) (e) (f)

Fig. 3. An example of computing the hog-ow descriptor of an action f rame against
a moving camera and a dynamic background. (a) Raw optical ow �eld; (b) Motion-
compensated optical ow �eld; (c) Image spatial gradient, ( d) Flow descriptor D f

computed from the raw optical ow �eld. The ow descriptor is visualized by placing its
four channels in a 2� 2 grid. (e) Flow descriptor D f computed from the compensated
optical ow �eld, (f) A visualization of HOG descriptor D h with 8 � 8 grid and 9
orientation bins.

I (x +1 ; y) � I (x � 1; y) and y componentgy (x; y) = I (x; y +1) � I (x; y � 1) along
x direction and y direction respectively3. The magnitude � and orientation �
are computed by � (x; y) =

p
gx (x; y)2 + gy (x; y)2, � = arctan gy (x; y)=gx (x; y).

Next, we divide the action interest region into nh non-overlapping square grids.
For each grid, we accumulate the votes over all the pixels (x; y) into no orien-
tation bins weighted by their magnitude � (x; y) to compute the histograms of
oriented gradients. Finally, the feature vector Dh is obtained by concatenating
all the histogram entries andL 2-normalization. The image spatial gradients and
the HOG descriptor computed from an action interest region are visualized in
Figure 3(c) and 3(f), respectively.

A ow descriptor for an action interest region is represented as anf -dimensional
feature vector D f = ( qbmf +

x ; qbmf �
x ; qbmf +

y ; qbmf �
y ) 2 R n f , where q̀bmf '

refers to quantized, blurred, motion-compensated ow. Theow descriptor D f is
computed by using the approach introduced in [9]. A median ow-based motion
compensation scheme is used for handling the inuences of moving cameras and
dynamic backgrounds in [9]. Figure 3(a) and 3(b) show an example of motion
ow compensation for an action frame against a moving cameraand a dynamic
background. From these two �gures, we know that this approach not only ef-
fectively removes background ows but also corrects foreground ows, so the
extracted ow descriptors are robust against cluttered, dynamic backgrounds. A
ow descriptor for an example action interest region with and without motion
compensation, are visualized in Figure 3(d) and 3(e) respectively.

We concatenate the shape and motion descriptorsDh and D f to form a joint
hog-ow descriptor. The distance between two hog-ow descriptors is computed
using the Euclidean distance metric.

2.2 Tree Model Construction and Matching

We represent an action as a set of representative action prototypes [29, 25, 9],
� = ( � 1; � 2:::� k ). For compressing the redundant information from the training

3 For computing the gradient vector at pixel position ( x, y) of color images, we compute
the image gradients for each color channel and take the one with largest norm.
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descriptors in the presence of small inter-class or large intra-class variability, and
learning representative action prototypes� , we perform clustering on the entire
set of hog-ow descriptors. Next, a binary tree model is constructed from these
learned prototypes.

Prototype Learning Given the set of descriptors extracted from all frames of
the training videos, we performk-means clustering using the Euclidean distance
measure for learning the action prototypes. Since our HOG descriptors and ow
descriptors are obtained byL 2 normalization, the Euclidean distance metric is
reasonable for clustering the joint hog-ow descriptors. The resulting cluster
centers are used as the learned action prototypes. Figures 4(a) and 4(b) show
typical HOG components and ow components of action prototypes.

Tree Learning In order to rapidly localize and recognize an action occurring in
a video, we build a binary tree over the set of prototypes based on the hierarchical
k-means clustering algorithm [34].

For maximizing the e�ciency of the tree search algorithm, we estimate a
matching rejection threshold for each tree node. The thresholds are denoted as
� = ( � 1; � 2; :::; � n t ), where nt is the number of tree nodes. These thresholds
are learned from the training data as follows: For thei -th tree node, let D leaf i

denote the maximum Euclidean distance between the descriptor corresponding
to the i -th node and all of the training descriptors corresponding to its children
leaf nodes. The threshold� i is set to �D leaf i , where the factor � is chosen to
reduce the inuence of the noisy samples from the HOG or ow components of
training descriptors. � is estimated via cross-validation.

In addition to the rejection threshold associated with eachtree node, each leaf
node � i contains a list of parameters� i = ( � i; 1; :::; � i;m ); 
 i = ( ! i; 1; :::; ! i;m ). � i

lists the frame indices of training descriptors that best match with the prototype
(leaf node) � i . 
 i denotes the probability distribution of each prototype (leaf
node) belonging to an action classf � i gi =1 :::m . We �rst compute an observation
vector ^
 i = ( !̂ i; 1; :::; !̂ i;m ). !̂ i;m is de�ned as !̂ i;m = F i;m

Fm
, where Fi;m denotes

the number of training features from classm that are assigned to leaf node� i

and Fm denotes the number of training features in classm. ^
 i is L 1 normalized
to generate a class distribution vector 
 i . These parameters are estimated by
matching the set of hog-ow descriptors from the training data to the learned
tree, which is very important in estimating actor's positio n, scale, and action
category label for a testing video (explained in sec. 3). An example of the bi-
nary tree model is visualized in Figure 4(c). The yellow leafnodes in the �gure
represent action prototypes.

Fast tree matching Given a query subwindow from a frame of video, a query
hog-ow descriptor is extracted and �rst compared to the descriptor correspond-
ing to the top node (see Figure 4(c)). For each non-leaf node,if the distance
between the query feature descriptorDq and the current tree node descriptor
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(a) HOG components (b) Flow components

(c) Learned binary tree model

Fig. 4. An example of tree learning. (a)(b) Visualization of HOG and ow components
of learned prototypes for k = 12. The HOG component is represented by 8 � 8 grids and
9 orientation bins. The ow component is represented by four (orientation channels)
12 � 12 grids. In the ow component, grid intensity indicates mot ion strength and
`arrow' indicates the dominant motion orientation at that g rid, (c) The learned binary
tree model. Yellow tree nodes are prototypes , Query feature D q and its searching path
(red color dashed line).

is less than its rejection threshold, this descriptor is accepted and we continue
traversing the tree; the child node most similar to the querydescriptor is selected
as the next node. This continues until the query feature reaches a leaf node of
the tree. On the other hand, if the distance ever exceeds the rejection threshold
of the tree node, then this query feature is rejected and no longer compared with
its children nodes.

3 Action Recognition

3.1 Problem Formulation

Let random variable V be an observation from an image frame,� be a pro-
totype random variable chosen from the set ofk learned hog-ow prototypes
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� = ( � 1; � 2:::� k ), � be an action category random variable chosen from the set
of m action categoriesA = ( � 1; � 2:::� m ), and � = ( x; y; s) denote random vari-
ables representing actor location comprising image location (x; y) and scales.
Then, the problem of action localization and recognition ina test video is equiv-
alent to maximizing the joint probability distribution p(�; �; �; V ) in each frame
of the video. We assume that i) the observationV is given; ii) action category
� is independent of actor location� ; and iii) the probability of actor location �
given observation V is uniform. The joint probability distribution can now be
decomposed into an action category mapping term and a prototype matching
term:

p(�; �; �; V ) _ p(�; �; � jV ) _ p(� jV; � )p(� jV; � ) (1)

The action category mapping term p(� jV; � ) is estimated by � -th element
! i;� of the class distribution vector 
 i = ( ! i; 1; :::; ! i;m ). We model the prototype
matching term p(� jV; � ) as:

p(� jV; � ) = e� d(D (V;� ) ;D ( � )) ; (2)

whered represents the Euclidean distance between the descriptorD(V; � ) deter-
mined by observation V at location � , and the descriptor D(� ) corresponding
to the prototype � .

3.2 Re�nement by Global Filtering

An initial estimate of position ( x; y) and scales of actor location is �rst obtained
by a conventional sliding-window-based searching scheme over the video frames
using the fast tree matching method. For reducing the inuence of noisy optical
ow and image gradient from a test frame, we perform Kalman �l tering to re�ne
the positions and scales for the initial estimate of position (x; y) and scales of
actor locations over all test frames. The re�ned position and scale of each frame
is used as an action interest region. The dynamic equation and measurement
equation are:

�
� t +1
_� t +1

�
=

�
1 1
0 1

�
�
�

� t
_� t

�
+ Qt ; (3)

�̂ t +1 =
�
1 0

�
�
�

� t +1
_� t +1

�
+ Rt ; (4)

where� t = ( x t ; yt ; st ) denotes the location and scale for framet, _� t is the velocity
and �̂ t is the measured location and scale for framet, which has the minimum
distance between the extracted descriptor extracted from the query subwindow
speci�ed by �̂ t , and any leaf nodes of the tree.Qt v N (0; diag(� 2

� ; � 2
_�
)) is the

process noise andRt v N (0; diag(� 2
� )) is the measurement noise.
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3.3 Action Recognition

After global �ltering, the actor's re�ned locations and sca les f � t gt =1 :::T are
known, whereT represents the number of frames in the test video. Action recog-
nition proceeds by re-computing hog-ow features from these image windows.
Given a location and scale� t at frame t, we compute the joint probability of
action category label � i and prototype � i at frame t as follows:

Jt (� i ) = ! i;� i e
� d(D (V;� t ) ;D ( � i ( � t ))) ; (5)

Each descriptor extracted from the re�ned locations and scales f � gt =1 :::T

and each frame contribute to the probability of action categories f � i gi =1 :::m

occurring in the test video. This is equivalent to maximizing the sum of joint-
probabilities. Finally, the maximum joint-probability ac tion label is given as:

� �
i = argmax f � i gi =1 :::m

l endX

t = l start

Jt (� i ); (6)

where lstart and lend are the start frame and end frame of the test sequence,
respectively. This is equivalent to probabilistic (soft) voting where each frame
contributes a probability of belonging to a category.

3.4 Action Segmentation

In addition to action localization and recognition, our approach also segments
the actor's pose in each frame of a test action sequence. After the process of tree
construction, each action category ini -th leaf node (prototype) has its own set
of representative training descriptors, which is stored in� i = ( � i; 1; :::; � i;m ) by
their indices during training.

Given the probability parameters 
 i = ( ! i; 1; :::; ! i;m ) for the i -th leaf node
(prototype), we de�ne a segmentation mask fori -th leaf node asB i =

P m
j =1 ! i;j bj ,

where f bj gj =1 ::m are the binary silhouettes from the training data correspond-
ing to each action category and identi�ed by � i = ( � i; 1; :::; � i;m ). If a test frame
corresponds to thei -th leaf node, it can use its corresponding averaged segmen-
tation mask to segment the actions. Example results of action segmentations are
shown in Figure 7 and 8. A more precise action segmentation may resort to body
pose �tting or other useful observations, but our results can be used as initial
segmentations and input to a high level segmentation program.

4 Experiments

We evaluated our approach on two public action datasets: CMUaction dataset [5]
and Weizmann action dataset [1], in terms of recognition rate and average com-
putation time. The average computation time is computed as the average time
required to localize and recognize an actor in a test frame. Our experiment fo-
cused on the CMU action dataset, since this dataset is much more di�cult due
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(a) CMU dataset (b) Weizmann dataset

Fig. 5. Evaluation datasets.

to signi�cant background clutter and motion. For computing simpli�ed HOG
descriptors, we divide an action interest region intonh = 8 � 8 non-overlapping
square cells and accumulate the votes over all pixels intono = 9 orientation
bins for each cell. The hog-ow descriptor is 1152-dimensions which consists of a
8� 8� 9 = 576-dimensional HOG descriptor and a 12� 12� 4 = 576-dimensional
ow descriptor.

4.1 Evaluation on the CMU Action Dataset

This dataset consists of �ve action classes: `jumping-jacks', `one-handed-wave',
`pick-up', `push-button' and `two-handed-wave'. Totally there are 48 video se-
quences for the training data. Figure 5(a) shows sample training frames from the
dataset. The testing data contains 110 videos (events) which are down-scaled to
160� 120 in resolution. The dataset is known to be very challenging, because it
was captured by using a hand-held camera in environments with moving persons
or vehicles in the background. The experiment results reported from the dataset
are only the action detection results [5, 24]. We evaluated our approach on both
action localization (detection) and action recognition.

We �rst detect the actions occurring in the test videos. We used the deci-
sion criterion from [5, 24], where a detection is correct if the intersection of the
detected and the ground truth bounding boxes is larger than 50% and the clas-
si�cation label is correct. We generated the precision-recall (P-R) curve for each
action: P recision = T P=(T P + F P ) and Recall = T P=NP, where T P is the
number of true positives, F P is the number of false positives andNP is the
total number of positives. Figure 6 shows P-R curves of each action. The red
curves correspond to our approach, while the green and the blue P-R curves are
the basic results reported in [5] and [24] respectively. In general, our approach
achieved better performance compared to the results reported in [5, 24].

In addition to integrated detection and recognition performance shown in
the P-R curves, we also evaluated isolated recognition performance given ground
truth detections in order to measure the quality of our action recognition com-
ponent. We used the ground truth actor location in the �rst fr ame, and then
searched for the actor in its local neighborhood in later frames. We evaluated
our approach with respect to the number of prototypesk from 500 to 2789. As
shown in Table 1, the recognition rate reached 100% atk = 2789.
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Table 1. Prototype-based recognition results using joint hog-ow f eatures on the CMU
dataset (cluttered, dynamic background).

method recog. rate (%) avg. time (s)

500 proto. 84.55 0.86
1000 proto. 89.09 0.91
1700 proto. 89.09 0.88
2300 proto. 90 0.92
2789 proto. 100 0.89
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(a) jumping-jacks

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

ci
si

on

 

 
Ke's method
Yao's method
Our method

(b) one-handed-wave

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

ci
si

on

 

 
Ke's method
Yao's method
Our method

(c) pick-up
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(d) push-button
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(e) two-handed-wave

Fig. 6. Precision-Recall curves of action detection on the CMU data set. The green
curve labeled as `Ke's method' is the results reported in [5]; the blue curve labeled as
`Yao's method' is the results reported in [24].

Figure 7 shows some qualitative results of action localization and recognition
on this dataset.

4.2 Evaluation on the Weizmann Action Dataset

The Weizmann dataset contains 90 videos separated into 10 actions performed
by 9 persons. Example frames of this dataset are shown in Figure 5(b). We
performed leave-one-person-out experiments to evaluate our approach.

We evaluated the performance of our approach using di�erentnumber of
prototypes. Table 2 shows our experimental results. By using all the training
descriptors (except the training descriptors from the testing person) as action
prototypes, our approach obtained 100% recognition rate. We compared these
results to the state of art action recognition approaches [16, 23, 9, 22, 1, 25]. We
achieved the same recognition rate as [16, 23, 9], but note that we did not use
background subtractions and object tracking to localize and recognize actions.
Figure 8 gives some localization and recognition results using our approach.
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Fig. 7. Examples of action localization and recognition results on the CMU dataset.
Note that our approach e�ectively handled interruption of m oving people and vehicles
in the scene. The 1st row: jumping-jacks; The 2 nd row: one-handed-wave; The 3rd row:
pick-up; The 4 th row: push-button; The 5 th row:two-handed-wave. The green regions
are the segmentation masks.

5 Conclusions

The experimental results show that our approach yields verygood results for
action localization and recognition in realistic scenarios with cluttered, dynamic
backgrounds. Our approach does not rely on background subtraction and human
tracking. In the future, we aim to combine local feature voting-based approach [7]
with our global scheme to improve our results further. Additionally, we are also
exploring scene context [8] as priors to improve our system and to apply it to
more complicated scenarios such as movies and TV shows.
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