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Abstract is generally hard to explore and analyze the key prop-

Large-scale graphs are widely used to rep-
resent object relationships in many real
world applications. The occurrence of large-
scale graphs presents significant computa-
tional challenges to process, analyze, and ex-
tract information. Graph coarsening tech-
niques are commonly used to reduce the com-
putational load while attempting to maintain
the basic structural properties of the origi-
nal graph. As there is no consensus on the
specific graph properties preserved by coarse
graphs, how to measure the differences be-
tween original and coarse graphs remains a
key challenge. In this work, we introduce a
new perspective regarding the graph coars-
ening based on concepts from spectral graph
theory. We propose and justify new dis-
tance functions that characterize the differ-
ences between original and coarse graphs. We
show that the proposed spectral distance nat-
urally captures the structural differences in
the graph coarsening process. In addition,
we provide efficient graph coarsening algo-
rithms to generate graphs which provably
preserve the spectral properties from origi-
nal graphs. Experiments show that our pro-
posed algorithms consistently achieve better
results compared to previous graph coarsen-
ing methods on graph classification and block
recovery tasks.

1 INTRODUCTION

Graphs are widely used to represent object relation-
ships in real-world applications. As many applications
involve large-scale graphs with complex structures, it
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erties directly from large graphs. Hence the graph
coarsening techniques have been commonly used to
facilitate the process (Liu et al., 2016; Chevalier and
Safro, 2009).

Generally speaking, the aim of any graph reduction
scheme is to reduce the number of nodes and edges of
a graph, while also ensuring that the “essential proper-
ties” of the original graph are preserved. The question
of what these properties should be remains inconclu-
sive, but there is significant evidence that they should
relate to the spectrum of a graph operator, such as
the adjacency or normalized Laplacian matrix. A long
list of theorems in spectral graph theory show that
the combinatorial properties of a graph are aptly cap-
tured by its spectrum. As such, graphs with similar
spectrum are generally regarded to share similar global
and local structure (Van Dam and Haemers, 2003;
Banerjee, 2008). Based on this realization, modern
graph sparsification techniques (Spielman and Srivas-
tava, 2011; Jovanovi¢ and Stani¢, 2012; Batson et al.,
2013) have moved on from previously considered ob-
jectives, such as cut and shortest-path distance preser-
vation, and now aim to find sparse spectrally similar
graphs.

In contrast to graph sparsification, in coarsening there
has been little progress on attaining spectrum preser-
vation guarantees. The foremost roadblock seem to lie
in defining what spectral similarity should entail for
graph of different sizes. The original and coarse graphs
now have different number of eigenvalues and eigenvec-
tors which prohibits a direct comparison. To circum-
vent this issue, recent works have considered restrict-
ing the guarantees to a subset of the spectrum (Loukas
and Vandergheynst, 2018; Loukas, 2019). Focusing
however only on the first few eigenvalues and eigen-
vectors also means that important information of the
graph spectrum is ignored.

In this work, we start by reconsidering the funda-
mental spectral distance metric (Jovanovié¢ and Stanié,
2012; Gu et al., 2015; Jovanovic, 2015; Jovanovié¢ and
Stani¢, 2014), which compares two graphs by means of
a norm of their eigenvalue differences. This metric is
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seemingly inappropriate as it necessitates two graphs
to have the same number of eigenvalues. However, we
find that in the context of coarsening this difficulty is
easily circumvented by substituting the coarse graph
with its lifted counterpart: the latter contains exactly
the same information as the former while also having
the correct number of eigenvalues.

Our analysis shows that the proposed distance natu-
rally captures the graph changes in the graph coars-
ening process. In particular, when the graph coars-
ening merges nodes that have similar connections to
the rest of the graph, the spectral distance is provably
small. By merging similarly connected nodes, nodes
and edges in coarse graphs are able to represent the
connectivity patterns of the original graphs, thus pre-
serving structural and connectivity information. Fol-
lowing the graph coarsening framework and the new
notion of spectral distance, we provide two efficient
graph coarsening algorithms to generate coarse graphs
which provably preserve the spectral properties.

Our contributions are summarized as follows:

e We show how the spectral distance (Jovanovié¢ and
Stani¢, 2012; Gu et al., 2015; Jovanovic, 2015; Jo-
vanovi¢ and Stanié¢, 2014), though originally re-
stricted to graphs of the same size, can be uti-
lized to measure how similar a graph is with its
coarsened counterpart.

e We provide a rigorous justification that the new
spectral distance accurately captures the graph
structural changes in the graph coarsening pro-
cess.

e We present efficient algorithms to generate coarse
graphs which provably preserve spectral proper-
ties from original graphs.

e In the experiment, we show that the proposed
methods outperform other graph coarsening al-
gorithms on several graph related tasks.

2 RELATED WORK

Recent work have proposed to coarsen graphs by pre-
serving the spectral properties of the matrix represen-
tations of graphs (Loukas and Vandergheynst, 2018;
Loukas, 2019; Durfee et al., 2019; Purohit et al.,
2014; Hermsdorff and Gunderson, 2019). For exam-
ple, Loukas (2019) proposed to preserve the action of
the graph Laplacian with respect to an (eigen)-space
of fixed dimension, arguing that this suffices to capture
the global properties of graph relevant to partitioning
and spectral clustering. Durfee et al. (2019) aimed to
preserve the all-pairs effective resistance. Garg and

Jaakkola (2019) defined a cost based on the theory
of optimal transport. Saket et al. suggested a Mini-
mum Description Length (MDL) principle relevant to
unweighted graphs (Navlakha et al., 2008). Most of
these distance functions are specific to special applica-
tions, how to define an application-independent graph
coarsening framework remains a challenge.

There is a vast literature on characterize graphs with
graph spectral properties (Jovanovi¢ and Stani¢, 2012;
Tsitsulin et al., 2018; Dong and Bindel, 2019). Previ-
ous work defined distance functions based on Lapla-
cian eigenvalues which measure differences between
graphs (Jovanovi¢ and Stanié, 2012; Gu et al., 2015).
Spielman and Teng introduced a new notion of spectral
similarity for two graphs in their graph sparsification
framework (Batson et al., 2013; Spielman and Teng,
2011). Recently, Tsitsulin et al. proposed an efficient
graph feature extractor, based on Laplacian spectrum,
for comparisons of large graphs (Tsitsulin et al., 2018).
Dong uses spectral densities to visualize and estimate
meaningful information about graph structures (Dong
and Bindel, 2019). Although the graph spectrum have
been widely used in many graph applications, it still
remains little explored in the context of graph coars-
ening.

3 PRELIMINARIES

Let G = (V, &€, W) be a graph, with V a set of N = |V)|
nodes, £ a set of M = |€| edges, and W € RV*V
the adjacent matrix. We denote by v; as the node in-
dexed at i, w(i) € RY as the vector of all possible edge
weights associated with v; and d(i) = Zjvzl Wi, j)
as the node degree. Graphs defined in this work are
weighted, undirected, and possess no isolated nodes
(i.e. d(i) > 0 for all v;). Furthermore, the combinato-
rial and normalized Laplacians of G are defined as

L=D"'W and L=1Iy—-D'?WD™'? (1)

respectively, where Iy is the N-dimensional identity
matrix and D is the diagonal degree matrix with
D(i,i) = d(i).

3.1 Graph Coarsening

The coarse graph G. = (V., &, W.) with n = |V,
is coarsened from the original graph G with respect
to a set of non-overlapping graph partitions P =
{81,82,...,8,} C V. Each partition S, corre-
sponds to a “supernode” denoted by s, and the “su-
peredge” connecting the supernodes W,(p, q) has the
edge weight as the accumulative edge weights between
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Figure 1: Left: an example illustrating the graph coarsening process. The original graph is a random graph
sampled from stochastic block model with 50-node and 10 predefined blocks. Right: Eigenvalues and eigenvectors
of normalized Laplacian matrices of original, coarse and lifted graphs. The eigenvalues of coarse graphs align
with the eigenvalues of original graphs. In addition, the eigenvectors indicate the block membership information.

nodes in the corresponding graph partitions S, and S:

> W(ij)

v, €Sp,v;ESy

We(p,q) = w(Sp, Sg) ==

Let P € R be the matrix whose columns are par-
tition indicator vectors,

1, ifv;, €8
P 7 N ) i D
(p.9) {0, othewise.

It is then well known that the weight matrix W, of
the coarse graph G. abides to

W.=PWP'.

The definition of the coarsened Laplacian matrices fol-
lows directly:

L.=D;'W, and L.=1,-D;'?W.D /2

Similarly to the adjacency matrix, the combinatorial
Laplacian of the coarse graph can be obtained by mul-
tiplying L with the P matrix as L. = PLPT. The
same however doesn’t hold for the normalized Lapla-
cian since PCLP" # L,.

3.2 Graph Lifting

We define G; = (V, £, W) to be the graph lifted from
the coarse graph G. with respect to a set of non-
overlapping partitions P. In graph lifting, each node
sp of the coarse graph is lifted to |S,| nodes and nodes
in the lifted graph are connected by edges with weight
as the edge weight normalized by the size of partitions.
Specifically, for any v; € S, and v; € S; we have

w(Sp,Sq) . Zv;esp,'uéesq W(i/aj/)
|Spl|S4l |5p154]

~ Wep,q)
= 75, 1154] @)

Wi(i, j) =

When S, = §; = S, the weight Wi(i,j) can be seen
to be equal to the weight of all edges in the subgraph
induced by S normalized by |S|?. It easily follows that
if W (i, j) is the same for every v;,v; € S, then also
W, (i,j) = W(i,j), i.e., in-partition weights are ex-
actly preserved by successive coarsening and lifting.
The above combinatorial definition possesses can be
expressed in an algebraic form in terms of the the
pseudo-inverse P+ of P, (i.e., PPT = I), whose ele-
ments are given by:

1

P*(j,p) = {'S‘“

if ’Uj € Sp
0 otherwise.
With this in place, the adjacency matrices of the lifted

and coarse graphs are connected by the following rela-
tions:

W, =P*W.PT and W,=PW,P'.

The following equation reveals that lifting preserves
the connectivity up to a projection onto the partitions:

W, =PTW.PT = PtPWP TPT =IIWII' = IWII,

(3)
where IT = PP is a projection matrix, with ITIT =
PTPPTP=P"P=1I
The lifted Laplacian matrices are given by

L,=P'L.,PT and L£;=C'L.C, (4)
where C € R™*V is the normalized coarsening matric
whose entries are given by:

1

Cp,i) = {W

0 otherwise,

ifv; € Sp

such that CT = Ct and CTC = PTP =1I1. In this

manner, we have

L.=PL/P" and L.=CLC". (5)
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4 SPECTRAL DISTANCE

We start by briefly reviewing some basic facts about
the spectrum associated with the Laplacian matrix of
a coarse graph. We then demonstrate how to exploit
these properties in order to render the classical spec-
tral distance metric amenable to (coarse) graphs of
different sizes.

4.1 The Coarse Laplacian Spectrum

Denote the eigenvalues and eigenvectors of the normal-
ized Laplacian matrices as A and u, respectively, with
L =UAU" where the i-th column of U corresponds
to u; and A = diag(\). The eigenvalues are ordered
in the non-decreasing order.

Property 4.1 (Interlacing. Section 5.3 in (Butler,
2008)). The normalized Laplacian eigenvalues of the
original and coarsened graphs satisfy

A() <A() <AGE+N—n) foral i=1,...,n.

Property 4.1 is a general interlacing inequality cap-
turing pairwise difference between original and coarse
graphs (Chung, 1997; Butler, 2007). The equality
holds under different settings of graph structures and

the coarsening matrices.

Property 4.2 (Eigenvalue Preservation). The
normalized Laplacian eigenvalues of the lifted graph
contain all eigenvalues of the coarse graph and eigen-
value 1 with (N — n) multiplicities.

Property 4.3 (Eigenvector Preservation). The
eigenvectors of the coarse graph lifted by C, i.e. u; =
Cu, are the eigenvectors of L;.

Property 4.2 and 4.3 state that lifted graphs preserve
most spectral properties of the coarse graph. Thus,
they can be used as a proxy to define the distance
function (Toivonen et al., 2011). Figure 1 shows an
example illustrating the graph coarsening process and
spectral properties.

4.2 Spectral Distance

Two notions of the spectral distance are proposed to
quantify the difference between original and coarse
graphs. We first use the lifted graph as the “proxy” of
the coarse graph to define the full spectral distance.

Definition 4.4. The full spectral distance between
graph G and G, is defined as follows:

N
SDgun(G,Ge) = A = Aully = 3 IAG) = Au(i)],

i=1

where X and A; are the eigenvalues of the original and
lifted graphs.

As the original and lifted graphs have the same num-
ber of nodes, we directly use vector distance metric to
measure the pairwise differences between eigenvalues.
However, the definition requires computing all eigen-
values of original graphs regardless of the coarse graph
size, which is computationally expensive especially for
large graphs.

This motivates us to define the partial spectral distance
by selecting part of the terms in the full spectral dis-
tance definition. We expand the full spectral distance
into three terms as follows with k; and ko defined as
k1 = argmax;{i : A(?) <1}, ko = N —n + kq,

Z A - M)
- Z A - M) ©)

SDun (G, Ge) =

N
+ Z OIS PN OEPIG]
i=k1+1 1=ko+1

SILCRRNG) @
FY

i=k1+1 i=ko+1

The last equation is from the Property 4.2 where )\,
contains eigenvalues of the coarse graph as well as
eigenvalue 1 with N —n multiplicities. The eigenvalue
A, satisfies

Ao(i) i<k
A(i) =41 ki+1<i<ko
)\C(i—N+n) i > ko

We define the partial spectral distance as the full spec-
tral distance excluding the terms where A; = 1, that
is,

Definition 4.5. The partial spectral distance between
graph G and G, is defined as

k

= A I+ZI>\

=1 i=k+1
Ao(i) < 11}

For the partial spectral distance, we only need to com-
pute n rather than N eigenvalues of the normalized
Laplacian of the original graph, which significantly re-
duces the computational cost.

S-Dpart(ga gc)

where k = arg max; {i :

The full and partial spectral distances are related by,

ko

Y A0 -1

i=k1+1

SDfull(g7 gc) = SDpart(Qa gc) +

D) =1+ Y JAG) = A(i—n+ N)|

A(E+N—n)|
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The excluded terms Zfiklﬂ IA(7) — 1| measure the
closeness of the original Laplacian eigenvalues and
eigenvalue 1. The two definitions are equivalent when
the normalized Laplacian of the original graph Ly
contains N — n eigenvalue 1. The condition is equiv-
alent to when the adjacent matrix W is singular with
N — n algebraic multiplicity of the eigenvalue 0 (Scir-
iha, 2007; AL-Tarimshawy, 2018). In the graph coars-
ening framework, when the merged nodes have similar
connections, the adjacent matrix has eigenvalues close
to 0. As a result, the excluded terms are close to 0.
Thus, the full and partial spectral distance are close
for tackling the graph coarsening problems.

Note that both definitions of spectral distance are
proper distance metrics over the space of graph Lapla-
cian eigenvalues. However, the spectral distance are
not able to distinguish graphs with the same sets of
Laplacian eigenvalues (cospectral graphs (Van Dam
and Haemers, 2003)). Thus there could exist multi-
ple coarse graphs corresponding to the same spectral
distance.

4.3 Characterization of Graph Coarsening

The definitions of spectral distance are closely related
to the graph coarsening framework. Specifically, the
spectral distance well captures the structural changes
in the graph coarsening process. We first consider the
ideal case when merged nodes within have the same
normalized edge weights.

Proposition 4.1. Let the graph G. be obtained by
coarsening G with respect to a set of partitions P =

{81,82,...,8n}. If P is selected such that every node
in a partition has the same normalized edge weights,
w(i)  w(j)
— =—= foralv,v;eS and Se€P (8
a6 di) J )
then

S-Dfull(ga gc) =0 and S-Dpart(ga gc) =0.

Proof. See the Appendix. O

The proposition states that under the ideal graph
coarsening assumption, the spectral distance indicates
that the coarse graph fully preserves the spectral prop-
erties of the original graph in the graph coarsening
framework.

We next provide a more general result on how the spec-
tral distance can capture the structural changes in the
graph coarsening framework. Consider the basic coars-
ening where the coarse graph is formed by merging one
pair of nodes (i.e. n = N — 1), we have the following,

Algorithm 1 Multilevel Graph Coarsening

1: Input: Graph G = (V,€, W) and target size of
the coarse graph n.

2: s+ N
3: while s > n do
4: for v; € V do
5: for v; € N; do
. A — ||w@) _ w()
6: di(id) = |58 — 55,
7 Tmins Jmin = arg mini,j ds (17])
8: s¢s5—1
9: Merge nodes v;,,, and vj_ . to form the coarse
graph Gs.

10: return G, = (Vp,, En, Wh)

Proposition 4.2. Suppose the graph G. is coarsened
from G merging a pair of nodes v(a) and v(b), if the
normalized edge weights of merged nodes satisfy,

w(b)

% %

— )

1

then the spectral distance between the original and
coarse graphs are bounded by

S-Dfull(ga gc) < Ne and SDpart(Q»gc) < ne.
Proof. See the Appendix. O

The propositions states that the spectral distance
is bounded by the discrepancy of normalized edge
weights of merged nodes. Thus by minimizing the
nodes’ edge weights within the same partitions results
in better preservation of spectral properties.

5 ALGORITHMS

We propose two graph coarsening algorithms to gener-
ate coarse graphs with preserved spectral properties.
The first algorithm directly follows from Proposition
4.2 where the coarse graphs are formed by iteratively
merging graph nodes with similar normalized edge
weights. The second algorithm is generalized from
the spectral clustering algorithm where we leverage
on the combinations of normalized Laplacian eigen-
vectors, combined with k-means clustering, to find the
graph partitions and the corresponding coarse graphs.
Both algorithms are shown to generate coarse graphs
with small spectral distance from original graphs.

5.1 Multilevel Graph Coarsening

The multilevel graph coarsening algorithm follows the
coarsening framework by iteratively merging pairs of
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nodes which share similar connections. For each it-
eration, the graph coarsening algorithm searches for
pair of nodes with the most similar normalized edge
weights and merges them into supernodes. To reduce
the computational cost, we constraint the candidate
pairs of graph nodes to be within 2-hop distance. We
denote N; as the set of nodes that are within 2-hops
distance from node v;. The pseudo-codes are described
in Algorithm 1.

Analysis. The following corollary provides the spec-
tral distance result for the multi-level graph coarsening
algorithm, extended from Proposition 4.2,

Corollary 5.1. Suppose the graph G. is coarsened
from G by iteratively merging pairs of nodes v(as) and
v(bs) for s from N to n + 1, if the normalized edge
weights of merged nodes satisfy,

Hw(%) wib)
das) ~ db,)

then the spectral distance between the original and
coarse graphs are bounded by

> €5,

1

n+1 n+1
SDfull(ga gc) S N Z €s, SDpart(ga gc) S n Z €s
s=N s=N
Proof. See the Appendix. O

Time complexity. The time complexity depends on
the original graph structure as well as the coarse graph
size, which can be expressed as O(M (N +n)(N —n)).
When the coarse graph size n is close to N (n &~ N),
the algorithm is efficient to generate the coarse graphs
with time complexity as O(M N). However, when the
coarse graphs has significantly smaller node sizes with
n < N, the algorithm becomes computationally ex-
pensive with time complexity O(MN?). To address
this, we propose the following spectral graph coarsen-
ing algorithm.

5.2 Spectral Graph Coarsening

The spectral coarsening algorithm leverages on the
combinations of eigenvectors, combined with the k-
means clustering method, to find the coarsening par-
titions as well as the coarse graphs. Different from the
traditional spectral clustering, we select eigenvectors
with the eigenvalues corresponding to the head and
tail eigenvalues as in the definition of partial spectral
distance in Definition. 4.5. Since the number of head
eigenvectors kq is unknown in prior before we have
the coarse graph. We iterative over possible combina-
tions of eigenvectors, and select the coarsening results
with the minimum k-means cost. The algorithm is
described in Algorithm 2.

Algorithm 2 Spectral Graph Coarsening

1: Input: Graph G = (V, £, W), eigenvectors U of
the normalized Laplacian L, target size n.

2: Set ky, ko + argming{i: A(k) < 1,A(ke +1) > 1}
where ko <+ N —n + k;

3: while A(k;) <1and A(k2+1)>1do

4: Up, < U1 :k1);U(ka+1: N)J

5: Apply k-means clustering algorithm on rows of
Uy, to obtain graph partitions Py that optimizes
the following k-means cost,

N

AU P =3 (r0)-% T

i=1 JES;

where 7 (i) is the i*® row of Uy, .
ki ki+1,ko=N-—-n+k
7: return coarse graph G. generated with respect to
the partitions with minimum k-means clustering
cost as
P* = arg mkin F(Ur,, Pg,)
1

Analysis. We show that the coarse graphs obtained
with Algorithm 2 optimize the partial spectral distance
SDpgrt. First we assume the graph coarsening is con-
sistent that satisfies the following

L.=CLCT.

The following theorem gives the bound of spectral dis-
tance with respective to the k-means costs.

Theorem 5.2. Let the coarse graph G. be obtained
from Algorithm 2 with graph partition P*, and the k-
means cost F(U,P*) satisfies F(U,P*) < 1, the par-
tial spectral distance is bounded by

(n+2)F(U,P") + 4/ F(U,P7)
1-F(U,P") '

SDpart(ga gc) S

Proof. See the Appendix. O

The theorem states that the spectral distance is
bounded by the k-means clustering cost. When the
eigenvectors have well-separated clustering structures
with small k-means clustering cost, the spectral prop-
erties are preserved.

Time complexity The time complexity of the spec-
tral coarsening algorithm is O(KTNn?) where K is
the number of ki,ks that satisfy A(k;) < 1 and
A(ka+1) > 1, and T is the number of iterations needed
until convergence.
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Table 1: Classification accuracy on coarse graphs with coarsening ratio 1/5.

Datasets MUTAG ENZYMES NCI1 NCI109 PROTEINS PTC
EM 78.90 18.92 62.81 61.35 63.72 48.56
LV 79.01 24.68 63.59 60.49 62.72 50.24
METIS 77.62 24.79 59.74 61.64 63.70 49.34
SC 80.37 24.40 63.14 62.57 64.08 50.16
SGC 80.34 29.19 63.94 63.69 64.70 52.76
MGC 81.53 30.89 66.07 63.55 65.26 52.28

Original 86.58 37.32 66.39 64.93 66.60 53.72

6 EXPERIMENTS

In the experiments, we evaluate the graph coarsening
frameworks on tasks involving real-world and synthetic
graphs.

For the first task, we compare the graph classification
performance on coarse graphs coarsened from different
graph coarsening methods. We evaluate the quality of
graph coarsening methods by the classification perfor-
mance on the coarse graphs.

The second task is on the block structure recovery
of synthetic graphs sampled from the stochastic block
model. We show that our graph coarsening algorithms,
which optimize the spectral distance, can recover the
block structures with high accuracy.

6.1 Graph Classification with Coarse Graphs

Graph classification is one of the most important graph
problems with a variety of applications such as mate-
rial design, drug discovery and computational neuro-
science (Tsitsulin et al., 2018; Jin and JaJa, 2018; Xu
et al., 2018; Park and Friston, 2013). However, for
some graph applications such as social network and
computational neuroscience (Park and Friston, 2013),
graph samples usually have very large sizes, which
makes the classification methods inefficient to directly
apply.

For this task, we apply the graph coarsening methods
to obtain a set of coarse graphs from original graph
samples. We evaluate the classification performance
on coarse graphs with standard graph classification
methods. The quality of graph coarsening algorithms
is measured by the classification performance loss with
coarse graphs compared with the original graphs.

In the experiment, we compare with the following
state-of-the art graph coarsening and partitioning al-
gorithms,

e Edge matching. The coarse graphs are formed
by maximum-weight matching with the weight

calculated as W (i,5)/ max{d(i),d(j)} (Dhillon
et al., 2007; Defferrard et al., 2016).

e Neighborhood-based Local Variation. The
method is proposed to minimize the variational
cost in the graph coarsening (Loukas, 2019;
Loukas and Vandergheynst, 2018).

e METIS. METIS is a standard graph partition-
ing algorithm based on multi-level partitioning
schemes that are widely used various domains
such as finite element methods and VLSI (Karypis
and Kumar, 1998).

e Spectral Clustering. Spectral clustering is
a widely used graph clustering algorithm that
finds densely connected graph partitions deter-
mined from the eigenvectors of the graph Lapla-
cian (Von Luxburg, 2007).

6.1.1 Evaluation

We coarsen the graph samples to graphs with node size
n = rN with the coarsening ratio . The classification
performance are evaluated with 10-fold cross valida-
tion as same as the configurations in previous works
(Tsitsulin et al., 2018; Dai et al., 2016; Xu et al., 2018).

Datasets. We use standard graph -classification
datasets for graph classification evaluation (Sher-
vashidze et al., 2011; Xu et al., 2018; Jin and JalJa,
2018). Each dataset contains a set of variable-sized
graphs from a variety of graph applications. The spe-
cific statistics are in the Appendix.

Graph Classification Method. We use Network
Laplacian Spectral Descriptor (NetLSD) combined
with 1-NN classifier as the graph classification method
(Tsitsulin et al., 2018). NetLSD was shown as an effi-
cient graph feature extractor and achieve state-of-the
art classification performance (Tsitsulin et al., 2018).
Note that NetLSD extracts graph features which only
depends on the graph structures without considering
the node and edge features.
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Table 2: Recovery Accuracy of Block Structures from Random Graphs in Stochastic Block Model

P, q Type EM LV METIS SC MGC SGC
Associative  0.1810 0.3076  0.7792  0.7845 0.3664 0.7845
0.2,0.01 Dissociative 0.0956 0.1071  0.0815  0.0877 0.1093  0.0850
Mixed 01052 0.1944  0.2389  0.3335 0.6062 0.7107
Associative  0.1015 0.1002  0.7820  0.7930 0.2868 0.7930
0.5,0.1 Dissociative 0.0854 0.1068 0.0602  0.0788  0.1474 0.7901
Mixed ~ 0.0848 0.2241  0.2883  0.4074 0.7343 0.7699
Associative  0.0823 0.1139  0.5596  0.6532 0.1172 0.6532
0.8,0.3 Dissociative 0.0836 0.0976  0.0776  0.1342 0.7784 0.7931
Mixed  0.0888 0.1503  0.2929  0.3909  0.5428  0.7209

6.1.2 Results

Table 1 shows the graph classification performance on
coarse graphs with coarsening ratio 1/5. For most
datasets, our graph coarsening schemes yield better
classification performance compared to other graph
coarsening methods. Moreover, for datasets such as
NCI1, NCI109, the classification accuracy with coarse
graphs achieve almost the same result as the model
with the original graphs.

6.2 Block Recovery of Random Graph
Samples

In this experiment, we apply the coarsening algorithms
to recover the block structures of random graphs sam-
pled from stochastic block model.

The stochastic block model is a random graph model
with explicit block structures, which are commonly
used to evaluate graph partitioning and clustering al-
gorithms (Abbe, 2017; Abbe et al., 2015). The model
is parameterized by B € [0,1]"*" with graph nodes in
blocks ¢ and j are connected with probability B(%, j).
Random graph samples are generated from stochas-
tic block model by sampling the upper triangular en-
tries W (i, j) following the edge probability and the
lower triangular entries are constrained as W (j,i) =
W (i, j).

We consider random graph models parameterized with
p and g with the following configurations on B,

e Assortative. The diagonal entries are p and off-
diagonal entries are q.

e Dissortative. The diagonal entries are ¢ and off-
diagonal entries are p.

e Mized. The entries of B are randomly assigned
with p and ¢ (each with probability 1/2).

6.2.1 Evaluation

We evaluate the performance of graph coarsening al-
gorithms by measuring the discrepancy between re-
covered graph partitions and the ground-truth block
structures. We use the Normalized Mutual Informa-
tion(NMI) to quantify the recovery between any two
graph partitions. The definition of NMT is described
in the Appendix.

For each stochastic block model setting, we use N =
200 and n = 10 with 20 nodes for each partition. We
repeat the experiment 10 times and report the average
NMI results.

We compare our graph coarsening algorithms with
the graph coarsening and partitioning algorithms men-
tioned in Section 6.1. Table 2 contains the average
NMI results under different model settings. Our pro-
posed methods outperform other methods under all
the model configurations. In particular, our methods
can achieve high recovery accuracy for dissortative and
mixed settings where traditional graph partitioning al-
gorithms fail to recover accurately.

7 CONCLUSION

In this work, we propose a new framework to tackle
the graph coarsening problem. We leverage on the
spectral properties of normalized Laplacian matrices
to define a new notion of graph distance that quanti-
fies the differences between original and coarse graphs.
We justify that the new spectral distance naturally
captures the structural changes in the graph coarsen-
ing. We provide efficient graph coarsening algorithms
that provably guarantee that the coarse graphs pre-
served spectral properties. Experiments show that our
proposed methods outperform other graph coarsening
algorithms on graph classification and block recovery
tasks.
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Supplementary Material for “Graph Coarsening with
Preserved Spectral Properties”

A Proof of Property 4.2, 4.3

Proof. We start by noticing that the projection matrix IT acts as an identity matrix w.r.t. the lifted normalized
Laplacian £; = TILII, since £, = CTL.C = CTCL,CTC = I1LI1. Now, consider the following eigenvalue
equation:
Lou, = M u,
CL,CTu, = \u,
c'cL,CTu, =A.Cu,
ICIIC Tu, = \.C T u,
£,CTu. = \.C'u,
Note that in the fourth step, we used the relation CT = CTCCT = IICT, which holds due to the properties

of the Moore-Penrose pseudo-inverse. Thus, C T u,. are eigenvectors of £; with the corresponding eigenvalues of
the coarse graph.

To show there are N — n additional eigenvalues 1, one can observe that Iy — £ = D, 1/ 2VV;D; 1/2 is a rank-n
matrix because nodes within the same partition have exactly the same edge weights. Hence Iy — £ contains
N — 1 eigenvalue 0 and correspondingly £ contains eigenvalue 1 with N — n multiplicity. O

B Proof of Proposition 4.1, 4.2

For the simplicity of the proof, we use the L™ = I — D~'W to replace the original normalized Laplacian £
to compute the Laplacian eigenvalues. Note that £™ has the same set of eigenvalues as the original normalized
Laplacian £ and the relation of the eigenvalues and eigenvectors satisfy,

L:rw — D_1/2£D1/2, u'r"'w — D—1/2u

B.1 Proof of Proposition 4.1
Proof. We show that under the assumption above, the eigenvalues of the original normalized Laplacian contain
the eigenvalues of coarse graph G, plus eigenvalue 1 with N — n multiplicities.

The random-walk Laplacian of the coarse graph satisfies,

£ =1I,—D;'W,
= PIyPT - PDPTPWPT
= PIyPT - PD'WPT
=P(Iy - D'W)P¥
= PL™PT
The third equation holds because of the assumption in Equation (8). Then, the eigenvalue and eigenvector of
L7 satisty the following:
L7Mu™ = ul”
PLYPTu™ = \ulv
PTPL™PTu™ = APTul”
L™PFTu™ = APTulY

that is, £™ has the eigenvalue A with the corresponding eigenvector PTu™.
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To see that the original graph contains N — n eigenvalue 1, we consider D™'W = Iy — £™ which consists of
rows of normalized edge weights with row i as d((l)). From the assumption in Equation (8), we have identical

rows for each partition S,. Thus D~'W is at most rank-n, which indicates £™ contains N — n eigenvalue 1.

Thus, the original normalized Laplacian has the same eigenvalues as the lifted graph. Both definition of spectral
distances are 0. O

B.2 Proof of Proposition 4.2

Proof. The normalized Laplacian of the original graph can be viewed as a perturbation of the normalized Lapla-
cian of the lifted graph as
L — L:;“w + E,

where E is the perturbation matrix.

We expand the entries of L™ as follows:

Wi, j)
(i)

As the coarse graph is coarsened from merging one pair of nodes, the edge weights of the lifted graph G; can be
expressed as,

L0, 5) = 1(i,5) —

W(a,a)+W(a,b)+W(b,a)+W(b,b) lf'L 6 {a’ b} and j 6 {a7 b}

1

Wi, ) = { wiaiwib) 1“ € la.b} and ' # la.b)
e R if i ¢ {a,b} and j € {a,b}
W (i, j) otherwise.

and the corresponding node degree d; is

d(a)+d(b)  sp -
(i) = 5 if i € {a,b}
d(i) otherwise.

The above imply that £ can be expanded as follows:

I(i,j) — Wle a)+WEZ(Z))':‘;‘E$)a)+W(b ) if i € {a,b} and j € {a,b}
£y = 11,y - W) N0 = D woe e bpand J ¢ fo.b)
d; () I(i,5)— % if i ¢ {a,b} and j € {a,b}

I(i,j)— “Zl otherwise

and the perturbation matrix E = L™ — L is given by

W(’L,j) _ W(a,a)+W(a b)+W(b a)+W(b,b) le c {CL, b} and j c {a7 b}

Wi W swig)
i a.j "y .
B, ) = V[;ié?)')_w('( ))i%b.b) if i € {a,b} and j ¢ {a, b}
d(i’)J - A ifi ¢ {a,b} and j € {a,b}
0 otherwise.

From Weyl (1912), we have the following bound on the eigenvalue gap between A(z) and X;(4):
1A = X(@)] < [ Elly
Moreover, Wolkowicz and Styan (1980) proved that the spectral norm || E||, admits the simple upper bound:

HEHg < max r;¢; = max r; max cj,
2,7 7 g

)

where r; = >, [E(i, j)| and ¢; = 3, |E(i, j)|.
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Let us focus on term 7;.

Case 1: i ¢ {a,b},

_ Wio) W0 +Webh),  Wia)  Wia)+ Wb

i) 2d(1) d(i) 2d(1)
_ Wi WD), HW(z,a) WG|
d(i) di@) [ d(i) d@@) |y

Case 2: i € {a,b}, and suppose d(a) < d(b)
_  Wli,a) W(a,a) +W(a,b) + W(b,a) + W(b,b)

mi=| d(i) 2(d(a) + d(b) [+ d(z’) 2(d(a) + d(b))
W(i,j)  Wia,j)+Wi(bj)
+jg;b} i@ da) T db) |
W(a,a) W(b,a) Wi(a,b) W (b,b) Wia,j) W(b,j)
aw am a2 T aw |
_||Wa)  W(b) )
H a@ A ||, = (9)

We have max; r; < e. Similarly, we can show that ¢; < e. The spectral norm of the perturbation matrix E then

is bounded by
|E|, <  /maxr;maxc; <e. (10)
Vo J

Combining the above, we have the bound of each term in the spectral distance as,
A = Au(i)] < e (11)

The bounds of the full and partial spectral distance follow the Equation 11 as they contain N and n eigengap
terms respectively. O

C Proof of Corollary 5.1

Proof. We denote the intermediate graphs at iteration s as G(®) with G(N) as the original graph G and G(™) as
the coarse graph G.. From Proposition 4.2 and the spectral distance is a distance metric over the Laplacian
eigenvalues, we have the following,

ntl n+1
SDpu(G,Ge) <> SDpu(G),6E) < N D e,
s=N s=N
and
n+1 n+1
Dyart(G, Ge) < Z SDpar(G),G07) <N Y e
s=N

D Proof of Theorem 5.2

Proof. We rewrite the objective of the k-means algorithm as the following,
2

i=1 JES;
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where the matrix C € R"*¥ is the normalized coarsening matrix corresponding to the graph partition P. With
the notation IT = CC" and IT+ = I — IT from Section 3.2, the k-means objective is written as

FU,P) = |0-U|f}.

We express the partial spectral distance as in Definition 4.5

k)l N
SDpust(G.G) = 3 (Aeli) =A@+ Y (AG) ~ Acli + 11— N)) (12)
i=1 j=ko+1

where k1 = argmax; {i : A.(4) < 1}, k2 = N —n + ky.
Because of the interlacing property 4.1, we remove the absolute sign on the terms.
Correspondingly, we separate the k-means cost in two terms as,
F(U.C) = |[Us, = CCTU |} + Uy, = CCTU, || = I Uy, |7 + [T UL, |7
where Uy, and U,QQ denote the eigenvectors corresponding to the smallest ki and largest n — k; eigenvalues of
the original graph. We also denote &, = |[II*Uy, [|3, and 6, = |ITIU;_|1%.
We will prove the results of the two terms separately.

For the first k1 eigenvalue gaps, we start by the following generalization of the Courant-Fisher theorem:

Z)\C(i): min  tr(V ' L.V).
= viv=r,

We write £ = ST8 where § € RM*N denotes the incidence matrix of the normalized Laplacian £ with the

following form

—L_ifo=31
d(i)’
Swe) =Y L,

V@)

where e € £ with ¢ and j as the connecting nodes. Then, the first k; eigenvalues are

> A(i)=_min tx(V'CSTSCTV)= min [ISCTV]|
i<k vTv=I, VTiv=I,

Set Z = CUy,, and suppose that Z T Z is invertible (this will be ensured in the following). We select
V=22z"z)""?
for which we have
VV=(2"21*2"2z"z)'? =1,
as required.
We expand the sum of eigenvalues as follows:
S A= min [SCTV|i<|SCTZ(272)7 |} < ||SCTCUL |} (27 2) ).
i<ki !
and use the matrix IT = CTC and II+ = I — IT defined in Section 3.2.
For the first term, we employ the triangle inequality.
ISCTCU |7 = | STUL, |7
= (|IS(I - 114Uy, [|)?
< (ISU, lIF + | ST U, || )
< (|[SU, || + | ST |2 [T Uy, || ) (13)
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The result for || SUy, ||F is

|SU, || p = 4/tr U,ISTSU,C1 /

i<k

On the other hand, the norm || STI||5 is bounded by

ISTE 2 = /A (T SESTIY) = /X (£) < V2

To analyze the second term, denote by o; the singular values of the k x k matrix U,] IIUy, and &, = F(U,,C) =
|[TI+ U, ||%. The following inequality holds:

Ok, 2 [ U I3 = U, T I Uy, |12 = ([UY, I UL, |2 = UL, (1 = Uy, |l2 = [T — Uy, UG |2
The inequality is equivalent to asserting that the singular values of Ule ITU}, are concentrated around one, i.e.,
1—0k, <o0; <1+ forall ¢ <Fk.
It follows that the smallest eigenvalue of the PSD matrix Z " Z is bounded by

\(ZT2Z) = ”rrHunleUleTCUkl
2
= min z'CTCx
xespan(Uy, ), |lz|l2=1

= min x Iz
xespan(Ug, ), [|z[2=1

Z 1 - 6161
We deduce that the matrix is invertible when 6, < 1 and C is full row-rank. In addition, we have

- _ 1
I(ZT2)" 25 =11(Z72) "2 <

Putting the bounds together, gives

or equivalently

i<k

To prove the result for the second term in equation 12, we introduce the signless normalized Laplacian L=
I + D~Y2W D~'/? to obtain the results of the second term in Equation. 13. We follow the similar arguments
using the signless normalized Laplacian. Note that the spectral properties of signless normalized Laplacian follow
the relation:

Ai)=2-AN+1—i)and U(i) = U(N + 1 —1)
Then, the eigengaps between largest eigenvalues abide to

N

S AG) - Al £n— N) i AV 41 5) — Al +1—3)
j=ka+1

3M
;?‘H

IR

(S 2 A0 /80, 5, AG)
= 1—522
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Combining the above, we obtain the following result:

5k1 (2 + Zzﬁk A(Z)) + \/ 85k1 Zifkl A(Z) 622 (Z]<’n k1 2+ A + \/8(S ]<'n k1 (])
S-D(ga gc) S + /
1 — 0, 1- 5k2
< (n+2)F(U,C)+4/F(U,C)
- 1-FU,C)
In the last step, we use the following bounds:
o, < F(U,C), 6, < F(U,C),
SO <k, Y A <n—h
’LSk}l ]Sn_kl
VEki+vn—k <vV2n.
E Additional Material for Experiments
E.1 Graph Classification Dataset
The statistics of the graph classification benchmarks are in Table 3.
Table 3: Statistics of the graph benchmark datasets.
Datasets MUTAG ENZYMES NCI1 NCI109 PROTEINS PTC
Sample size 188 600 4110 4127 1108 344
Average |V| 17.93 32.63 29.87 29.68 39.06 14.29
Average |F| 19.79 62.14 32.3 32.13 72.70 14.69
# classes 2 6 2 2 2 2

E.2 Definition of Normalized Mutual Information

We denote C; and Cs are two where C(7) represents the set of nodes with label . We define the NMI as,

MI(Cy,Cy)

NMI(Cy,Cs) = 1(H(Cy) + H(C))

where MI(Cq,(C5) is the mutual information defined as,

Ci(i)NCs(j
1(C1.C) Zzp (C1(i) N (7)) log (5 (((;f((i))ﬁ(é(fj)))))

H(C) is the entropy defined as, ’
H(C) = — Zp(c(i))logp(c(i))

The probability p(C(i)) is approximated as the ratio of partition i as p(C(i)) = ‘C]E,i)l.




