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ABSTRACT
This work explores computer vision applications of the Map-
Reduce framework that are relevant to the data mining com-
munity. An overview of MapReduce and common design
patterns are provided for those with limited MapReduce
background. We discuss both the high level theory and the
low level implementation for several computer vision algo-
rithms: classifier training, sliding windows, clustering, bag-
of-features, background subtraction, and image registration.
Experimental results for the k-means clustering and single
Gaussian background subtraction algorithms are performed
on a 410 node Hadoop cluster.

Categories and Subject Descriptors
I.4.0 [Image Processing and Computer Vision]: Gen-
eral; D.1.3 [Programming Techniques]: Concurrent Pro-
gramming

General Terms
Algorithms, Performance, Experimentation.

Keywords
MapReduce, computer vision, background subtraction, im-
age registration, clustering, bag-of-features, cloud comput-
ing.

1. INTRODUCTION
The amount of available image and video data is increas-

ing dramatically due to the prevalence of social networks,
surveillance cameras, and satellite imagery. The current
challenge is how to effectively manage the computation and
storage requirements imposed by the influx of data. The
trend towards many-core processors and multi-processor sys-
tems is thwarted by the complexity in developing applica-
tions that effectively utilize them. A classic solution is to
develop a distributed application using the message pass-
ing interface (MPI), which provides fine-grained control over
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the execution of parallel applications. However, this level
of abstraction adds verbosity and complexity that can ex-
ceed that of the desired computation. The MapReduce [5]
framework provides a higher level of abstraction than MPI
while being applicable to many data-intensive batch process-
ing problems. MapReduce provides a simple programming
model, a distributed file system [8], job management, and
cluster management.

Developing and maintaining a computer cluster is a costly
undertaking with a multitude of considerations: power, cool-
ing, support, physical space, hardware, and software. The
“utility computing” [18] model replaces these complexities
with a fixed cost for the resources used, reducing the bar-
rier to entry for researchers and small companies. Moreover,
vendor support is available for virtualized MapReduce clus-
ters, further increasing their accessibility.

The use of large datasets to ‘let the data do the work’
has been gaining popularity. In the field of computational
linguistics, Banko and Brill [1] showed that the most effec-
tive algorithms for natural language disambiguation for large
datasets need not be the most effective for small datasets.
Brants et al. [2] proposed the “Stupid Backoff” smoothing
method that approaches the quality of Kneser-Ney given
a large input set and was evaluated on 2 trillion tokens.
Torallba et al. [20] reported similar findings that by increas-
ing the number of available images, simple nearest neighbor
algorithms can produce results comparable to the traditional
Viola & Jones method on the person detection task.

In this paper, we explore various MapReduce algorithms
for computer vision tasks. To our knowledge, this is the first
explication of MapReduce algorithms in this domain. This
work is organized as follows. Section 3 gives an overview
of the MapReduce framework and common design patterns
are provided for those with limited MapReduce background.
Issues related to posing computer vision algorithms as Map-
Reduce jobs are discussed in Section 4. Both the high-level
theory and the low-level implementation for several com-
puter vision algorithms are discussed: classifier training, slid-
ing windows, clustering, bag-of-features, background sub-
traction, and image registration. Section 5 shows experi-
mental results for the k-means clustering and single Gaus-
sian background subtraction algorithms.

2. RELATED WORK
There is recent work in the computer vision community

that makes use of MapReduce.
Liu et al. [14] proposed a face tracking algorithm that uses

multiple cues and a particle filtering algorithm. The map-



pers were applied in parallel over the particle predictions
and the reducers computed the updated parameters. Exper-
iments were performed on a shared-memory implementation
of MapReduce [25].

Li et al. [12] developed a landmark classification system
that uses bag-of-feature [3] vectors and structured SVMs [22]
to classify landmarks visually in each photo in a user’s photo-
stream (i.e., temporal sequence of photos). They used a
dataset of 6.5 million images taken from Flickr and ran ex-
periments using MapReduce. Though the MapReduce al-
gorithm was not described, feature computation was men-
tioned to be the primary bottleneck.

Kennedy et al. [11] explored a method to generate image
tags similar to those found in the ESP game [23] while pro-
ducing more specific tags. Their approach was to find near-
est visual neighbors of photos from different authors and
accept annotations that agree. The nearest neighbor search
was implemented on MapReduce directly and 19.6 million
Flickr images were used.

Yan et al. [24] proposed a scalable concept detection sys-
tem using robust subspace bagging. The provided Map-
Reduce algorithm consisted of a mapper to train a set of
base models, a mapper to compute predictions on a valida-
tion set, and a reducer to build composite classifiers. The
dataset used consisted of 0.26 million images taken from
various sources.

3. BACKGROUND
MapReduce [5] builds on the observation that many in-

formation processing tasks have the same basic structure: a
computation is applied over a large number of records (e.g.,
web pages, nodes in a graph) to generate partial results,
which are then aggregated in some fashion. Taking inspi-
ration from higher-order functions in functional program-
ming, MapReduce provides an abstraction for programmer-
defined“mappers”(that specify the per-record computation)
and “reducers” (that specify result aggregation). Key/value
pairs form the processing primitives. The mapper is ap-
plied to every input key/value pair to generate an arbitrary
number of intermediate key/value pairs. The reducer is ap-
plied to all values associated with the same intermediate key
to generate an arbitrary number of final key/value pairs as
output. This two-stage processing structure is illustrated in
Figure 1.

Under the MapReduce programming model, a developer
needs only to provide implementations of the mapper and
reducer. On top of a distributed file system [8], the execution
framework (i.e., “runtime”) transparently handles all other
aspects of execution on clusters ranging from a few to a
few thousand cores. It is responsible, among other things,
for scheduling (moving code to data), handling faults, and
the large distributed sorting and shuffling problem between
the map and reduce phases whereby intermediate key/value
pairs must be grouped by key.

As an optimization, MapReduce supports the use of“com-
biners”, which are similar to reducers except that they op-
erate directly on the output of mappers; one can think of
them as “mini-reducers”. Combiners operate in isolation on
each node in the cluster and cannot use partial results from
other nodes. Since the output of mappers (i.e., the key/value
pairs) must ultimately be shuffled to the appropriate reducer
over a network, combiners allow a programmer to aggregate
partial results, thus reducing network traffic. In cases where
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Figure 1: Illustration of MapReduce: mappers are
applied to input records, which generate intermedi-
ate results that are aggregated by reducers. Local
aggregation is accomplished by combiners, and par-
titioners determines to which reducer intermediate
data is shuffled.

an operation is both associative and commutative, reducers
can directly serve as combiners, although in general they are
not interchangeable.

The final component of MapReduce is the “partitioner”,
which is responsible for dividing up the intermediate key
space and assigning intermediate key/value pairs to reduc-
ers. The default partitioner computes the hash value of the
key and then taking the mod of that value with the number
of reducers. This assigns approximately the same number of
keys to each reducer.

The notation used for algorithms throughout this work is
now described. The job input can come from various sources,
though it is commonly stored on a distributed file system.
The input key/value pairs are split and distributed among
the available Map tasks. The Mapper class has a Map
method that is called once for each input key/value pair, an
optional Configure method that is called once before the
first Map call, and an optional Close method that is called
once after the last Map call. Each Map task maintains a
Mapper instance. The MapReduce framework distributes
Map task keys and associated values among the available
Reduce tasks, sorts the Map task outputs by their keys,
groups those that have the same key, and presents them
to the reducer. The Reducer class has a Reduce method
that is called once for each unique key and the same optional
Configure and Close methods as the Mapper class. Each
Reduce task maintains a Reducer instance.

To illustrate the operation of the MapReduce framework
on a simple task, the following example is provided for count-
ing the number of word occurrences in a series of input doc-
uments. Each input is a text document with the key being
the docid and the value being the document itself. The Map
method emits (i.e., adds to the Map task’s output) each word
in the input document as the key and the number 1 as the
value. There is a key for each unique word and a list of 1’s
which are accumulated by the Reduce method to produce



1: class Mapper
2: method Map(docid a, doc d)
3: for all term t ∈ doc d do
4: Emit(term t, count 1)

1: class Reducer
2: method Reduce(term t, counts [c1, c2, . . .])
3: sum ← 0
4: for all count c ∈ counts [c1, c2, . . .] do
5: sum ← sum + c
6: Emit(term t, count sum)

Algorithm 1: Example MapReduce algorithm for
computing word counts given a series of documents.

the final word count. The result is emitted (i.e., added to
the Reduce task’s output) with the word as the key and the
count as the value.

3.1 Implementations
There are several implementations of the MapReduce pro-

gramming model and, while they all maintain the same
basic user abstraction, their capabilities vary considerably.
Google’s [5] proprietary implementation is written in C++
with bindings for other languages. A widely used open-
source implementation is Apache Hadoop which is written
in Java and provides a “streaming” interface to interact with
user code over Unix pipes. Twister [6] is an open-source Java
implementation and extension of MapReduce optimized for
iterative computation. Phoenix [25] is an open-source im-
plementation for shared-memory multiprocessors. In this
paper we use Apache Hadoop’s streaming interface.

3.2 Design Patterns
Lin and Dyer [13] introduced design patterns that can be

used to simplify and improve the performance of MapReduce
algorithms. These design patterns are summarized below as
they are used later in more involved algorithms.

3.2.1 Order Inversion
There are situations where the reducer needs to read the

same or similar input values multiple times to perform the
necessary computation. This often involves using an aggre-
gate statistic for intermediate calculations. An example of
this occurs when normalizing a set of vectors’ values be-
tween [0, 1] when the number of dimensions is larger than
the number of vectors (e.g., normalizing a video while treat-
ing frames as vectors). The mapper emits once for each
dimension with the key being the dimension and the value
being a tuple of the vector’s id and the value for the di-
mension. The reducer can then process the input to find
the minimum and maximum values; however, this requires
reading all of the data, after which we are unable to pro-
duce the desired output because only a forward iterator is
provided to the key/value pairs. There is a temptation to
buffer the data in memory and pass over it again; however,
this will not scale and eventually the system memory will
be exhausted. A solution is to compute the min/max values
in the first pass and have another job that computes the
final output, loading the min/max values as side data from
a shared location.

Performing the computation in two MapReduce jobs is a
scalable solution; however, it can be further improved by
using the order inversion design pattern. The mapper is

1: class Mapper
2: method Map(vecid i, vector V )
3: for all 〈dim d, val v〉 ∈ vector V do
4: t ← 〈vecid i, val v〉
5: Emit(tuple 〈dim d, flag 0〉, tuple t)
6: Emit(tuple 〈dim d, flag 1〉, tuple t)

1: class Reducer
2: method Configure()
3: m ← M ← p ← ∅
4: method Reduce(tuple 〈dim d, flag f〉, tuples)
5: if p 6= d then

# Reset extrema for new dimension

6: m ← ∞
7: M ← −∞
8: p ← d

9: if f = 0 then
10: for all tuple 〈vecid i, val v〉 ∈ tuples do
11: UpdateExtrema(val m, val M, val v)

12: else
13: for all tuple 〈vecid i, val v〉 ∈ tuples do
14: v ← v−m

M−m

15: Emit(vecid i, tuple 〈dim d, val v〉)
Algorithm 2: MapReduce algorithm for normaliz-
ing vectors using the order inversion design pat-
tern.

modified to emit twice for every value with the key and
value the same as before, except that the key has a flag
added to it that is 0 in one output and 1 in another. The
sort is performed on the dimension first and the flag second.
The partitioner is modified to only partition based on the
dimension, ignoring the flag so that all data for a specific
dimension is sent to the same reducer ordered by the flag.
The reducer uses the flag = 0’s to find the min/max values,
it can then immediately normalize the flag = 1’s that fol-
low. Instance variables are used to hold state between flag
values as the grouping is performed on the entire key. A
combiner can be used to decrease the data transfer of the
flag = 0’s. Note that the same data transfer, twice what
was input, is required in both methods for this example;
however, order inversion removes the extra job and uses the
locally computed intermediate results which simplifies the
implementation. See Figure 2 for a step-by-step example
and Algorithm 2 for a concrete implementation. This design
pattern is used in Section 4.6 for background subtraction.

3.2.2 In-Mapper Combining
The concept of combiners is built into MapReduce to cur-

tail network traffic by performing partial aggregation be-
tween the Map and Reduce tasks. The data from the map-
per must be sorted for the combiner to operate; however, it
is possible to move this computation into the mapper so that
sorting is not required and the amount of data emitted from
the mapper is decreased. This is accomplished by using the
in-mapper combining design pattern which is characterized
by the use of an associative array that is indexed by the out-
put key and the values are aggregated in place. Key/value
pairs will not be emitted for each Map method call, instead
the final values in the associative array are emitted during
the Close method. The additional memory required is pro-
portional to the number of unique keys; however, this can
be amended to use constant memory by emitting the least



Map Input Map Output
(vecid, 〈dim0, dim1〉) (〈dim, flag〉, 〈vecid, val〉)
(0, 〈9, 6〉) (〈0, 0〉, 〈0, 9〉)

(〈0, 1〉, 〈0, 9〉)
(〈1, 0〉, 〈0, 6〉)
(〈1, 1〉, 〈0, 6〉)

(1, 〈0, 1〉) (〈0, 0〉, 〈1, 0〉)
(〈0, 1〉, 〈1, 0〉)
(〈1, 0〉, 〈1, 1〉)
(〈1, 1〉, 〈1, 1〉)

(2, 〈1, 0〉) (〈0, 0〉, 〈2, 1〉)
(〈0, 1〉, 〈2, 1〉)
(〈1, 0〉, 〈2, 0〉)
(〈1, 1〉, 〈2, 0〉)

(3, 〈3, 6〉) (〈0, 0〉, 〈3, 3〉)
(〈0, 1〉, 〈3, 3〉)
(〈1, 0〉, 〈3, 6〉)
(〈1, 1〉, 〈3, 6〉)

Reduce Input Reduce Output
(〈dim, flag〉, [〈vecid0, val0〉, . . . ]) (vecid, 〈dim, val〉)
(〈0, 0〉, [〈0, 9〉, 〈1, 0〉, 〈2, 1〉, 〈3, 3〉])
(〈0, 1〉, [〈0, 9〉, 〈1, 0〉, 〈2, 1〉, 〈3, 3〉]) (0, 〈0, 1.〉)

(1, 〈0, 0.〉)
(2, 〈0, 0.1111〉)
(3, 〈0, 0.3333〉)

(〈1, 0〉, [〈0, 6〉, 〈1, 1〉, 〈2, 0〉, 〈3, 6〉])
(〈1, 1〉, [〈0, 6〉, 〈1, 1〉, 〈2, 0〉, 〈3, 6〉]) (0, 〈1, 1.〉)

(1, 〈1, 0.1667〉)
(2, 〈1, 0.〉)
(3, 〈1, 1.〉)

Figure 2: Example input and output when normaliz-
ing a set of vectors’ values using the order inversion
design pattern.

recently used keys and removing them from the associative
array when a memory limit has been reached. This design
pattern is used in Section 4.4 for clustering.

3.2.3 Value-to-Key Conversion
The MapReduce framework sorts the keys emitted by the

mapper to group them for the reducer; however, if a task
requires a primary sort on the key and a secondary sort on
fields in the value then you can use the value-to-key conver-
sion design pattern. This design pattern takes part of the
value and duplicates or moves it to the key to form a new
composite key. The sort is modified to produced the desired
comparison priority and ordering. Lastly the partitioner is
modified so that each reducer receives all of the data nec-
essary for the computation (e.g., partition on the original
key). The primary distinction between order inversion and
value-to-key conversion is that the former is used to order
intermediate computation, often in the form of an aggre-
gate statistic, while the latter is used to secondary sort the
data. This design pattern is used in Section 4.7 for image
registration.

4. MAPREDUCE & COMPUTER VISION
Generally, computer vision algorithms operate on one or

more images consisting of pixels and they often have tun-
able parameters. When deciding how to exploit parallelism,
an algorithm designer can generally choose one or more fac-

tors along which to divide computation: parameters, images,
or pixels. These factors can be thought of as nested foreach
loops where one is selected for MapReduce computation with
internal loops residing within the MapReduce Job and exter-
nal loops corresponding to separate and potentially parallel
MapReduce jobs. Computation across algorithm parame-
ters is often embarrassingly parallel (i.e., independent) as
are images when an algorithm operates on them indepen-
dently (e.g., SIFT, face detection).

A variety of computer vision algorithms that are applica-
ble to large scale data processing tasks are presented. These
tasks are desirable to perform on web scale datasets (> 1TB
of image data) and are currently limited by the computa-
tional capabilities of single machines. These datasets may
consist of many short videos (e.g., YouTube), long videos
(e.g., surveillance footage), consumer images (e.g., Flickr,
Facebook), or high resolution images (e.g., satellite image
tiles). The following algorithm descriptions are intended to
guide the reader through the process of applying familiar
computer vision tasks to the MapReduce framework; conse-
quently, implementation details may be omitted for clarity
and generality when they do not contribute to the discussion.
Moreover, the algorithms are selected to exhibit non-trivial
parallel computation and it is assumed that trivially parallel
tasks will be performed where applicable in practice.

4.1 Data Representation
The MapReduce architecture depends on a distributed

filesystem as part of its functionality. In the Hadoop im-
plementation, this is the Hadoop Distributed File System
(HDFS) and it is based on the Google File System (GFS) [8]
used in the original MapReduce implementation [5]. These
filesystems are designed around optimal magnetic hard disk
access patterns involving as few seeks as possible and long
streaming reads. The data is replicated to multiple nodes to
improve availability. A primary optimization made by the
MapReduce framework is to avoid remote reads of data to
prevent network bandwidth bottlenecks. To accomplish this,
the Map tasks are assigned to machines with the necessary
data on local disks when possible.

When working with millions of web images, the time to
read them in batch is dominated by disk seeks to each file
as the images are often small in size. Moreover, the maxi-
mum number of files is limited by the memory capacity of
the HDFS namenode or the GFS master as the filesystem
is kept in memory for efficient access. A portable solution
to this problem is to represent each image and associated
metadata as a single line in a text file with fields delim-
ited by a special character (e.g., tab). A downside with this
method is that the raw data must be escaped or encoded to
avoid using the field and line delimiters. This representation
has the benefits of being portable between MapReduce im-
plementations, it eliminates the problems with small files,
and is efficient to parse; however, the file size is generally
larger than optimal due to the removal of special characters
and ad-hoc metadata encoding introduces complexity. The
Hadoop implementation of MapReduce has an input format
called SequenceFiles that consists of binary key/value pairs.
This format allows us to represent images and arrays in their
original binary form which reduces space requirements and
is more computationally efficient to parse; consequently, this
is the representation used in this work.



1: class Mapper
2: method Map(metadata d, image i)
3: m ← ParseModelIDs(metadata d)
4: p ← ParsePositiveID(metadata d)
5: f ← ComputeFeature(image i)
6: for all id x ∈ m do
7: if x = p then
8: Emit(id x, tuple 〈feature f, polarity 1 〉)
9: else

10: Emit(id x, tuple 〈feature f, polarity −1 〉)
1: class Reducer
2: method Reduce(id m, tuples [t1, t2, . . .])
3: M ← InitModel()
4: for all tuple 〈feature f, polarity p〉 ∈ tuples do
5: UpdateModel(feature f, polarity p, model M )
6: Emit(id m, model M )

Algorithm 3: Algorithm for computing image fea-
tures (e.g., HoG) and training a classifier (e.g.,
SVM) for each object class. The UpdateModel
function may buffer internally depending on the
classifier.

4.2 Classifier Training
When classifying objects in a set of images, a standard

workflow is to input images, compute feature descriptors,
and train a classifier on the feature descriptors. Using ob-
ject classification in a surveillance setting as an example,
images of pedestrians, cars, and negative examples are used
as input, HoG [4] features are computed, a SVM classifier is
trained, and the resulting car and pedestrian classification
models are output. To apply this algorithm to the Map-
Reduce framework (see Algorithm 3) the mapper performs
the feature computation in parallel and the features are col-
lected for the reducer where the classifier training is per-
formed. Generalizing to multiple classes, the mapper’s out-
put key is used to specify which model the feature belongs
to and emits once for each model. Each reducer receives
the positive and negative training samples for a set of the
classifiers and trains them sequentially. Optional metadata
can be associated with the feature for use during training
(e.g., positive or negative polarity of each feature). In the
provided example, the reducer iteratively adds features to
the classifier; however, this depends on the classifier used
and may require buffering internally.

4.3 Sliding Windows
One of the original techniques for object recognition is to

consider a sliding window of an image, compute the classi-
fication confidence for the window, and move the window
to another region. After all windows have been considered,
thresholding and non-maximum suppression are applied to
find candidate classifications. This technique is computa-
tionally expensive as the number of windows considered is
O(n) in image pixels; moreover, with the availability of high
resolution satellite images the processing time quickly be-
comes unmanageable for a single machine. To represent this
problem in MapReduce it is desirable to preprocess the im-
age so that each task has the minimum data necessary while
reducing data redundancy. For example, if the step size
is such that no pixels are shared between images then the
data can be efficiently represented as an image of each win-
dow along with a coordinate offset to relate the original and

1: class Mapper
2: method Map(offset o, tuple 〈coords c, image i〉)
3: for all coord x ∈ c do
4: p ← Classify(image i, coord x)
5: if p > thresh then
6: n ← Neighbors(offset o, coord x)
7: for all coord y ∈ n do
8: Emit(coord y, tuple 〈confidence p, flag 0〉)
9: Emit(coord x + o, tuple 〈confidence p, flag 1〉)
1: class Reducer
2: method Reduce(coord n, tuples [t1, t2, . . .])
3: F ← P ← 0
4: for all tuple 〈confidence p, flag f〉 ∈ tuples do
5: if P < p then
6: P ← p
7: F ← f

8: if F = 1 then
9: Emit(coord n, confidence P)

Algorithm 4: ‘Sliding window’ algorithm for object
classification with non-maximum suppression ap-
plied to the output.

local image coordinates. However, if dense windows are to
be considered (e.g., one pixel step-size) and the window area
is large, then the previous approach makes an inefficient use
of storage space. This effect can be reduced by using images
that have the necessary data for a number of windows, a co-
ordinate offset, and local image coordinates for each window
in the provided image. As the number of local windows in-
creases the storage size and exploitable parallelism decrease.

Algorithm 4 uses the previously described input method
where an image, the offset to the original image, and a set of
local (w.r.t. input image) window coordinates are provided.
The classification confidence values are computed in parallel
in the mapper and emitted if they are greater than a thresh-
old. To enable non-maximum suppression it is necessary to
emit the window confidence K2 times, where K is the non-
maximum suppression window length. The map output key
is the window coordinates and the value is a tuple of the
confidence and a flag indicating if the confidence belongs to
the window or one of its neighbors. For each window coor-
dinate, the reducer emits the window’s confidence value if it
is greater than its neighbors.

For simplicity the previous example only considers win-
dows that differ by translation. To generalize the motion
to a projective transformation (i.e., translation, scale, rota-
tion, shear, and keystone) the only modification required is
to represent each window by its four corner points rather
than an offset.

4.4 Clustering
Clustering is the process of taking unlabeled points and

grouping them using a distance metric. This is often per-
formed to aid in data analysis and improve computational
efficiency. Clustering is a widely used technique in the fields
of data mining and computer vision with diverse applica-
tions: background subtraction [21], image segmentation [15],
and bag-of-features methods [3]. When working with large
datasets, clustering is often necessary to restrict the scope
of higher level analysis while maintaining a reasonable level
of accuracy. A simple and effective clustering method is k-
means, an algorithm that finds the nearest cluster to each



input point and then updates the location of each cluster
by taking the arithmetic mean of the points it is nearest to.
The algorithm iterates until a stopping condition is met. To
apply this to the MapReduce framework (see Algorithm 5)
we find the cluster membership for each point in the map-
per, emitting the point’s nearest cluster number as the key
and the point itself as the value. The points are extended
by one dimension and initialized to a value of one to repre-
sent the count for cluster normalization. For simplicity, we
load the current cluster estimate into memory in the map-
per; however, later we will discuss a method that can be
used when the clusters are too large to fit into memory. The
MapReduce framework will group the points by their nearest
cluster. The reducer sums all of the points and normalizes
to produce the updated cluster center, which is emitted as
the value with the key being the cluster number. A ‘driver’
program orchestrates the communication of the new clusters
to the mapper during the next k-means iteration.

In practice the previous implementation will perform poorly
as the entire dataset will be transferred over the network
during the shuffle phase, resulting in a bottleneck due to the
high network traffic. We can dramatically improve the per-
formance by observing that the cluster mean computation
requires the sum of all of the points and their cardinality.
Addition is associative and commutative which allows us to
perform partial aggregation in a combiner that is similar to
the reducer, except that it will not normalize the result. Af-
ter the combiner runs, it decreases the data sent over the
network from O(N) where N is points to O(KM) where K
is clusters and M is Map tasks. For the k-means algorithm,
the usefulness of the combiner increases as the ratio N

KM
increases.

We can further extend this idea by noting that before the
combiner can run, the mapper output is sorted; however, we
can instead maintain an associative array in the mapper that
holds the partial sums. By using the in-mapper combining
design pattern (see Section 3.2.2), the initial algorithm is
modified to not emit during calls to the Map method, and
instead accumulate the partial sums until the Close method
is called after all of the input has been processed (see Al-
gorithm 6). This adds on to the previous optimization by
decreasing the amount of data that is serialized between the
mapper to the combiner and the time taken to sort the map-
per’s output for the combiner. This modification uses up to
twice the memory as the original k-means algorithm while
generally improving the run-time.

To simplify the previous k-means algorithms, we assumed
that there is enough memory to hold the clusters. If this
is not the case then the following extension can be used to
perform k-means in three jobs per iteration. We start by
partitioning the clusters into smaller sets that fit into mem-
ory. In a map-only job emit the point id as the key and a
tuple of the point, nearest available cluster, and the cluster
distance as the value; there is one job for every set of clusters
and they can all be run in parallel. The results from these
jobs are passed through an identity (i.e., emits what is re-
ceived) mapper and the reducer emits the minimum distance
cluster as the key and the point as the value. These clus-
ter assignments are then passed through an identity mapper
and the reducer computes the updated cluster centers.

4.5 Bag-of-Features
In Csurka et al. [3] an analogy between textual words and

1: class Mapper
2: method Configure()
3: c ← LoadClusters()
4: method Map(id i, point p)
5: n ← NearestClusterID(clusters c, point p)
6: p ← ExtendPoint(point p)
7: Emit(clusterid n, point p)

1: class Reducer
2: method Reduce(clusterid n, points [p1, p2, . . .])
3: s ← InitPointSum()
4: for all point p ∈ points do
5: s ← s + p
6: m ← ComputeCentroid(point s)
7: Emit(clusterid n, centroid m)

Algorithm 5: K-means clustering algorithm.

1: class Mapper
2: method Configure()
3: c ← LoadClusters()
4: H ← InitAssociativeArray()

5: method Map(id i, point p)
6: n ← NearestClusterID(clusters c, point p)
7: p ← ExtendPoint(point p)
8: H{n} ← H{n} + p

9: method Close()
10: for all clusterid n ∈ H do
11: Emit(clusterid n, point H{n})
1: class Reducer
2: method Reduce(clusterid n, points [p1, p2, . . .])
3: s ← InitPointSum()
4: for all point p ∈ points do
5: s ← s + p
6: m ← ComputeCentroid(point s)
7: Emit(clusterid n, centroid m)

Algorithm 6: K-means clustering algorithm with
IMC (in-mapper combining) design pattern.

image key point clusters was drawn to produce an effective
method of capturing a global image feature composed of
many local descriptors. This “bag-of-features” (BoF) model
has been shown to produce state-of-the-art performance in
several applications [3, 9, 10]. To compute BoF vectors, lo-
cal feature points are selected by a detection algorithm [3]
or randomly [16], the local features are clustered, and a his-
togram is calculated from the local feature quantizations.
To apply this algorithm to the MapReduce framework we
will use 3 separate stages: compute features, cluster fea-
tures (see Section 4.4), and create feature quantization his-
tograms. The feature computation is a mapper that takes in
images and outputs the features as a list or individually de-
pending on the clustering and quantization algorithms used.
Two approaches are provided for computing quantization
histograms, Algorithm 7 is most effective when the nearest
cluster operation is fast (i.e., efficient distance metric with
few clusters and features) while Algorithm 8 distributes the
features to different mappers which scales to more clusters
and features.

4.6 Background Subtraction
A successful method of segmenting objects of interest in

a surveillance setting is by using background subtraction [7,



1: class Mapper
2: method Configure()
3: c ← LoadClusters()
4: method Map(imageid i, features [f1, f2, . . .])
5: h ← InitHistogram()
6: for all feature f ∈ features do
7: n ← NearestClusterID(clusters c, feature f )
8: UpdateHistogram(clusterid n, histogram h)

9: Emit(imageid i, histogram h)
Algorithm 7: Bag-of-Features algorithm that is ef-
ficient when the nearest cluster operation is fast.

1: class Mapper
2: method Configure()
3: c ← LoadClusters()
4: method Map(imageid i, feature f )
5: n ← NearestClusterID(clusters c, feature f )
6: Emit(imageid i, clusterid n)

1: class Reducer
2: method Reduce(imageid i, clusterids [n1, n2, . . .])
3: h ← InitHistogram()
4: for all clusterid n ∈ clusterids do
5: UpdateHistogram(clusterid n, histogram h)
6: Emit(imageid i, histogram h)

Algorithm 8: Bag-of-Features algorithm that scales
when the nearest cluster operation is slow (i.e.,
large number of clusters/features or inefficient dis-
tance metric).

17]. Background subtraction methods model the background
of a scene and mark anomalous regions on a binary fore-
ground mask. To allow for changes in background appear-
ance (e.g., lighting) these models can be updated online, pro-
viding a more robust system while increasing the probability
of incorrectly modeling slow moving foreground objects as
background.

One of the original background subtraction algorithms
models each pixel as a Gaussian distribution defined by a
mean and variance. To classify pixels as foreground or back-
ground, the z-score for each pixel is computed and those a
specified number of standard deviations away from the mean
(commonly 2.5 [17]) are marked as foreground. The algo-
rithm for single Gaussian background subtraction updates
the pixel distributions each frame, complicating attempts to
process the frames in parallel. It is necessary to remove this
strictly iterative behavior to make the processing time in-
dependent of the video length. One solution is to compute
the background model for all frames and use this for the
entire video; however, this will incorrectly label changes in
the true background as foreground (e.g., moving trees). A
compromise is to consider fixed sized non-overlapping blocks
of sequential frames, compute a background model, and use
the background model for background subtraction within
the block. This method allows all blocks to be considered in
parallel while providing a locally recent background model.
As the number of frames in each block increases, the back-
ground model becomes less adaptive to changes and fewer
concurrent jobs are available; however, the effects of slow
moving foreground objects are reduced. This parameter is
analogous to the typical learning rate (often denoted by α)
used in single Gaussian methods.

To apply this algorithm to the MapReduce framework (see
Algorithm 9) we need to compute the mean and variance for
each pixel location for each block of images. The mean and
variance are straightforward to compute as we can emit each
image in the mapper and the reducer accumulates their sum,
sum of squares, and count. Given this information we can
directly compute the mean and variance for the block of im-
ages. The z-score appears to require another MapReduce
job; however, we can compute the mean, variance, and z-
score in one job by using the order inversion design pattern
(see Section 3.2.1). The mapper outputs the value as a tu-
ple of the image id and the image twice, once for computing
the mean and variance and the second for computing the
z-score with the key for both being the block id. The sort-
ing is modified such that the required images are ordered by
those needed by the mean and variance followed by those
needed by the z-score. This ordering is accomplished with
the addition of a flag variable to the key to signify its relative
sort order compared to frames within the block. The parti-
tioner is modified to partition only on the block id so that
both flag values for the same block id are sent to the same
reducer. The reducer computes the mean and variance with
the first set of images and the z-score is computed by using
the mean, variance, and the remaining images. By using
one less job the startup costs involved with initial data load
decrease and there is no need to store and load the mean
and variance.

In the previous example only frame level parallelism is ex-
ploited; however, if the images themselves are large then we
can also achieve pixel level parallelism by breaking each im-
age into smaller images, running each set on the previously
provided algorithm, and joining the results upon completion.
This method can also be extended to overlapping blocks to
produce a higher quality background model; however, this
was omitted to simplify the example.

4.7 Image registration
Outdoor and handheld video footage often has consider-

able jitter which limits the effectiveness of algorithms that
assume the camera is stable. For example, background sub-
traction algorithms will output region edges (i.e., pixels with
high gradient magnitude) as foreground when there is cam-
era motion; moreover, the background model will become
desensitized to compensate, resulting in true foreground pix-
els labeled as background.

With the growing popularity of high definition home videos
on the web, batch frame stabilization would provide users
with a desired service faster than they could produce the
results themselves. Visual frame stabilization is generally
solved using gradient based or feature based image registra-
tion algorithms [19]. One approach is to select a frame out
of the video and register every other frame to it; however, it
is important that the selected frame can be properly regis-
tered to all other frames. Applying this to the MapReduce
framework, we input each frame of the video and load the
frame we are registering to as side data in the mapper, re-
turning each frame warped to the coordinate space of the
selected frame. No reducers are required and this algorithm
will scale linearly with frames and cluster nodes. A practical
problem with the previous approach is that it assumes all of
the video frames can be properly registered to the selected
frame. This may be possible in limited circumstances or for
an application where unregistered frames may be ignored



1: class Mapper
2: method Map(imgid d, image i)
3: b ← ComputeBlockID(imgid d)
4: t ← 〈imgid d, image i〉
5: Emit(tuple 〈blockid b, flag 0〉, tuple t)
6: Emit(tuple 〈blockid b, flag 1〉, tuple t)

1: class Reducer
2: method Configure()

# These hold state from flag=0 to flag=1

3: v ← m ← ∅
4: method Reduce(tuple 〈blockid b, flag f〉, tuples)
5: if f = 0 then
6: c ← 0
7: ss ← s ← InitMatrix()
8: for all tuple 〈imgid d, image i〉 ∈ tuples do
9: c ← c + 1

10: s ← s + i

11: ss ← ss + i2

12: m ← s
c

13: v ← ss−s2/c
c

14: else
15: for all tuple 〈imgid d, image i〉 ∈ tuples do
16: b ← (i−m)2 > 2.52v
17: Emit(imgid d, bgsub b)

Algorithm 9: Single Gaussian background subtrac-
tion algorithm that computes the mean and vari-
ance followed by the z-score using the order inver-
sion design pattern.

with minimal penalty.
We would now like to generalize the previous approach

so that we can perform mosaicing and more sophisticated
image stabilization. In situations where image registration
fails between an image and the selected image or when all
pairs of homographies are desired, it becomes necessary to
compose what is available to produce the missing homogra-
phies. Depending on the application the input homographies
may be computed for K temporal neighbors in a video se-
quence, dense (i.e., all pairs), or random. Note that even
with dense input, the image registration algorithm may fail
to properly register the images, necessitating homography
composition. It is desirable to select the homography that
is the result of the minimum compositions as the image reg-
istration process is not without error and composition will
tend to accumulate these errors. For simplicity we assume
that each homography has the same level of inaccuracy.

At a high level the algorithm iteratively composes homo-
graphies that will add direct links between nodes. For exam-
ple, given homographies between video frames Ht,t+1 for all
frames t, the first iteration will add links of the form Ht,t+2,
the second adds Ht,t+3 and Ht,t+4, etc. The number of it-
erations for the general case is O(log(D)) where D is the
maximum connected component diameter. The paths ex-
plored follow that of a breadth-first search from each node.
To apply this solution to MapReduce (see Algorithm 10),
the graph is represented as an adjacency list of the form
[(from0, to0, H0,0), (from0, to1, H0,1), . . .] where from and
to define the graph edge and H is the homography. Note
that the from node is the same for all edges in a adjacency
list. This representation can be improved in practice to re-
move redundancy though it simplifies the notation. A point

1: class Mapper
2: method Map(nid i, adjlist l)
3: if ExtractNodeFrom(adjlist l) = i then
4: Emit(tuple 〈nid i, flag 0〉, adjlist l)
5: else
6: Emit(tuple 〈nid i, flag 1〉, adjlist l)

1: class Reducer
2: method Configure()
3: o ← aorig ← a ← ∅
4: method Reduce(tuple 〈nid i, flag g〉, adjlists)
5: if g = 0 then

# Flush list when we move to a new key

6: Close()
7: aorig ← a ← PopFront(adjlists)
8: if FirstIteration() then
9: for all edge e 〈from f, to t, matrix H〉 ∈ a do

10: Append(list o, nid t)

11: else
12: Append(list o, nid i)

13: else
14: for all adjlist l ∈ adjlists do
15: for all edge e 〈from f, to t, matrix H〉 ∈ l do
16: if MissingEdge(edge e, adjlist aorig) then
17: UpdateAdjList (edge e, adjlist a, nid i)
18: Append(list o, nid t)

19: method Close()
20: for all nid t ∈ o do
21: Emit(nid t, adjlist a)
22: o ← ∅

Algorithm 10: Algorithm that composes a sparse
set of homographies to produce one homography
for every pair of images.

in one image is warped to another using the following trans-
formation xto∼Hxfrom. The input key is the vertex (i.e.,
image number) that the adjacency list is to be sent to and
the value is the adjacency list itself including all outgoing
and self edges. The mapper outputs what is input and ex-
tends the key to include a flag that is 0 if the from node in
the adjacency list is the same as the input key and 1 other-
wise. The output is sorted by key and secondary sorted by
flag using value-to-key conversion (see Section 3.2.3) making
adjacency lists having the same from value as the key come
first. This sorting modification provides a predictable upper
bound on memory requirements. The reducer loads and up-
dates the first adjacency list (belonging to the current vertex
with flag = 0) with the values from the following adjacency
lists (belonging to other vertices with flag = 1). After all
records have been processed in the reducer, the updated ad-
jacency list is emitted to the current vertex and each vertex
that was updated. Each reducer is required to hold up to
two adjacency lists in memory at a time with the algorithm
as specified as opposed to the full matrix if the value-to-key
conversion design pattern is not used.

5. EXPERIMENTS
Experiments were run on a cluster provided by Google

and managed by IBM, shared among a few universities as
part of NSF’s CLuE (Cluster Exploratory) Program and the
Google/IBM Academic Cloud Computing Initiative. The
cluster used in our experiments contains 410 physical nodes;
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Figure 3: Example background subtraction results
for Algorithm 9 using 20 sec. of video (i.e., 500
frames) for each block to build the model.

each node has two single-core processors (2.8 GHz), 4 GB
memory, and two 400 GB hard drives. The entire soft-
ware stack (down to the operating system) is virtualized;
each physical node runs one virtual machine hosting Linux.
Experiments use Java 1.6 and Hadoop version 0.20.1. Im-
plementations are written in Python and C using Hadoop
streaming.

Due to space constraints we show experiments with two of
the proposed algorithms: k-means and background subtrac-
tion. Overall job-level run-time is computed from the start
of the MapReduce job to its completion. The task-level run-
time is computed from the beginning of the user code to its
completion, with the mean over all tasks for a given type
(map or reduce) reported.

The k-means algorithm is selected to explore the effects
of combiners and the in-mapper combining (IMC) design
pattern on the run-time performance (see Figure 4). The
number of points used is varied, the number of clusters is
fixed at 100, and the number of dimensions is fixed at 1000.
These parameters are selected to be near what would be
practical for “bag-of-features” applications. The points and
initial clusters are generated randomly and they are consis-
tent between runs. The number of mappers is selected by
the framework depending on the input size, resulting in 3
(381 MB), 17 (2 GB), 31 (4 GB), 170 (20 GB), 302 (37GB),
and 1670 (205GB). The number of reducers is fixed at 10
to produce comparable run-times between algorithms and
input sizes; however, different values will effect the perfor-
mance, especially the uncombined implementation. Conse-
quently, results for the uncombined implementation are also
shown for 100 reducers. The run-times are for one k-means
iteration.

The overall k-means run-time, shown in Figure 4(a), scales
better with larger input sizes (i.e., increases slower) with ei-
ther of the combiners as compared to the uncombined im-
plementation. Figure 4(c) shows that a large portion of the
time spent by the uncombined implementation is in the re-
ducer computing the cluster means while the majority of
this computation is performed in the mapper or combiner
for the IMC and standard combination implementations re-
spectively. The combined implementations perform very lit-
tle computation in the reducer and take ∼ 0.2 seconds on

average. The remainder of the time is spent in the frame-
work distributing, sorting, and grouping the data. The time
spent in the mapper is largely independent of the number
of datapoints. The dip in Figure 4(b) is due to a slightly
higher proportion of map tasks to data size.

The background subtraction experiments are performed
on the entire PETS’06 dataset (8 GB) and results are shown
in Figure 3. There are 118 Map tasks and 500 Reduce tasks
taking 156 seconds overall. The dataset consists of 82,388
720×576 images, resulting in a throughput of 528 frames per
second and 219 million pixels per second. A block size of 20
seconds of video (i.e., 500 frames) is used, resulting in 360
blocks of sequential frames.

6. CONCLUSION
We have shown how to apply the MapReduce framework

to a variety of practical computer vision algorithms: clas-
sifier training, sliding windows, clustering, bag-of-features,
background subtraction, and image registration. This work
is intended to make this powerful programming framework
and related design patterns more accessible to researchers
working with visual data by filling in previously omitted im-
plementation details and techniques. Experimental results
are provided for k-means showing the relative performance
differences between combination methods. A close approx-
imation to single Gaussian background subtraction is used
to remove the frame-level data dependence and constrain it
to frames within the same neighborhood.
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