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Abstract—Graph neural networks (GNN) have achieved great
success in various graph-related applications. Most existing
graph neural network models follow the message-passing neural
network (MPNN) paradigm where the graph pooling func-
tion forms a critical component that directly determines the
model effectiveness. In this paper, we propose PermPool, a new
graph pooling function that provably improves the GNN model
expressiveness. The method is based on the insight that the
distribution of node permuations, when defined properly, forms
characteristic encoding of graphs. We propose to express graph
representations as the expectation of node permutations with a
general pooling function. We show that the graph representation
remains invariant to node-reordering and has strong expressive
power than MPNN models. In addition, we propose novel permu-
tation modeling and sampling techniques that integrate PermPool
into the differentiable neural network models. Empirical results
show that our method outperformed other pooling methods in
benchmark graph classification tasks.

Index Terms—Graph neural network, Permutation modeling,
Pooling Function, Positional Encoding.

I. INTRODUCTION

Graph neural network (GNN) models emerge as a powerful

tool to solve graph related problems such as node classifica-

tion, link prediction and graph classification [1]–[6]. Most of

GNN models follow a message-passing paradigm where node

representations are formed by iteratively aggregating informa-

tion from neighboring nodes, followed by a graph pooling

function to generate graph representations [1], [4], [5], [7].

Graph pooling functions, which generate graph representations

from node representations, are one of the key components that

determine the effectiveness of GNN models. There have been

extensive studies on the graph pooling functions. For example,

Xu et al. proposed to use multi-set functions for graph pooling

[7], [8]. Gilmer et al. proposed a general message-passing

scheme utilizing Set2Set to obtain graph representations [5],

[9]. Corso et al. proposed to combine different aggregators

to form more expressive graph representations [10]. Graph

pooling functions are usually expected to be permutation
invariant, that is, graph representations remain the same for

isomorphic graphs. To satisfy the constraint, most graph

pooling functions are formulated with simple permutation-

invariant function forms, such as MEAN, SUM and MAX,

which hampers the flexibility to represent a rich class of

graph functions [7], [11]–[13]. Moreover, pooling functions

formulated from simple functions suffer from the lack of

expressiveness which cannot distinguish between even simple

graphs.

One of the most common methods to overcome the limi-

tation of expressiveness is to use Positional Encodings (PE)

which equip the graph nodes with additional features that

improve the model expressiveness. Sato et al. and Abboud

et al. proposed to use random node embeddings [14], [15].

But the problem with random node embeddings is the lack of

equivariance and invariance which are key properties of graph

pooling functions. Bouritsas et al. used subgraph counts and

Kreuzer et al. used the Laplacian eigenvectors as additional

features to improve the performance [16], [17]. These posi-

tional encodings are usually predefined before the learning

task which reduce the adaptativity to specific graph problems.

Moreover, position encodings mostly only capture partial of

the local information with little consideration for the global

graph structure information.

In this work, we propose PermPool, a new graph pooling

function that provably improves the GNN expressiveness. Our

method is based on the key insight that the distribution of node

permutations, when defined properly, forms the characteristic

representations for graphs. More formally, our method starts

by deriving the distributions of node permutations, which

could be heuristic or parameterized with graph information.

Given the distribution of node permutations, we are able to

formulate the graph representation as the expected value of

a general pooling function with the permutation equipped as

positional embeddings. The general pooling functions are de-

pendent on the specific Combined with the advanced permuta-

tion sampling techniques, we can incoporate the differentiable

permutation modeling with the GNN models which could be

further learned with the specific graph problems . The overall

architecture is depicted in Figure 1.

One closely related work is Murphy et al.’s study where

the authors proposed Janossy Pooling, a similar method that

defines the graph representation as average of the pooling

function applied on the node representations and all possible

permutations [18], [19]. However, their method assumed a

uniform distribution across all possible node permutations

which is computational expensive and lack the flexibility to

consider the underlying graph information. PermPool provides

additional flexibility to define a wide range of permutation

distributions and therefore more expressive pooling functions.
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Fig. 1. The overall architecture of the permutation pooling framework.

Fig. 2. One example pair of graphs that cannot be distinguished by MPNN
models.

Moreover, in practice, the distribution of permuatations learned

by our model can have less computational complexity than

enumerating all possible n! permutations.

In summary, our work has the following contributions,

• We provide a flexible framework to represent an expres-

sive and invariant graph pooling function

• We propose novel permutation modeling and sampling

techniques that integrate the permutation pooling into the

graph neural network model.

• Empirical results show that PermPool achieves outstand-

ing performance in benchmark graph classification tasks.

II. RELATED WORK

Graph Pooling There have been extensive studies on the

design of graph pooling functions. Zhang et al. proposed

SortPool that first sorts graph nodes with the node features

and apply convolutional neural networks on the sorted graph

features [11]. Ying et al. proposed DiffPool that integrates

the differentiable pooling function in the hierarchical neural

network model [20]. Gao and Ji proposed a top-k graph

pooling function by downsampling the graph nodes with a U-

net-like neural network architecture [12]. Most graph pooling

functions only aggregate node features without considering the

graph structures. Therefore, positional encoding techniques are

introduced to improve the expressiveness.

Positional Encoding Neural networks with positional en-

codings have achieved great success in image and langauge

tasks [21], [22]. However, there are no predefined positional

embeddings for graphs. Researchers proposed techniques such

as random embedding or subgraph counts used as the posi-

tional embedding [14]–[16]. Due to the challenge of defining

node positions for graphs, the positional encodings don’t fully

capture the whole graph information.

Permutation Modeling Our work is closely related to the

recent work on permutation modeling. Adams et al. proposed

to use doubly stochastic matrices to model marginals of the

distribution over permutation matrices that is further used to

characterize the expectation of the ranking objective [23].

Similarly, Mena et al. proposed a Sinkhorn Network model

that learns permutations as solutions of the matching prob-

lem, approximated by doubly stochastic matrices [24]. Grover

proposed to model permutations with stochastic optimization

via continuous relaxation [25]. Most of permutation modeling

targets on images reconstruction and number sorting problems.
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Our work is the first to introduce the permutation modeling to

the graph learning domain.

III. PRELIMINARIES

A. Notations

Graph A graph is represented as G = (V,W ,H), with V
as the set of graph nodes with n = |V|, W ∈ R

n×n as the

adjacent matrix and H ∈ R
n×d as the node representations.

We denote by vi ∈ V as the node indexed at i and Ns(vi) as

the set of neighbors of vi within s hops (We denote N (vi) =
N1(vi). We use hi as the node representation of node vi and

hG as the graph-level representation.

Permutation We denote a permutation over integers from

1 to n as a list of node indices π = {v1, v2, ..., vn}. The

corresponding permutation matrix is denoted as Pπ . We use

Π to denote the set of all possible permutations with |Π| = n!.
π−1 is denoted as the inverse permutation of π. A graph

permutated with π is denoted as Gπ = (Vπ,Wπ,Hπ)
where the node indices, weight matrix and feature matrix are

permutated over π denoted as Vπ , Wπ = PπWP T
π and

Hπ = PπH .

B. Message Passing Graph Neural Network

Starting with the initial node features H(0) = H , the

message passing graph neural network iteratively updates node

representations by aggregating information from neighboring

nodes. The following functions characterize the graph convo-

lutional process [5], [7], [26],

h(i)
v = Aggregate(i)(h(i−1)

v ,m(i)
v ),

m(i)
v = Msg(i)({h(i−1)

u : u ∈ N (v)}) (1)

where hi
u is the representation of node u at iteration i and

Msg is the message function that aggregates neighborhood

information. The graph representation hG is obtained by

applying the pooling function Pool on the corresponding node

representations as,

hG = Readout(h(k)
v , v ∈ V) (2)

We use GNNk to denote graph neural network models with

k graph convolutional layers.

For most graph neural network models, the Readout func-

tion only depends on the node representations without con-

sidering graph topological information, which hampers the

expressiveness of graph neural network models.

In this work, we explicitly denote the graph pooling func-

tions as PermPool : (Rn×d,Rn×n) → R
d which takes

variable-sized node representations H and adjacent matrix

W as inputs and outputs a fixed-sized graph representation

hG ∈ R
d.

IV. GRAPH NEURAL NETWORK WITH LEARNABLE

PERMUTATION POOLING

A. Main Framework

We represent the permutation pooling function as the expec-

tation of a general pooling function over some permutation dis-

tribution. We denote the permutation-invariant pooling func-

tions as PermPool : (Rn×d,Rn×n) → R
d and permutation-

dependent pooling functions as Pool : (Rn×d,Rn×n,π) →
R

d. Then the permutation pooling function is expressed as,

PermPool(H,W ) = ρ (Eπ∼pθ
[Pool(H,W ,π)])

= ρ

(∑
π∈Π

pθ(π|H,W )Pool(H,W ,π)

)
(3)

where pθ(π|H,W ) is the permutation distribution with pa-

rameters θ, Pool(H,W ,π) is a general pooling function

defined on the node features and adjacent matrix with the

node permutation π used as positional encodings. ρ is a non-

linear function such as MLP. PermPool is expected to be

permutation-invariant as follows,

PermPool(H,W ) = PermPool(Hπ,Wπ), ∀π ∈ Π. (4)

The permutation pooling functions provide the flexibility

to represent a broad class of permutation-invariant pooling

functions with general pooling functions. One example is that

when pθ(π|H,W ) is a uniform distribution over all possible

n! permutations, the pooling function PermPool becomes the

Janossy pooling function proposed by Murphy et al. as follows

[18],

PermPool(H,W ) = ρ

(
1

n!

∑
π∈Π

Pool(H,W ,π)

)
(5)

Beyond the uniform distribution, the following proposition

states the general condition of the permutation distribution that

guarantees the permutation-invariance of the pooling function,

Proposition 1 (Permutation Invariance). PermPool(H,W ) is
permutation invariant if the probability distribution satisfies

pθ(ππ
′|Hπ,Wπ) = pθ(π

′|H,W ), ∀π,π′ ∈ Π. (6)

and
Pool(Hπ,Wπ,π

′) = Pool(H,W ,ππ′) (7)

In the following, we present the permutation modeling and

sampling techniques to formullate the permutation pooling

function.

B. Permutation Modeling

Permutations over graph nodes are generally considered as

the non-repeating node paths sampled from graph traversal al-

gorithms. Random-walk based traversal algorithms have been

used to sample node neighbors to learn effective node repre-

sentations [27]–[29]. However, most graph traversal algorithms

generate node paths that only depend on graph structures. In
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Algorithm 1 Discrete Permutation Modeling from Doubly

Stochastic Matrix

Input: doubly stochastic matrix S ∈ R
n×n

Output: π = {v1, v2, ..., vn} and the associated probability

p(π)

v1 ∼ Uniform(1, n), unvisited list = [1, 2, ..., n]

S:,v1 = 0, remove v1 from unvisited list

for i = 2, ..., n do
if any(Svi−1,;) > 0 then

vi ∼ DiscreteSample(Svi−1,;)
else

vi ∼ Uniform(unvisited list)
end if
S:,vi = 0, remove vi from unvisited list

end for
Return π = {v1, v2, ..., vn} and its associated probability

p(π)

addition, it is nontrivial to integrate the node path sampling

into the neural network framework.

In this work, we model the permutation distribution through

a symmetric real-value doubly-stochastic matrix (DSM). The

symmetric doubly-stochastic matrix S ∈ R
n×n satisfies the

following,

Si,j ≥ 0 ∀i, j,
n∑

i=1

Si,j = 1 ∀j,
n∑

j=1

Si,j = 1 ∀i,S = ST

(8)

DSMs can be constructed from any real-value symmetric

matrices in a differentiable form that provides the convenience

to be integrated into an end-to-end neural network framework.

Given any real-value symmetric matrix X ∈ R
n×n, we can

apply a simplified Sinkhorn normalization that transforms any

real-value matrix to a DSM form as,

S = X � (X1n1
�
n ) (9)

with � denoting the element-wise division and 1N a column

vector of ones. Since X is symmetric, the S can also be

defined as

S = X � (1n1
�
nX) (10)

The DSM S forms the key matrix based on which the

permutation distribution is defined. Each element Si,j repre-

sents the random walk probability from node i to node j. One

example is to directly use the adjacent matrix W to define S
which becomes the traditional random walk matrix for graphs.

More broadly, S constructed from any symmetric matrix X
provides the flexibility to integrate rich graph information. For

example, we can define X combining both the graph structure

and the node features as,

X = W + λHDHT (11)

where D ∈ R
d×d and λ ∈ R are learnable parameters.

Algorithm 2 Continuous Permutation Sampling from Doubly

Stochastic Matrix

Input: doubly stochastic matrix S ∈ R
n×n, temperature

parameter τ , threshold ε
Output: P̃ ∈ R

n×n that approximates the permutation

matrix

P̃:,1 ∼ Gumbel max(Uniform(1, n), τ),

S:,j = S:, � (1− P̃:,1), ∀j = 1, ..., n

vunvisited = 1 − P̃:,1

for i = 2, ..., n do
pi = S · P̃:,i−1

if sum(pi) > ε then
P̃:,i ∼ Gumbel max(pi, τ)

else
P̃:,i ∼ Gumbel max(vunvisited, τ)

end if
S:,j = S:, � (1− P̃:,i), ∀j = 1, ..., n

vunvisited = vunvisited − P̃:,1

end for
Return the permutation matrix P̃

We formally define the permutation modeling algorithm in

Algorithm 1. The algorithm computes the probability for each

possible permutation. However, in practice, it is intractable

to enumerate all possible permutations and the associate

probabilities. In addition, the sampling method in Algorithm 1

is discrete which is challenging to be integrated into an end-to-

end differentiable graph neural networks. Therefore, we intro-

duce the continuous permutation sampling techniques to obtain

the approximation of the distribution of node permutations.

C. Continuous Permutation Sampling

Recently, Jang et al. and Maddison et al. introduced

Gumbel-max tricks to sample discrete elements from categor-

ical distributions [30]–[33]. The Gumbel-max trick is able to

recast the sampling problem as an optimization problem with

re-parametrization. The major benefit of Gumbel tricks is that

the samples are a continuous approximation of the categorical

samples where the parameter gradients can be easily computed

via the re-parameterization trick.

We define z ∈ R
n as the vector consisting of i.i.d. elements

sampled from the standard Gumbel distribution 1. Given a

categorical distribution p ∈ R
n representing the probability,

the perturbed input is given as,

y = argmax(log pi + zi) (12)

Jang et al. and Maddison et al. show that the distribution of

y follows the categorical distribution y ∼ Cat(p) [30], [31].

Softmax function is often used as a continuous, differentiable

1The standard Gumbel distribution can be sampled as z =
− log(− log(u)) where u is sampled from Uniform(0, 1)
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approximator to argmax. Then the sample vector ỹ is repre-

sented as

ỹ =
exp (log pi + zi)/τ∑n

j=1 exp (log pj + zj)/τ
(13)

where τ is the temperature parameter determining the function

smoothness.

Based on the Gumbel-max trick, we describe the continuous

sampling algorithm in Algorithm 2. Different from the discrete

permutation modeing in Algorithm 1, the continuous sampling

outputs a single matrix P̃ ∈ R
n×n that approximates the

permutation matrix. The sampling process can be directly

integrated in the end-to-end neural network structure.

D. Pooling Functions

The permutations obtained from the above sections can be

used as Positional Encodings (PE) that provides additional

information with the node features. Compared with previous

definition of PE, permutation-based PE are inherently permu-

tation invariant and encode rich graph information with the

characteristic permutation distributions.

We use a learnable PE layer E ∈ R
n×d to encode the

permutation matrix P̃ ∈ R
n×n to P̃E that forms the PE for

the specific permutation. Then, we define the pooling function

as the function of the concatenation of node features and

positional embeddings C = Concat(H, P̃E) as

Pool(H,W ,π) = f(C) = g(
∑
j∈V

Φ(Cj)) (14)

where g and Φ are transformations such as MLP. Zaheer et

al. showed that any permutation-invariant functions can be

represented in the above equation wit suitable transformations

g and Φ. In addition, it is straightforward to check that the

pooling function satisfying Equation 7.

E. Improved Expressive Power with permutation pooling

Previous work have established theoretical results on the

expressive power of graph neural network. For example, Xu

et al. proves that Graph Isomorphism Network (GIN) models

are at least as powerful as the Weisfeiler-Lehman test of
isormphism [7], [34]. Loukas et al. studied the capacity limit

of general message-passing based graph neural models and

categorized graph problems that graph neural network models

can and cannot solve [26].

In this section, we discuss the expressive power of graph

neural network with permutation pooling functions and com-

pare with pooling functions used in GIN models [7]. The GIN

pooling function is formulated as follows,

Theorem 1 (Theorem 2 in [8] and Lemma 5 in [7]). Assum-
ing the set of node features is countable, any permutation-
invariant function GIN can be decomposed as

GIN(H,W ) = ρ

(∑
v∈V

f(hv)

)
(15)

for some functions ρ and f .

We define the expressive power of the model as the set of

functions that the model can express. Assuming the function

ρ is the same for permutation pooling and GIN, we have the

following results,

Proposition 2. GNN with the permutation pooling is at least
as powerful as GNN with GIN pooling functions.

In fact, compared with GIN pooling, the expressive power of

permutation pooling functions is strengthened by the additive

representation ability of the general pooling function Pool that

capture relationships that are several hops away. We denote

Pools as the pooling function that captures node relationships

of at most s hops away. The expressive power of GNN with

permutation pooling is shown in the following proposition,

Proposition 3. GNNk with the permutation pooling with
pooling function Pools is at least as powerful as GNNk+s

models with GIN pooling.

With the pooling function Pools, the permutation pooling

function is able to learn higher-order relationships in the GNN
model.

However according to Theorem 1, GIN pooling func-

tions can still approximate any permutation-invariant functions

when ρ is chosen as a universal approximator function [7].

The following proposition states that when the function ρ has

limited expressive power, the permutation pooling is strictly

more powerful than GIN pooling functions,

Proposition 4. If the function ρ is the identity function, GNNk

with the permutation pooling is strictly more powerful than
GNNk with GIN pooling functions.

Proof. Proposition 2 already shows that for the same function

ρ, permutation pooling is as least as powerful than GIN

pooling. In the following, we show that there are graph

functions that can be represented with permutation pooling

but not with GIN pooling.

Consider the graph function as the weighted pairwise dif-

ference of node representations,

F(H,W ) =
∑

u,v∈V
W (u, v) ‖hu − hv‖ (16)

GIN pooling with the identical function ρ cannot represent the

function as the function depends on pair-wise relationships of

node representations as well as graph structure. For permuta-

tion pooling, we set the permutation distribution as the uniform

distribution and the pooling function Pool is set as

Pool(Hπ,Wπ) = Wπ(1, 2) ‖h1 − h2‖

Then, the corresponding permutation invariant pooling func-

tion PermPool can represents the function in 16.

F. Training and Inference

We consider the graph classification problem: given a set of

graph samples D = {(G1,y1), (G2,y2), ..., (GN ,yN )} where
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yi ∈ Y is the label of graph Gi. The objective is to minimize

the empirical loss as,

min
θ

L(D;θ) =
1

N

N∑
i=1

L(yi,PermPool(H(k)
i ,W

(k)
i ))

=
1

N

N∑
i=1

L(yi, ρ(Eπ[Pool(H(k)
i ,W

(k)
i ,π)]))

(17)

where θ denotes the set of parameters in the GNN model and

L is the loss function such as the cross entropy loss.

Training The objective is a standard stochastic optimiza-

tion with learnable parameters θ and random variable π.

We use the stochastic gradient descent to find the opti-

mal parameters θ∗ [18], [35], [36]. At step t, we uni-

formly sample a mini-batch of example graphs as B =
{(G′(1),y′(1)), (G′(2),y′(2)), ..., (G′(b),y′(b))} from the train-

ing set and the gradient is computed as

gt =
1

b

b∑
i=1

∇θL(y
′
i,GNNk(G′

i))

=
1

b

b∑
i=1

∇θL(yi, ρ(Pool(H(k)
i ,W

(k)
i , π̃i)))

(18)

where π̃i is the random permutation sampled with Gumbel-

max techniques in Section IV-C.

We update the parameters by the following,

θt = θt−1 − ηtgt

where ηt ∈ (0, 1) is the learning rate at step t with

limt→∞ ηt = 0,
∑

ηt = ∞ and
∑

η2t < ∞. Note that the

algorithm is a standard stochastic optimization algorithms used

in training neural networks.

The above stochastic gradient descent essentially optimizes

the following modified objective with expectation outside the

function L and ρ as [18],

min
θ

L̃(D;θ) =
1

N

N∑
i=1

Eπ[L(yi, ρ(Pool(H(k)
i ,W

(k)
i ,π)))]

(19)

When the loss function L is convex and ρ is the identity

function, the modified objective function is an upper bound of

the original loss function following Jensen’s inequality [18].

We denote θ∗ as the optimal parameters of the optimization

problem 19. Similar to the analysis of stochastic gradient

descent, the parameters θt converges to θ∗ with probability

1 under mild conditions [18], [37].

Inference Assuming θ∗ are the optimal parameters, the output

ŷ is estimated as the average of the predicted sample outputs

as,

ŷ =
1

n′

n′∑
i=1

GNNk(G) = 1

n′

n′∑
i=1

ρ
(

Pool(H(k),W (k),πi)
)

(20)

where n′ is the number of inference samples with πi as the

random permutation sampled from distribution pθ(π|H,W ).

V. EXPERIMENTS

In the experiment, we evaluate the proposed method

PermPool and compare with state-of-the art algorithms on

real-world graph classification tasks.

A. Experiment Setup

Datasets The benchmark graph datasets contain 5 bioin-

formatics datasets and 5 social network datasets which are

commonly used [7], [38]. The biological datasets (ENZYMES,

NCI1, MUTAG, PROTEIN, PTC) contain graphs over a

variety of biological applications, which are node-attributed

with categorical graph labels. The social network datasets

(COLLAB, IMDB-B, IMDB-M, REDDIT-B, REDDIT-M5K)

contains graphs over social network applications with no

explicit node features. The detailed dataset statistics are in

the supplementary materials.

Baseline models We compare with the following state-of the

art graph pooling functions used in graph neural network

models: DiffPool [20], SortPool [11], SAGPool [13], GIN
[7].

Model Configuration We use 10-fold cross validation and

report the average classification accuracy and standard devi-

ation. We use LSTM as the pooling function. The message

passing layers are defined using GIN models. The detailed

configuration are in the supplementary material.

B. Main Results

Table I and Table II summarize the classification results on

the biological and social graph datasets. For most datasets, the

proposed permutation pooling achieves superior or comparable

performance compared with other state-of-the art pooling

functions. The empirical results indicate that the permutation

pooling functions are able to learn more effective graph

representations for graph classification tasks.

C. Expressive Power of Pooling Functions

In the experiment, we compare the model performance of

permutation pooling and GIN pooling under the same number

of convolutional layers.

Figure 7 shows the plots of classification accuracy under

the number of layers from 1 to 4 for the ENZYMES dataset.

For both models, the classification accuracy improves as the

number of the convolutional layer increases. However, under

each setting, the permutation pooling constantly outperforms

GIN pooling. In particular for k = 1, the GIN pooling

function cannot learn much meaningful information due to

its limited expressive power while permutation pooling can

achieve 40% classification accuracy.
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TABLE I
CLASSIFICATION ACCURACY ON BIOLOGICAL GRAPH DATASETS.

Datasets MUTAG ENZYMES NCI1 PROTEINS PTC
DiffPool [20] 85.5 62.53 - 76.25 58.45
SortPool [11] 85.8 ± 1.7 - 74.4 ± 0.5 75.5 ± 0.9 58.6 ± 2.5
SAGPool [13] 84.6 ± 8.3 45.3 ± 5.6 74.2 ± 1.2 70.0 ± 1.4 60.5 ± 4.1

GIN [7] 87.8 ± 5.3 52.2 ± 5.9 80.9 ± 2.0 76.2 ± 2.8 64.6 ± 7.0
PermPool 88.5 ± 7.4 64.1 ± 6.1 81.7 ± 1.1 74.8 ± 2.6 65.1 ± 3.6

TABLE II
CLASSIFICATION ACCURACY ON SOCIAL GRAPH DATASETS.

Datasets COLLAB IMDB-B IMDB-M RDT-B RDT-M5K
DiffPool [20] 75.5 - - - -
SortPool [11] 73.8 ± 0.5 70.0 ± 0.9 47.8 ± 0.8 - -

GIN [7] 80.2 ± 1.9 75.1 ± 5.1 52.3 ± 2.8 92.4 ± 2.5 57.5 ± 1.5
PermPool 80.6 ± 1.2 74.3 ± 3.4 52.8 ± 2.9 92.5 ± 2.7 58.2 ± 1.6
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Fig. 4. k = 2
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Fig. 5. k = 3
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Fig. 6. k = 4

Fig. 7. Classification accuracy of GNN models under different numbers of convolutional layers.
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Fig. 8. Classification accuracy of GNN models under different permutation
sampling strategies.
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Fig. 9. Classification accuracy of GNN models under different definitions of
random walk matrices.

D. Ablation Study: Permutation Sampling

We discuss the effect of permutation sampling on the model

performance. We first compare with the following permutation

sampling strategies used in previous work.

• Uniform permutations used in Janossy Pooling to sample

node sequences [18], [19].

• BFS/DFS are used in Niepert et al.’s work to map graph

nodes to sequences [29].

Figure 8 shows the classification performance for the above

permutation sampling methods. It is shown that our proposed

permutation sampling outperforms other sampling strategies

by a large margin.

In the second experiment, we experiment with different

input features that depends on different graph information as

• Structure only X = W .

• Feature only X = HDHT where D is the learnable

parameters.

• Structure + Feature X = W +HDHT .

Figure 9 shows the classification results with permutation

sampling based on the different definitions of DSMs. It is

shown that the permutation distribution based on both graph

structure and node representations performs the best compared

with the definitions only relying on partial graph information.

The experiment justifies our selection of input matrix in

Equation 11 to approximate the permutation distributions.
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VI. CONCLUSION

In this work, we propose a new graph pooling function that

provably improves the performance of graph neural network

models. The newly proposed permutation pooling is formu-

lated as the expectation of a general pooling function over a

distribution of node permutations. We propose novel ways to

model the distribution of node permutations based on parame-

terized formulation of node features and graph structural infor-

mation. With the advanced sampling techniques, we are able to

build an end-to-end graph neural network that incorporates the

permutation modeling and the model parameter learning. We

provably show that GNN with permutation pooling is strictly

more powerful than GNN with standard pooling functions.

Empirical results shows that the proposed method is superior

or comparable with other pooling functions on real-world

graph classification tasks.

REFERENCES

[1] W. L. Hamilton, R. Ying, and J. Leskovec, “Representation learning on
graphs: Methods and applications,” arXiv preprint arXiv:1709.05584,
2017.

[2] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst,
“Geometric deep learning: going beyond euclidean data,” arXiv preprint
arXiv:1611.08097, 2016.

[3] D. K. Duvenaud, D. Maclaurin, J. Iparraguirre, R. Bombarell, T. Hirzel,
A. Aspuru-Guzik, and R. P. Adams, “Convolutional networks on graphs
for learning molecular fingerprints,” in Advances in neural information
processing systems, 2015, pp. 2224–2232.

[4] H. Dai, B. Dai, and L. Song, “Discriminative embeddings of latent
variable models for structured data,” in International conference on
machine learning, 2016, pp. 2702–2711.

[5] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl,
“Neural message passing for quantum chemistry,” ICML, 2017.

[6] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

[7] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph
neural networks?” arXiv preprint arXiv:1810.00826, 2018.

[8] M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos, R. R. Salakhutdinov,
and A. J. Smola, “Deep sets,” in Advances in neural information
processing systems, 2017, pp. 3391–3401.

[9] O. Vinyals, S. Bengio, and M. Kudlur, “Order matters: Sequence to
sequence for sets,” arXiv preprint arXiv:1511.06391, 2015.

[10] G. Corso, L. Cavalleri, D. Beaini, P. Liò, and P. Veličković, “Principal
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