
June 9, 2015 17:48 Draft Submitted to Parallel Processing Letters ws-ppl

Parallel Processing Letters
c© World Scientific Publishing Company

ACHIEVING NATIVE GPU PERFORMANCE FOR OUT-OF-CARD

LARGE DENSE MATRIX MULTIPLICATION

JING WU

Department of Electrical and Computer Engineering
and Institute for Advanced Computer Studies, University of Maryland, College Park

College Park, Maryland 20742, USA

and

JOSEPH JAJA

Department of Electrical and Computer Engineering

and Institute for Advanced Computer Studies, University of Maryland, College Park

College Park, Maryland 20742, USA

Received September 2014
Revised June 2015

Communicated by S. Rajasekaran

ABSTRACT

In this paper, we illustrate the possibility of developing strategies to carry out matrix
computations on heterogeneous platforms which achieve native GPU performance on

very large data sizes up to the capacity of the CPU memory. More specifically, we present
a dense matrix multiplication strategy on a heterogeneous platform, specifically tailored

for the case when the input is too large to fit on the device memory, which achieves near

peak GPU performance. Our strategy involves the development of CUDA stream based
software pipelines that effectively overlap PCIe data transfers with kernel executions.

As a result, we are able to achieve over 1 and 2 TFLOPS performance on a single node

using 1 and 2 GPUs respectively.

Keywords: Dense Matrix Multiplication; GPU; Heterogeneous Platforms

1. Introduction

Dense matrix operations are widely used as building blocks in many scientific and

engineering computations. Double precision dense matrix multiplication (DGEMM),

constituting the most important routine of the LINPACK benchmark used to rank

the top 500 supercomputers, has been a major research focus for both academic

researchers and processor vendors. Currently clusters consisting of nodes based on

multicore CPU/many-core accelerators are very popular among the top 500 su-

percomputers due to their peak FLOPS performance and their energy efficiency.

High performance native DGEMM libraries with high efficiency (up to 90%) are

often provided by vendors of CPUs [1], GPUs [8, 5], and other accelerators such as

1

June 9, 2015 17:48 Draft Submitted to Parallel Processing Letters ws-ppl

2 Parallel Processing Letters

Xeon Phi coprocessor [2]. However when it comes to the out of card performance

on a heterogeneous node, the great efficiency is typically compromised due to the

substantial overhead caused by the memory transfers between the CPU and the

GPU.

In this paper, we present a scalable scheme for accelerating DGEMM on hetero-

geneous CPU-GPU platforms, focusing on the case when the input is too large to fit

on the device memory. Our scheme exploits hardware and software features of the

CPU-GPU heterogeneous nodes and employ asynchronous CUDA stream based on

software pipelines to achieve close to the best possible native CUDA BLAS DGEMM

performance (CUDA BLAS assumes that both the input and output reside on the

device memory).

The rest of the paper is organized as follows. Section II provides an overview of

the hardware and software features that are heavily used in this work, followed by

a brief introduction of the most popular DGEMM libraries and related literature.

Section III starts by discussing popular blocking schemes which are essential to high

performance DGEMM followed by a description of our blocking scheme. Section IV

provides details about our software pipeline which enables near peak performance.

Section V illustrates the performance of our strategy in terms of achievable FLOPS

and scalability.

2. Overview

Our target systems are CPU-GPU heterogeneous platforms consisting of multi-

socket multi-core CPU and one or more GPU accelerators. The input data is much

larger than the size of the device memory and is assumed to be initially held in the

CPU memory. At the end of the computation, the output data must reside in the

CPU memory as well.

We use two testbeds for our work. The first is a dual socket quad-core Intel Xeon

X5560 CPU with 24GB main memory and two NVIDIA Tesla C1060 cards each with

4GB device memory - we refer to this testbed as the “Nehalem-Tesla node”, after

the codename of the CPU and the architecture of the GPU respectively. The second

is a dual socket octal-core Intel Xeon E5-2690 with 128GB main memory and two

NVIDIA Tesla K20 cards each with 5GB device memory - we refer to this testbed as

the “Sandy-Kepler node” (we use Sandy rather than Sandy Bridge for brevity). Data

transfers between the CPU main memory and the GPU device memory are carried

out by PCIe Gen2x16 bus: unidirectional for the Nehalem-Tesla node (compute

capability 1.3) and bidirectional for the Sandy-Kepler node (compute capability

3.5).

2.1. CUDA Programing Model

The CUDA programming model assumes a system consisting of a host CPU and

massively parallel GPUs acting as co-processors, each with its own separate mem-

ory [6]. The GPUs consist of a number of Streaming Multiprocessors(SMs), each

June 9, 2015 17:48 Draft Submitted to Parallel Processing Letters ws-ppl

Parallel Processing Letters 3

Table 1. GPUs specification & Compiler, Library configuration

Node Nehalem-Tesla Sandy-Kepler

CPU Name Intel Xeon X5560 Intel Xeon E5-2690

Sockets x Cores 2x4 2x8

DRAM 24GB 128 GB

STREAM BW [4] 37GB/s 73 GB/s

icpc & MKL Lib 2013 2013

GPU Name Tesla C1060 Tesla K20

Device Mem Size 4GB GDDR5 5GB GDDR5

Device Mem BW 102.4GB/s 208GB/s

SMs x SPs 30x8 13x192

PCIe bus PCIe Gen2x16 PCIe Gen2x16

Bi-directional PCIe No Yes

PCIe achievable BW 5.4GB/s H2D 5.7GB/s H2D
5.3GB/s D2H 6.3GB/s D2H

CUDA driver 304.88 319.23

CUDA SDK 5.0 5.5

CUDA DGEMM Peak 75.3 GFLOPS 1053 GFLOPS

of which containing a number of Streaming Processors (SPs or cores). The GPU

executes data parallel functions called kernels using thousands of threads. The map-

ping of threads onto the GPU cores are abstracted from the programmers through

- 1) a hierarchy of thread groups, 2) shared memories, and 3) barrier synchroniza-

tion. Such abstraction provides fine-grained data parallelism and thread parallelism,

nested within coarse-grained data parallelism and task parallelism and is based on

similar hardware architecture among generations. Details of the CUDA program-

ming model can be found at [6] and we will only refer to the aspects that are key

to our optimization scheme. In this work, we are concerned with Tesla C1060 and

K20 whose main features are summarized in Table 1. Note that, for the Tesla K20,

the L1 cache and the shared memory per SM share a total amount of 64KB on-chip

memory whose ratio is configurable as 1:3, 1:1 or 3:1.

2.2. PCIe bus

The CPU and the GPU communicate through the PCIe bus whose theoretical peak

bandwidth is 8GB/s on PCIe Gen2x16 on both platforms. PCIe bus transfer typi-

cally uses pinned memory (explicitly) to get better bandwidth performance because

the GPU cannot access data directly from the pageable host memory (A tempo-

rary pinned memory is implicitly used as a staging area otherwise.) The bandwidth

difference between using a pinned memory versus pageable memory varies among

platforms depending on whether both CPU and GPU support the same generation

of the PCIe bus, their own DRAM bandwidth, etc.. For example, on one of our

nodes, the hardware-to-device (H2D) bandwidth is around 3.3GB/s if we use page-

able memory and similarly, the bandwidth of device-to-memory (D2H) transfer is

around 3GB/s; on the other hand, using pinned memory we can reach 5.7GB/s for

June 9, 2015 17:48 Draft Submitted to Parallel Processing Letters ws-ppl

4 Parallel Processing Letters

H2D transfer and 6.3GB/s for D2H transfer. However, we should be careful not

to over-allocate pinned memory so as not to reduce overall system performance.

Another technique that is typically used is to combine many small transfers into a

large transfer to eliminate most of the per-transfer overhead and latency . This is

especially important when the GPU device memory can only hold a subset of the

input dataset.

2.3. Asynchronous Streams

CUDA supports asynchronous concurrent execution between host and device

through asynchronous function calls - control is returned to the host thread be-

fore the device has completed the requested task [6]. Data transfer and kernel ex-

ecution from different CUDA streams can be overlapped when memory copies are

performed between page-locked host memory and device memory. Some devices of

compute capability of 2.x and higher (K20 in our evaluation) can perform memory

copy from host memory to device memory (H2D) concurrently with a copy from

device memory to host memory (D2H). With a careful orchestration of the CPU

work and CUDA streams, we essentially establish a CPU-GPU work pipeline of

depth five in which computation and communication are organized in such a way

that each GPU accelerator (K20) is always busy executing a kernel that achieves

1TFLOPS performance. Since the data access pattern forces us to batch/pack small

segments of data, we make use of the pinned memory to achieve better PCIe bus

bandwidth especially since as we need to use such a staging area anyway.

2.4. Existing CPU/GPU DGEMM Libraries

Almost all vendors have developed optimized DGEMM libraries that exploit

their processor architectures quite effectively. The list includes the DGEMM li-

braries developed by Intel [3] and AMD for their multicore CPUs, the NVIDIA

CUBLAS DGEMM for the NVIDIA GPUs, and Intel’s DGEMM library optimized

for the Xeon Phi coprocessor. None of these libraries address heterogeneous plat-

forms and each seems to have been tailored for a particular architecture, even from

generations to generations. In particular, the libraries in [8] and [7] are optimized

DGEMM for earlier CUDA Tesla architecture GPUs and later Fermi architecture

GPUs, respectively.

3. Overall Matrix Multiplication Blocking Scheme

3.1. General Blocking Scheme

Blocking is a common strategy for most optimized DGEMM implementations which

involves decomposing the matrices into blocks of appropriate sizes and performing

block-wise operations.

The general double-precision matrix multiplication is defined as C = αAB+βC,

where A, B and C are respectively M×K, K×N and M×N matrices, and where α

June 9, 2015 17:48 Draft Submitted to Parallel Processing Letters ws-ppl

Parallel Processing Letters 5

and β are constants. Our DGEMM kernel assumes row-major format and the main

strategy is to decompose the matrix multiplication into a set of outer-products

defining jobs to be assigned to asynchronous CUDA streams. To define the jobs

and the CUDA streams, two major issues have to be addressed. The first is how

to alleviate the PCIe bus bandwidth limit for the CUDA streams and the second

is how to maintain near peak performance for all the block matrix computations

while overlapping data transfers over the PCIe bus with these computations.

The DGEMM kernel can be decomposed in a block form as follows:

Cij = α

K/bk∑
k=0

A
(0)
ik B

(0)
kj + βC

(0)
ij ,

where the superscript (0) indicates that the initial input data residing on the

CPU, Aik, Bkj and Cij are sub-blocks of matrices A, B and C of sizes bm × bk,

bk×bn and bm×bn respectively. A computation of the Cij defines a job that consists

of s basic steps defined by:

C
(1)
ij = α(0)A

(0)
i0 B

(0)
0j + β(0)C

(0)
ij .

C
(k+1)
ij = α(0)A

(0)
ik B

(0)
kj + C

(k)
ij , where k = 1, ..., s− 1

where s = K/bk, α(0) = α, and β(0) = β. That is, for each step k of the job

Cij , we compute the matrix multiplication of C
(k+1)
ij = α(0)A

(0)
ik B

(0)
kj + βC

(k)
ij , for

k = 0, ..., s − 1, where β = 1 for k 6= 0 steps and β is equal to the original β(0) in

the calling function when k = 0.

We use this decomposition to achieve the following:

(1) We select the block sizes that will allow us to make use of the fast native GPU

DGEMM kernels, and to balance the execution time of such kernel with the

transfer time of the blocks over the PCIe bus.

(2) The result of step k is the input for step k + 1 - this reduces the pressure on

the PCIe bus as sub-matrix Cij is reused. We only need to load C
(0)
ij before the

first step and store C
(s)
ij after the last step. Hence, the cost of moving block Cij

is amortized and the PCIe bus bandwidth requirement is alleviated.

(3) Since separate streams are responsible for computing separate submatrices Cij ,

we avoid synchronization overhead between streams and make the decomposi-

tion strategy scalable - in fact, strongly scalable as we will show later.

3.2. Lower Bounding Block Sizes

In this section, we analyze the conditions on the dimensions bm, bk and bn of blocks

Aik, Bkj and Cij so as to satisfy bus bandwidth requirement (within limit) for near

peak GPU performance throughput.

Consider the computation of Cij and how the corresponding three matrix blocks

are transferred through the PCIe bus into the GPU memory. While this can be

viewed in a similar vein as ”caching” in a CPU, there are some major differences.

First, the GPU has a much larger ”cache” size (5GB for Tesla K20 vs 256KB per

core for Xeon E5-2690). the second difference relates to a much smaller memory

June 9, 2015 17:48 Draft Submitted to Parallel Processing Letters ws-ppl

6 Parallel Processing Letters

bandwidth (5.7GB/s H2D and 6.3GB/s D2H v.s. 73GB/s for dual-socket Xeon

E5-2690 STREAM benchmark). The third, and perhaps the most important, a

much higher experimentally peak DGEMM library FLOPS rate (1053 GFLOPS

(CUBLAS 5.5) on Tesla K20 vs 320 GFLOPS on dual socket Xeon E5-2690). Based

on these observations, we derive our bounds as follows. We note that the space

needed to store the three matrix blocks is given by 8 bytes·(bm·bn+bm·bk+bn·bk),

and such data will be used to perform 2bm × bk × bn floating point operations.

To keep the GPU execution units at full speed, assuming a peak performance of

GFLOPSpeak of CUBLAS DGEMM (1.053 TFLOPS), the resulting PCIe bus host

to device transfer bandwidth has to satisfy:

BWpeak ≥ BWreq =
8 · (bm · bk + bm · bn+ bk · bn)× 2−30

2·bm·bk·bn×10−9

GFLOPSpeak

To develop an intuition into the PCIe bus bandwidth requirement stated above,

assume that bm = bn = bk = dim, which yields BWreq = (12 × 931.3/dim) GB/s

which has to be < 5.7GB/s (H2D). This inequality assumes that PCIe bus is

not shared among GPUs which is the case in our testbed - each GPU is directly

connected to a CPU via PCIe as we are using a dual-socket CPU. Otherwise, it

may need to be adjusted according to the target platform by simply dividing the

number of GPUs that are sharing a single PCIe bus. Solving this inequality, we get

that dim > 1960 - which when rounded to dim = 2000, the required space for the

three blocks is merely 0.09GB.

Next let’s consider the more general case, that is, the block dimensions are

distinct. This results in:

4× (
1

bm
+

1

bn
+

1

bk
)

2−30

10−9
×GFLOPSpeak < BWpeak

Substituting our Sandy-Kepler platform’s GFLOPSpeak = 1053 and BWpeak =

5.7, we get

1

bm
+

1

bn
+

1

bk
<

1

688

This inequality provides an overall guideline for determining the block sizes -

any block dimension smaller than 688 on our platform implies an under-utilization

of the GPU kernels - how severe the under-utilization depends how bad the chosen

block size is. Note that no matter what kind of blocking scheme and data reuse are

employed, at least one block needs to be transferred from the host memory. This

also indicates, if we would like to use CUDA GPUs to accelerate host-stored dense

matrix multiplication, there is a minimum dimension requirement, for example, on

Tesla K20, min{M, N, K} > 688 for achieving a good efficiency relative to the

native CUBLAS/DGEMM.

In Figure 1 we evaluate the GFLOPS performance of the LAPACK DGEMM

on the CPU and the CUBLAS DGEMM (CUDA 5.5) using one K20 on our plat-

form. Given the peak CPU and GPU performances, the dense matrix multiplication

procedures achieve more than 90% efficiency on both the CPU and the GPU for

June 9, 2015 17:48 Draft Submitted to Parallel Processing Letters ws-ppl

Parallel Processing Letters 7

reasonably large data sizes. Substituting the evaluated GFLOPS for a given square

matrix size into the PCIe bandwidth requirement formula, we get the actual PCIe

bus bandwidth requirement corresponding to that size, which is also plotted in

Figure 1.

Fig. 1. Performance of DGEMM libraries
and Corresponding PCIe BW requirement

Fig. 2. PCIe BW Requirement of Staging
Outer-Product

Since we are staging outer-product to compute the matrix block Cij , the PCIe

bus bandwidth requirement is highest for the first step as only blocks Aik and Bkj

need to be loaded in later steps. Depending on the number of steps, if the chosen

block dimensions bm, bn and bk only satisfy the PCIe bus requirement for two blocks,

this would result in an idle period of GPU in the pipeline. From Figure 2, we can see

that, as the square matrix size increases, the memory requirement on the PCIe bus

drops rapidly. At the same time, we need to note that as the matrix size increases,

the required device memory space increases , which has several implications. The

first is that a fewer number of concurrent jobs (computing individual Cij blocks) can

be scheduled as concurrent CUDA streams on the same GPU as different streams

need separate space to store their matrix blocks. The second is that the GPU idle

time before its first stream starts to execute increases, which should be optimized

(minimized under constraints).

As a result, we follow the following rules for selecting the block dimensions bm,

bn and bk:

(1) Using CUBLAS DGEMM kernels to compute block matrix multiplication

should achieve at least 1TFLOPS performance.

(2) The space requirements for the matrix blocks Aik, Bik and Cij should be large

enough as stated in the PCIe bus bandwidth requirement formula, but not be

too large so that we are able to accommodate a number of concurrent CUDA

streams to allow the overlapping of memory copy and kernel execution.

3.3. Packing Data for PCIe Transfers

Packing matrix blocks into micro- or macro- architecture friendly formats is another

popular technique used in optimized DGEMM. In addition to the size of each matrix

June 9, 2015 17:48 Draft Submitted to Parallel Processing Letters ws-ppl

8 Parallel Processing Letters

block, the data layout is another issue to consider. In [1], Goto et al. packed matrix

blocks that can be fit into the L2 cache so as to achieve the minimal number of

TLB entries. In [2], Heinecke et al. further extended the packing scheme to the

so-called “Knights Corner-friendly” matrix format (column-major format for sub-

block A and row-major format for sub-block B) for their Xeon Phi coprocessor. The

“Knights Corner” strategy achieves 89.4% efficiency.

Similarly, we pack each of the matrix blocks needed for each step of the outer-

product (Cij) into row-major order form using multithreaded memory copy to the

pinned memory. This strategy allows us to reach the peak experimental PCIe bus

bandwidth. We note that, due to the memory capacity difference between the CPU

main memory and the GPU device memory, we have to perform some synchroniza-

tion to avoid data hazards in the pinned memory. We make use of the CPU main

thread to accomplish such synchronization. Our multithreading in fact improves the

CPU system memory to pinned host memory copy bandwidth, as the CPU packing

step contributes to the overall runtime.

4. Multi-stage Multi-stream Software Pipeline

CUDA allows the use of streams for asynchronous memory copy and concurrent

kernel executions to hide long PCIe bus latency [6]. A stream is a sequence of

commands that execute in order; different streams may execute their commands out

of order with respect to one another or concurrently. To optimize performance, we

need to overlap the execution of the kernels and the PCIe bus transfers from different

streams. We explicitly allocate a relatively small amount of pinned host memory

and use multi-threading to move data between the large pageable host memory and

the pinned host memory, which will enable us to achieve high bandwidth PCIe bus

transfers.

We will start by describing a simple five stage task that computes a single matrix

block multiplication, followed by a description on how to organize multiple CUDA

streams into a multi-stage multi-stream software pipeline. The scheme will then be

extended to the most general case while accommodating data reuse requirements

that were mentioned earlier.

4.1. A Simple Five-stage Task

Consider the task of simply computing C1
ij = A0

ikB
0
kj +C0

ij , where matrix block sizes

are bm× bn, bm× bk and bk× bn respectively. One “task” here corresponds to one

“step” for the job corresponding to the computation of Cij as discussed in Section

III.B. Such a task requires a single execution of a CUBLAS DGEMM kernel call on

the data blocks that have been brought from the CPU host memory to the device

memory via the pinned host memory. Once the kernel terminates, the result C0
ij is

moved back to the CPU host memory via the pinned host memory. Specifically, this

task can be executed by a five-stage pipeline as follows:

June 9, 2015 17:48 Draft Submitted to Parallel Processing Letters ws-ppl

Parallel Processing Letters 9

Fig. 3. Matrix Blocking Scheme

Fig. 4. Memory Space Mapping (Assuming 5 Streams)

(1) Memory copy of blocks A0
ik, B0

kj and C0
ij from the system host memory to the

pinned host memory using multi-threading. We call this operation S2P memory

copy.

(2) Asynchronous CUDA memory copy from the pinned host memory to the device

memory for blocks A0
ik, B0

kj and C0
ij . Such an operation is referred to as P2D

memory copy.

(3) CUBLAS DGEMM kernel execution to compute C1
ij = A0

ikB
0
kj + C0

ij .

(4) Asynchronous CUDA memory copy from the device memory to the pinned host

memory for block C1
ij . This operation will be referred to as D2P memory copy.

(5) Memory copy of block C1
ij from the pinned host memory to the system host

memory, possibly using multi-threading. This operation will be referred to as

P2S memory copy.

To execute a single five-stage task, we allocate pinned host memory and the

device memory to hold blocks of Cij , Aik and Bkj . Assuming we can accommo-

date five independent tasks on the platform, the corresponding memory mapping is

illustrated in Figure 4.

The time spent on each of the five stages can differ significantly depending on

the block sizes, bus transfer bandwidth, and kernel performance, an issue that will

be addressed next.

June 9, 2015 17:48 Draft Submitted to Parallel Processing Letters ws-ppl

10 Parallel Processing Letters

Fig. 5. Basic 5-stage Pipeline

Given the 5-stage pipeline just described, we aim at executing 5 streams con-

currently as illustrated in Figure 5. To achieve this, the execution times of the

different stages of the pipeline should be somehow balanced. The kernel execution

stage (stage 3) is expected to be the most time consuming since the throughput

of the pipeline is expected to match the native GPU DGEMM performance. This

time-consuming step will be matched with appropriate choices of block sizes bm,

bn, and bk as described earlier by the PCIe bandwidth lower bound formula. Hence

we expect the execution time of stages 2 and 4 to match the kernel execution time.

The execution times of stages 2 and 4 are expected to be faster, but that should

be fine as long as there are no idle time gaps between the kernel executions among

multiple streams as we will show later.

4.2. Multiple Streams of Multi-Stage Pipeline in the General Case

A straightforward approach to handle dense matrix multiplication would be to as-
sign tasks-based jobs of Cij to streams based on the decomposition formula in a
given order.

Cij = α

K/bk∑
k=0

A
(0)
ik B

(0)
kj + βC

(0)
ij

Assume that we have already decided on appropriate block sizes as illustrated

in Figure 3. bm, bn and bk for a problem size of M , N and K. We note that

mblocks = M/bm, nblocks = N/bn and kblocks = K/bk. We can define jobid as

the computation of Cij using the index mapping jobid = i × nblocks + j. Note in

particular that our index mapping attempts to minimize the TLB misses as the large

input data need to be accessed from the CPU main memory. Assume that a number

(SN) of CUDA streams with streamid = 0, ..., (SN-1) are executed concurrently. We

assign the mblocks×nblocks jobs to the SN streams in a round-robin manner, modulo

SN. For every assigned job, the stream is responsible for moving, computing and

storing the final result of Cij into the host memory. The computation of Cij involves

a sequence of (kblocks) of DGEMM function calls, that is, kblocks basic tasks. We will

describe later how what type of synchronization we need so that we can schedule

consecutive jobs to the same stream.

Figure 5 shows a simplified example of a 5-stage pipeline consisting of 5 CUDA

June 9, 2015 17:48 Draft Submitted to Parallel Processing Letters ws-ppl

Parallel Processing Letters 11

asynchronous streams. In this example, each stream is handling a single job that

includes a single task. Each stream uses its own pinned memory space and device

memory space to store the Aik, Bkj and Cij blocks. (kblocks = 1 in this figure.)

We use the matrix blocking scheme in Figure 3 to explain the resulting streams.

for the general multiple-task-per-job case (kblocks > 1) According to our jobid and

streamid relationship, we assign the computation of C00 to stream0, which consists

of 8 (kblocks) iterations (sequence) of the basic five-stage stream tasks from k =

0, ..., 7.

As shown in Listing 1, the movement of block Cij is controlled by conditional

statements that ensure data reuse. In general, at least one of the three blocks of

Aik, or Bkj , or Cij may be reused.

Listing 1. Tasks Per Job

1 f o r (i n t k = 0 ; k < 8 ; k++)
2 {
3 // s tage 1

4 i f (k==0) Memcpy S2P C (0 , 0) ;
5 Memcpy S2P A (0 , k) ;

6 Memcpy S2P B(k , 0) ;

7 // s tage 2
8 i f (k==0) Memcpy P2D C (0 ,0) ;

9 Memcpy P2D A(0 , k) ;
10 Memcpy P2D B(k , 0) ;
11 // s tage 3

12 CUBLAS DGEMM
13 // s tage 4
14 i f (k==7) Memcpy D2P C (0 , 0) ;

15 // s tage 5
16 i f (k==7) Memcpy P2S C (0 , 0) ;
17 }

Fig. 6. CPU-GPU Software Pipeline

The main goal in our design of the software pipeline is to ensure the continu-

ous full utilization of the GPU near its peak performance. A key is to maintain a

steady supply of data blocks to each GPU on our platform. Note that CUDA asyn-

chronous streams can execute out of order with respect to each other but function

calls within the same stream have to execute in order. For matrix multiplication

June 9, 2015 17:48 Draft Submitted to Parallel Processing Letters ws-ppl

12 Parallel Processing Letters

problem, we orchestrate the streams and their function calls in such a way that

CUBLAS DGEMM calls are executed immediately one after the other, each result-

ing in near-peak performance per GPU. The overall scheduling of the multi-stage

multi-stream pipeline is described in Listing 2. Note that we are able to achieve

full utilization of the GPU for a much larger problem size than the device memory

capacity using a memory mapping illustrated in Figure 4.

Listing 2. Multi-Stage Multi-Stream Pipeline

1 i n t jobs = m blocks ∗ n b locks ;

2 f o r (i n t i = 0 ; i < j obs ; i +=SN)
3 { // t i d = t a s k i d ; s i d = st ream id ;

4 f o r (i n t t i d =0; t id<k b lock s ; t i d++){
5 f o r (i n t s i d =0; s id<SN; s i d++) {
6 j o b i d = i+s i d ;

7 i f (j ob id>=jobs) break ;
8 Wait for CPU S2P (job id , t i d) ; // s tage 1
9 Launch AsyncMemcpy P2D (job id , t i d) ; // s tage 2

10 CUBLAS DGEMM(job id , t i d) ; // s tage 3
11 Launch AsyncMemcpy D2P (job id , t i d) ; // s tage 4
12 i f (j o b i d+SN>=jobs) // s tage 5

13 U p d a t e l a s t f l a g (s i d) ;
14 Launch CUDA Callbacks P2S (job id , t i d) ;
15 }
16 }
17 }

4.2.1. Synchronization

Memory reuse requires that mechanisms are put in place to avoid data hazards.

We use MUTEX to achieve this goal. As we allocate different memory spaces for

different streams, a data hazard can only happen within the same stream. We

first assign flags for each stream in each potential block that can be over-written

(A, B and C respectively). These are each protected by a MUTEX after which

we combine those flags appropriately to minimize the overhead of synchronization.

Note that such synchronization overhead is typically “invisible’ as long as it does

not impede the CUBLAS DGEMM executions as we have enough active CUDA

streams to hide the synchronizations within the same stream’s tasks/jobs as the

black arrows illustrate in Figure 6. Specifically, we insert CUDA stream callbacks,

executed as a CPU thread after previous CUDA kernel calls associated with that

stream are completed. In the callbacks, we set the status flag to be “0” notifying

the CPU worker threads to resume their memory copy work from the system host

memory to the pinned host memory, which would flip the status to “1” and wait

for the execution of another callback. A simplified pipeline with one task per job is

illustrated in Figure 6.

4.3. Multi-stage Multi-stream Pipeline For Small K

So far we have focused on matrix multiplication with relatively similar dimension

< M,N,K > values, which gave us a significant number of choices for block sizes.

June 9, 2015 17:48 Draft Submitted to Parallel Processing Letters ws-ppl

Parallel Processing Letters 13

In this section, we tune our scheme for the case when M and N are much larger

than K. That is, matrix A is skinny, matrix B is fat, and matrix C is large and

almost square. This case is frequently used in parallel dense matrix operations such

as LU, QR and Cholesky factorizations. The challenge to the strategy described

earlier is two-fold: 1) there is much less flexibility in selecting the block size for the

dimension K; and 2) the large size of the input and output matrix C puts much

more pressure on the bi-directional PCIe bus bandwidth than the almost square

case.

As discussed before, in order to achieve near peak performance, no blocking

dimension should be smaller than 688 for platforms using PCIe Gen2x16 bus. Hence,

we assume K > 688 and we use K = 1024 as an example. Due to the inequality

bound, we necessarily have kblocks = 1, which yields this simple outer product

Cij = Ai0B0j . This means that for each CUBLAS DGEMM kernel execution, we

would have to load and store a Cij block, which is unavoidable. Due to the fact

that K, aka bk is small, we are left with no choice but to have larger bm and bn to

guarantee that the inequality will still hold. As a result, this gives us a really big

Cij block to transfer in both directions, in addition to the relatively smaller size A

and B blocks.

We optimize such a situation in two ways. First, we assign jobs to the streams

for which blocks of A or B could be reused in different jobs. For example, we assign

the computation of C0j to stream 0 and keep matrix A00 in the device memory

throughout the computation of C0j other than swap it out. Second, we use two

components of the pinned host memory space for matrix C: one as Write-Combining

Memory to conduct the H2D memory transfers for better bandwidth utilization;

and the other one as default cacheable memory for the other way around as write-

combining memory for D2H memory transfers.

5. Performance

In this section, we evaluate the performance of our proposed multi-stage pipeline

based approach on two different platforms. Detailed specifications of the platforms

are listed in Table 1.

5.1. Square Matrix Multiplication

The overall performance of our general blocking scheme for a range of matrix sizes

ranging from N=1K to 52K on the Sandy-Kepler and Nahalem-Tesla nodes is

shown in Figures 7 and 8 respectively. We compare the GFLOPS performance of our

implementations using 1 and 2 GPUs to the Intel MKL multi-threading DGEMM

using all the CPU cores available on the Sandy-Kepler node.

Similar to previous work, the number of FLOPS is determined by the expression

2 ·MNK, where A is of size M ×K, B of size K ×N , and C of size M ×N . On

the Sandy-Kepler, our approach greatly exploits the optimized performance of the

CUDA DGEMM library and achieves 1 or 2 TFLOPS for all reasonably large data

June 9, 2015 17:48 Draft Submitted to Parallel Processing Letters ws-ppl

14 Parallel Processing Letters

Fig. 7. DGEMM Perf. on Sandy-Kepler Fig. 8. DGEMM Perf. on Nehalem-Tesla

sizes by using either one or two GPUs. Such a performance is substantially better

than the corresponding performance on the multi-core CPUs. In addition, unlike the

native CUDA DGEMM library, whose problem size is limited by the device memory

capacity, our approach essentially gives an illusion of a device memory size equal

to the CPU host memory while delivering the same CUBLAS DGEMM GFLOPS

performance. In order to illustrate the generality of our scheme, we evaluate the

same implementation on the Nahalem-Tesla node. Due to its weak double precision

performance - a peak native library performance of 75.3GFLOPS - we are able to

nearly match the native performance and double it on two GPUs.

Fig. 9. Efficiency on the Sandy-Kepler Node Fig. 10. Efficiency on the Nehalem-Tesla Node

To shed more light on the effectiveness of our multi-stream software pipeline, we

define the efficiency as follows:

efficiency =
GFLOPSachieved

GFLOPS peak lib perf

We demonstrate the efficiency of our scheme in Figures 9 and 10. As we can see

from both figures, when the problem size is reasonably large, our software pipeline

is quite efficient and brings almost all of the native CUDA DGEMM library per-

formance out to the host memory. The same type of efficiency is obtained for both

nodes in spite of their differences.

June 9, 2015 17:48 Draft Submitted to Parallel Processing Letters ws-ppl

Parallel Processing Letters 15

Fig. 11. Smaller Size Perf. on Sandy-Kepler Fig. 12. Small K DGEMM Perf. Sandy-Kepler

We note that the decomposition used is not always beneficial for small data size,

which was anticipated by our inequality bound. We demonstrate the performance of

relatively smaller size matrices in Figure 11. Though the native CUBLAS DGEMM

performance on K20 is more than 1TFLOPS for all problem size of N > 2K,

transferring the input from the CPU host memory and the output back to the CPU

contribute a significant overhead. In fact, when the the problem size is fairly small,

say N = 2K, we may simply want to use a straightforward CUDA DGEMM call.

Notice that in this case the problem fits on the device memory, while the focus of

this paper is on problems that cannot fit on the device memory.

5.2. The Case of Dense Matrix Multiplication for Skinny A and

Fat B

We now illustrate the performance for the case when matrix A is skinny and matrix

B is fat. We fix K = 1024 and vary M = N value over a wide range. Our strategy

works extremely well and shows scalability similar to the square case. The results

are shown in Figure 12.

Similarly, we demonstrate the GFLOPS performance and the efficiency as shown

in Figure 13.

6. Conclusion

We have developed a pipelining strategy to carry out dense matrix multiplication

for the case when the input size is much larger than the size of the device memory.

Our strategy achieves almost the same native CUDA DGEMM library performance

over a wide range of large sizes. We achieve more than 1 teraflops on a single GPU

and twice the performance on two GPUs, thereby illustrating the possibility of using

the GPUs with a memory size equal to the size of the main memory on the host

machine. The key to this performance is the careful selection of the block sizes

and the orchestration of the various stages of a CUDA multi-stream that ensures

continuous GPU executions near peak performance. Our results raise the possibility

June 9, 2015 17:48 Draft Submitted to Parallel Processing Letters ws-ppl

16 Parallel Processing Letters

Fig. 13. Small K DGEMM Efficiency on Sandy-Kepler Node

of carrying out various dense matrix operations on very large matrices stored in the

CPU memory while achieving native GPU performance on matrices that fit on the

device memory.

Acknowledgment

This work was partially supported by an NSF PetaApps award, grant number OCI-

0904920, the NVIDIA Research Excellence Center award to the University of Mary-

land, an NSF Research Infrastructure Award, grant number CNS-0403313, and by

the NSF National Socio-Environmental Synthesis Center.

References

[1] K. Goto and R. A. v. d. Geijn. Anatomy of High-performance Matrix Multiplication.
ACM Trans. Math. Softw., 34(3):12:1–12:25, May 2008.

[2] A. Heinecke, K. Vaidyanathan, M. Smelyanskiy, A. Kobotov, R. Dubtsov, G. Henry,
A. G. Shet, G. Chrysos, and P. Dubey. Design and Implementation of the Linpack
Benchmark for Single and Multi-node Systems Based on Intel Xeon Phi Coprocessor.
Parallel and Distributed Processing Symposium, International, 0:126–137, 2013.

[3] Intel. Math Kernel Library. http://developer.intel.com/software/products/mkl/.
[4] J. D. McCalpin. STREAM: Sustainable Memory Bandwidth in High Performance

Computers. Technical report, University of Virginia, Charlottesville, Virginia, 1991-
2007. A continually updated technical report. http://www.cs.virginia.edu/stream/.

[5] NVIDIA Corporation. CUBLAS Library User Guide. NVIDIA, v5.5 edition, 2013.
[6] NVIDIA Corporation. NVIDIA CUDA C programming guide, 2013.
[7] G. Tan, L. Li, S. Triechle, E. Phillips, Y. Bao, and N. Sun. Fast implementation of

DGEMM on Fermi GPU. In Proceedings of 2011 International Conference for High
Performance Computing, Networking, Storage and Analysis, SC ’11, pages 35:1–35:11,
New York, NY, USA, 2011. ACM.

[8] V. Volkov and J. W. Demmel. Benchmarking GPUs to Tune Dense Linear Algebra.
In Proceedings of the 2008 ACM/IEEE conference on Supercomputing, SC ’08, pages
31:1–31:11, Piscataway, NJ, USA, 2008. IEEE Press.

