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Abstract

We present an approach that combines bag-of-words andkpatiels to perform
semantic and syntactic analysis for recognition of an dlijased on its internal
appearance and its context. We argue that while object néttmig requires mod-

eling relative spatial locations of image features witlia bbject, a bag-of-word
is suf cient for representing context. Learning such a middem weakly labeled

data involves labeling of features into two classes: fayvagd(object) or “infor-

mative” background(context). We present a “shape-awamdehwhich utilizes

contour information for ef cient and accurate labeling eatures in the image.
Our approach iterates between an MCMC-based labeling antwobased la-
beling of features to integrate co-occurrence of featunelsshape similarity.

1 Introduction

Understanding the meaning of a sentence involves both&@mtnd semantic analysis. A bag-of-
words approach applied locally over a sentence would bd aisnt to understand its meaning. For
example, “Jack hit the bar” and “The bar hit Jack” have déférmeanings even though the bag-of-
words representation is the same for both. In many cases;nti@ing meaning also requires word
sense disambiguation using contextual knowledge. For pkardoes “bar” represents a rod or a
place where drinks are served? While a combined semanticyertidcsical model could be used
for representation and application of context as well, illddbe expensive to apply. Syntactical
rules are generally not required for extracting knowledgeua context - a topic model is generally
suf cient for contextual analysis in text [14, 15].

We use analogous reasoning to suggest a similar dichotomgpiresenting object structure and
context in vision. Our approach combines bag-of-words galial models to capture semantics
and syntactic rules, respectively, that are employed foogrizing an object using its appearance,
structure and context. We treat an object and a scene ansldgoa sentence and a document
respectively. Similar to documents, object recognitiomatural scenes requires modeling spatial
relationships of image features(words) within the objadtfor representing context in a scene, a
bag-of-words approach suf ces (See Figure 1 (a) and (b)).

Learning such a model from weakly labeled data requireditabpéhe features in an image as be-
longing to an object or its context (informative backgroun8patial models, such as constellation
or star models, compute a sparse representation of ohjétttsf xed number of parts) by se-
lecting features which satisfy spatial constraints. Tlsparse representation reduces their utility
in the presence of occlusion. Approaches for learning aelbag-of-features model with spatial
constraints from weakly labeled data have also been prop&ech approaches (based on marginal-
izing over possible locations of the object), however, leagoor foreground segmentation if the
training dataset is small, the images have signi cant eluttor if some other object in the back-
ground has a strong and consistent spatial relationshiptivi object to be learned throughout the

A dataset of less cluttered images would fail to provide enough contérfoaination to be learned for a
model that simultaneously learns object model and its contextual relafjns
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Figure 1:(a) An example of the importance of spatial constraints locally. The rit sbows the features on
the foreground car. A bag of words approach fails to capture spatimitsre and thus combines the front and
rear of different cars. (b) We use a spatial model of the object dajeof-words approach for context repre-
sentation. (c) Importance of using contour information: Objects sudigas become part of the foreground
since they occur at consistent relative location to the car. If shapeandur information is combined with
co-occurrence and spatial structure of image features, then sudabrlings can be reduced. For example,
in the above case since there are strong intervening contours betwdeattives on the car(foreground) and
the features on signs, and there is a lack of strong contours betwdarefean signs and features on trees
(background), it is more likely that features on the signs should be ldlasl®ackground.

Problem:
Learn the parameters of object model given the imdges::; | p ), object label{O1;::; Op)
and Object Model ShapéA().

Approach:

Simultaneous localization the object in training images and estimation of madehpters. This

is achieved by integrating cues from image features and contours.ritérgacncludes following terms:

1. Feature Statistics: The image features satisfy the co-occurrence and spatial statistics of the.mo
2. Shape Similarity: The shape of the foreground object is similar to the shape of the sketoh afbjict.
3. Separation: The object and background features should be separated by the bbjgudary contours.

Table 1: Summary of “Shape Aware” Model

training dataset. We overcome this problem by applying shegsed constraints while constructing
the foreground model.

Figure 1(c) shows an example of how contours provide importaformation for fore-
ground/background labeling. We add two constraints to #teling problem using the contour
information: (a) The rst constraint requires the presepn€estrong intervening contours between
foreground and background features. (b) The second camsteguires the shape of boundary con-
tours be similar to the shape of the exemplar/sketch prowdth the weakly labeled dataset. This
allows us to learn object models from images where theregisi sant clutter and in which the
object does not cover a signi cant part of the image. We me\an iterative solution to integrate
these constraints. Our approach rst labels the image feathased on co-occurrence and spatial
statistics - the features that occur in positive images ahibé strong spatial relationships are la-
beled as foreground features. Based on the labels of imag#&és, object boundaries are identi ed
based on how well they separate foreground and backgroatarés. This is followed by a shape
matching step which identi es the object boundary contduased on their expected shape. This
step prunes many contours and provides a better estimatgexftdoundaries. These boundaries
are then be used to relabel the features in the image. Thigdasan initialization point for the next
iteration of Gibbs sampling. Figure 2 shows the system oweoof “Shape Aware” approach.

1.1 Related Work

Many graphical models for object recognition [11] have bespired by models of text documents
such as LDA [6] and pLSA [7]. These models are computatigneflicient because they ignore
the spatial relationships amongst image features (or)pans use a dense object representation.
However, ignoring spatial relationships between featleads to problems (See Figure 1(a)). In
contrast, approaches that model spatial relationshipS][Petween object parts/features are com-



Figure 2: Shape-Aware Learning (Overview): We rst compute feature labslsgithe Gibbs sampling ap-
proach on the Spatial Author Topic model. The features labeled faradrand background are drawn in red
and yellow respectively. This is followed by object boundary extractiime object boundaries are identi ed
based on how well they separate foreground and backgrounddseatiikely object boundary contours are then
matched to the sketch using a voting-based approach and the contosisteat with the shape of the sketch
are identi ed. These contours are then used to relabel the features theirsame separation principle. The
new labels and topics from the previous time step are used as a new initialigatirior the next iteration.

putationally expensive and therefore employ only sparatifes representation. These approaches
fail under occlusion due to their sparse representatiortlagid stringent requirement of a one-one
correspondence between image and object features.

There has been recent work in applying spatial constramtsgic models which enforce neigh-

boring features to belong to similar topics [10, 2] for thegmse of segmentation. Our work is
more related to classi cation based approaches [8, 3] thadehspatial locations of detected fea-
tures based on a reference location in the image. Suddertid 8] presented such a model that
can be learned in a supervised manner. Fergus et. al [8] pedpan approach to learn the model
from weakly labeled data. This was achieved by marginalizibject locations and scale. Each
object location hypothesis provides a foreground segrtientavhich can be used for learning the
model. Such an approach, however, is expensive unlessaithany images are not highly cluttered.
Additionally, they are subject to modeling errors if the etij of interest is small in the training

images.

Our goal is to simultaneously learn an object model and itgeod model from weakly labeled
images. To learn context we require real world scenes ofcoljed their natural surrounding en-
vironment (high clutter and small objects). We present afghaware” feature based model for
recognizing objects. Our approach resolves the foregrractiground labeling ambiguities by re-
quiring that the shapes of the foreground object acrosg#lirrig images to be similar to a sketch
exemplar. Shape based models [1] have been used previausbpject recognition. However,
contour matching is an expensive(exponential) problemtdule need to select the best subset of
contours from the set of all edges that match the shape mdggiroximate approaches such as
MCMC are not applicable since matching is very closely cedpkith selection. We propose an
ef cient approach that iterates between an co-occurensedtabeling and contour based labeling
of features.

2 Our Approach - Integrating feature and contour based cues

We assume the availability of a database of weakly labeledjés which specify the presence of an
object, but not its location. Similar to previous approachased on document models, we vector



guantize the space of image features into visual words tergém a discrete image representation.
Each visual word is analogous to a word and an image is treatgidgous to a document.

Each word is associated with a topic and an author (the gbjddte topic distribution depends
on the associated author and the word distribution dependbe assigned topic (Section 2.1).
We start with random assignments of words to topics and asith®his is followed by a Gibbs
sampling step which simultaneously estimates the hiddeahlas (topic and author) and also the
parameters of the generative model that maximizes theHiketl(Section 2.2). These assignments
are then used to obtain a set of likely object boundary castueach image. These contours are
subsequently analyzed to identify the object “centers” axadl object contours by matching with
the shape exemplar(Section 2.3). Using the new set of boyrdatours, the authors corresponding
to each word are reassigned and the model is retrained usngeiv assignment.

2.1 Generative Model - Syntax and Semantics

Author-Topic Model: Our model is motivated by the author-topic model [13] andrtiael pre-
sented in [4]. We rst provide a brief description of the anthiopic model, shown in gure 3(a).
The author-topic model is used to model documents for whishtaf authors is given. For each
word in the document, an authog;§ is chosen uniformly at random from the set of authagg.(A
topic (z) is chosen from a distribution of topics speci c to the sédecauthor and a wordaf) is
generated from that topic. The distribution of topipsfor each author is chosen from a symmetric
Dirichlet(®) prior and the distribution of wordsAj for a topic is chosen from symmetric Dirichlet

(") prior.
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Figure 3: (a) Author-Topic Model (b) Our Model (Spatial AothTopic Model). Our model extends
the author topic model by including the spatial(syntad}icelationship between features.

Spatial-Author Topic Model: Our model is shown in gure 3(b). Our goal is hot only to modwe t
distribution of type of features but also to model the dgttion of spatial locations of the subset of
these features that are associated with the foregroundtobje model this as follows: A feature in
the image is described by its type and locatior;. Each featuréw;; ;) is “authored' by an author
x; which is described by its type 2 and its locatiorr;. For each feature, the auther is chosen
from a distribution,”, which can be either uniform or generated using availablergfrom other
sources. Topig; for each word is chosen from a distribution of topic specicthe type of object
0, and a wordw; is generated from that topic. The distribution of topigsfor each object type is
chosen from a symmetric Dirichle®) distributior? . The distribution of a word for each topic is
chosen from a symmetric Dirichlet) prior.

The location of each featurk, is sampled from the distributiop(l;jo; ; z; ; ri) using the following
distribution:

p(lijoziir1) = exp('”";T“”)sff = () 1)

2For an image with label car, the possible object types are car, and taftear. The differentiation
between “informative” and “non-informative” background is captiiby the probability distributions.

3The Dirichlet distribution is an attractive distribution - it belongs to the exptiafiamily and is conjugate
to the multinomial distribution.



The rstterm ensures that each feature has higher prolpabfilbeing generated by nearby reference
locations. The second term enforces spatial constrairitsedocation of the feature that is generated
by topic ). We enforce these spatial constraints by a binning appro&ach feature in the
foreground can lie iB possible bins with respect to the reference location. Theildution of the
spatial location of a feature is speci c to the togicand the type of objeat;. This distribution is
chosen from a symmetric Dirichlet Y prior. Since we do not want to enforce spatial constraints
on the locations of the features generated by topics frontegbnwe se€ to a constant when;
corresponds to the context of some object.

2.2 Gibbs Sampling

We use Gibbs sampling to estimateandx; for each feature. Given the featur@s;|), authors
assignments, other topic assignmengs ; and other hyperparameters, eaglis drawn from:

P(zijw;;x;z,5) 1 P(wijw; i;2)P(zijz; i;00)P(Lijxi; 1 i5%; 152i)
n\ﬁ/ii + = n?i‘ +® ngii:zi + ©
nz + W no% + T®nozi + B°

)

whereng represents the number of features of tygein the dataset assigned to topg n”
represents the total number of features assigned to mpia) represents the number of features
that are assigned to top& and author of type, andn® represents the total number of features
assrgned to authar . B; represents the spatial bin in which featuties in when the referenceis,
nBIZ‘ represents the number of features from object typ@nd topicz; which lie in binB;, n% i
represents the total number of features from object typend topicz;. W is number of type of
words andT represents number of topic types.

Similarly, given the featureéw;I), topic assignmentg, other author assignments ; and other
hyperparameters, eaghis drawn from:

P(xijw;lizixi i) 1 Phijxisli i i5z0)P(zijoi;zi i3 % 1)P(rijoisz; i5%; 1)

|]j|||rjj) BIZ'+° nz'+® n°|++

/ exp( 32 noizi + B° n% + T®nN% + Rt

@)

wheren?' represents the number of features from object tyfibat have; as the reference location
andn©® represents the total number of features from obgectin caseo; is of type context, the
second term is replaced by a constdtepresents the number of possible reference locations.

2.3 “Shape Aware” Model

The generative model presented in section 2.1 can be leasiad the Gibbs sampling approach
explained above. However, this approach has some shorigsm{a) If there are features in the
background that exhibit a strong spatial relationship wlith object, they can be labeled as fore-
ground. (b) In clutter, the labeling performance diminislas the discriminability of the object is

lower. The labeling performance can, however, be improt@dmtour cues are utilized. We do

this by requiring that the shape of the object boundary amstextracted based on feature labeling
should be similar to a sketch of the object provided in thasktt Thus, the labeling of features into
foreground and background is not only governed by co-oeoee and structural information, but

also by shape similarity. We refer to this as a “shape awaiieh

Shape matching using contours has, in the worst case, exfi@neomplexity since it requires
selection of the subset of contours that best constitutddreground boundary. We avoid this
computationally expensive challenge by solving the selagiroblem based on the labels of features
extracted using Gibbs sampling. The spatial author-topidehis used to attend to the contours
which are likely to be object boundaries. Our shape matcimadule has three steps: (a) Extracting
object boundaries based on labels extracted from the Spatilor topic model. (b) Extracting
boundaries consistent with the shape model by matchingUg)g new boundaries to determine
new labels for features.



Figure 4: Extraction of object boundaries consistent with the shape of exempher. r3t step is extraction
of contours which separate foreground and background featUités.is followed by a voting process. Each
contour in the image is matched to every contour in the model to extract tiber ¢ the object. The votes are
then traced back to identify the contours consistent with the shape model.

Extracting Object Boundary Contours from Feature Labels: We rst determine the edges using
and group them into contours using the approach presentflbin Each contour; is a collection

of 2D points(p; 1; pj2:::). Our goal is to extract boundary contours of the object usiiegieature
labels. Since, the boundary contours separates foregranddackground features, an estimate
of the number of foreground and background features on edeho$ an image contour provides
evidence as to whether that image contour is part of the tbjgendary. For each contour, we
measure the number of foreground and background featuatdi¢hon each side of the contour
within some xed distance of the contour. The probabilityatta contour is a boundary contour
cl; =1 of the object with the sid&1 being the interior of the object is given by:

S1 .
N + ¢ ng2+ ¢
nNS1+2¢nS2+2¢

Psa(ch = 1jx) = (4)

wheren??! is the total number of features with foreground label on Sidef the contour anahs*
is total number of features on siéd.

Shape Matching: Given the probabilities of each contour being a part of theattboundary, we
estimate the object center using a voting-based appro&thfEach contour votes for the center of
the object where the weight of the vote is determined baseubanwell the contour matches the
sketch. Non-maximal suppression is then used to estimateathdidate object locations. Once the
candidate location of the center of object is selected, aeetback the votes to estimate the new
boundary of the object. Figure 4 shows an example of the gqinocess and boundary contours
extracted using this approach.

Extracting New Labels: These boundaries are then used to relabel the image feattoeore-
ground and background. We use the same separation pritcilalleel new features. Each boundary
contour votes as to whether a feature should be labeledrfarad or background. If the feature lies
on the same side as the object center, then the contour wotdseffeature as foreground. Votes are
weighted based on the probability of a contour beipg an olbjeendary. Therefore, the probability

that the featuré is labeled as foreground is given b&% where! ; is the probability that the
|

contourj is on object boundary arf is variable which i if the object center and feature are on
same side of contows; or 0, if the center is on opposite side. The new labels are thet asan
initialization point for the Gibbs sampling based learn@ighe feature model.

3 Experimental Results

We tested our “shape-aware” model on images of cars obtdioed the Label-me dataset[17].
We randomly selected 45 images for training the model froemlthbelMe dataset. A potential
concern is the number of iterations/convergence requiyalibiterative approach. However, it was
empirically observed that, in most cases the system stabilifter only two iterations. It should also
be noted that each iteration between contour and featuedinigls is performed after 200 iterations



Figure 5: Advantages of iterative approach. At each iteration, the author topidbdistm changes, which
requires retraining the model using Gibbs sampling. This can help in twe:wWAY More Focused Attention:
The feature labeling gets re ned. (B) Change of Focus: A new refer@oint gets chosen by new distribution.

of Gibbs sampling. The advantages of having an iterativeaggh is shown in, gure 5. We
compared the performance of our system against the awpar+nodel and the author-topic model
with spatial constraints. We evaluated the performancéebtgorithm by measuring the labeling
performance in training and test datasets. Better labétirtgaining is required for better model
learning. Figure 6 show some of the cases where both authar-and author-topic model with
spatial constraints fail due to high clutter or the foregrdwbject being too small in the training
dataset. The “shape aware” model, however, shows bettalization performance as compared to
the other two.

Figure 6: Two examples of how the “shape aware” model provides better localizatmpared to spatial
author topic models. The odd columns show the results of the author toplelrtibe initialization point of
iterative approach). The even columns show the labeling provided glgorithm after 2 iterations.
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Figure 7: Quantitative Comparison of author-topic, spatial author-topic and shamre” model based on
randomly selected 40 images each from the training and test datas&fezdres each approximately). The
values of the parameters used @re 50, ® = 22, =0:01,° =0:01,B =8 and¢ = 0:1.

Figure 7 shows a quantitative comparison of the “shape dwaoelel to the author-topic and the
spatial author-topic model. Recall ratio is de ned as th@raf features labeled as foreground to the
total number of foreground features. Precision is de nethagatio of features correctly labeled as
foreground to the total number of features labeled as foregt. In the case of labeling in training
data, our approach outperforms both author-topic andaaithor-topic model. In the case of test
dataset, the author-topic model has higher recall but wempkecision. The low precision of author-
topic and spatial author-topic can be attributed to the tizat, in many cases the context is similar
and at the same relative locations to each other. This lead®teling errors - these features are
learned to be part of the object. In the case of the “shapeedwardel, the shape of the objects help
in pruning these features and therefore lead to much higleeigion. Low recall rates in our model
and the spatial author-topic model is because some foredrfaatures do not satisfy the spatial



Figure 8: Example of performance of three models on a test image. “ShapeeAwandel shows high
precision in label prediction due to pruning provided by shape matchinghok Topic model shows high
recall rates because high similarity in context across images.

Figure 9:A few examples of labeling in the test dataset.

constraints and hence are falsely labeled as backgroutddsaFigure 9 shows some examples of
performance of the “shape aware” model on test dataset.
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