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Abstract

Insights from functional Magnetic Resonance Imaging (fMRI), as well as recordings of large

numbers of neurons, reveal that many cognitive, emotional, and motor functions depend on

the multivariate interactions of brain signals. To decode brain dynamics, we propose an

architecture based on recurrent neural networks to uncover distributed spatiotemporal sig-

natures. We demonstrate the potential of the approach using human fMRI data during

movie-watching data and a continuous experimental paradigm. The model was able to learn

spatiotemporal patterns that supported 15-way movie-clip classification (�90%) at the level

of brain regions, and binary classification of experimental conditions (�60%) at the level of

voxels. The model was also able to learn individual differences in measures of fluid intelli-

gence and verbal IQ at levels comparable to that of existing techniques. We propose a

dimensionality reduction approach that uncovers low-dimensional trajectories and captures

essential informational (i.e., classification related) properties of brain dynamics. Finally,

saliency maps and lesion analysis were employed to characterize brain-region/voxel impor-

tance, and uncovered how dynamic but consistent changes in fMRI activation influenced

decoding performance. When applied at the level of voxels, our framework implements a

dynamic version of multivariate pattern analysis. Our approach provides a framework for

visualizing, analyzing, and discovering dynamic spatially distributed brain representations

during naturalistic conditions.

Author summary

Brain signals are inherently dynamic and evolve in both space and time as a function of

cognitive or emotional task condition or mental state. To characterize brain dynamics, we

employed an architecture based on recurrent neural networks, and applied it to functional

magnetic resonance imaging data from humans watching movies or during continuous

experimental conditions. The model learned spatiotemporal patterns that allowed it to

correctly classify which clip a participant was watching based entirely on data from other

participants; the model also learned a binary classification of experimental conditions at

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008943 September 3, 2021 1 / 25

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Misra J, Surampudi SG, Venkatesh M,

Limbachia C, Jaja J, Pessoa L (2021) Learning

brain dynamics for decoding and predicting

individual differences. PLoS Comput Biol 17(9):

e1008943. https://doi.org/10.1371/journal.

pcbi.1008943

Editor: Daniele Marinazzo, Ghent University,

BELGIUM

Received: April 8, 2021

Accepted: August 19, 2021

Published: September 3, 2021

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pcbi.1008943

Copyright: © 2021 Misra et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The data and code

used to train all models in this study are available in

the following repository: https://github.com/LCE-

UMD/GRU.



the level of voxels. We developed a dimensionality reduction approach that uncovered

low-dimensional “trajectories” and captured essential information properties of brain

dynamics. When applied at the level of voxels, our framework implements a dynamic ver-

sion of multivariate pattern analysis. We believe our approach provides a powerful frame-

work for visualizing, analyzing, and discovering dynamic spatially distributed brain

representations during naturalistic conditions.

Introduction

As brain data become increasingly spatiotemporal, there is a great need to develop methods

that can effectively capture how information across space and time support behavior. In the

context of functional Magnetic Resonance Imaging (fMRI), although data are acquired tempo-

rally, they are frequently treated in a relatively static manner (e.g., in event-related designs,

responses to short trials are estimated with multiple regression assuming canonical hemody-

namics). However, a fuller understanding of the mechanisms that support mental functions

necessitates the characterization of dynamic properties, particularly during the investigation of

more naturalistic paradigms, including movie watching [1], and other continuous paradigms

[2, 3].

A central goal of neuroscience is to decode brain activity, namely to infer mental processes

and processes based on brain signals. In fMRI, most approaches are spatially constrained and

consider voxels in a local neighborhood (“searchlight”) or across a few regions. Such models

are useful to decode stimuli or mental state, particularly when the problem is well understood

and localized anatomically [4–7]. Additional techniques decode brain activity based on whole-

brain functional connectivity matrices [8], as well as machine learning methods [9]. The vast

majority of decoding methods are static, that is, the inputs to classification are patterns of acti-

vation that are averaged across time (“snapshots”) [10]. Some studies have proposed using

temporal information in addition to spatial data [11–16]. In such cases, features used for classi-

fication are extended by considering a temporal data segment instead of, for example, the aver-

age signal during the acquisition period of interest. Another strategy to make use of temporal

information capitalizes on dynamic functional connectivity, and how it is related to different

conditions and individual differences [17–20].

Despite some progress in utilizing temporal information in decoding methods, key issues

deserve to be further investigated:

• How can we characterize brain signals generated by dynamic stimuli in terms of generaliz-

able (across participants) spatiotemporal patterns? How are such patterns distributed across

both space and time? For example, although a recent study used recurrent neural networks

to decode brain states from fMRI data, they investigated different working memory condi-

tions (remembering faces, bodies, tools, or places) which are associated with stable brain

states at the temporal scale of technique [21].

• Understanding the dimensionality of brain representations has become an important

research question in recent years [22–24]. For example, for simple movements, neuronal sig-

nals across populations of neurons can be well approximated by a projection onto a two-

dimensional representation [25]. This question is now starting to be addressed in the fMRI

literature [26, 27]. Here, we tackle the problem of learning low-dimensional spatiotemporal

signals from dynamic stimuli, including movie watching and continuous experimental

paradigms.
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• If spatiotemporal patterns capture important properties of brain dynamics, do they capture

information about individual differences that are predictive of behavioral capabilities?

• Although multivariate techniques, including neural networks, can be successful at the level

of prediction, interpretability is of key importance in the context of neuroscience. Therefore,

here we quantified the relative importance of spatiotemporal features, specifically how brain

regions contribute to input classification as a function of time.

• Can spatiotemporal decoding be applied at both the region-of-interest and voxel levels?

Extending it to the voxel level allows investigators to probe finer spatial representations

underlying task conditions or states of interest, and opens the way for dynamic representa-

tional similarity analysis [28].

In the present paper, we sought to address the above challenges by developing a dynamic
computational framework built upon recurrent artificial neural networks. At the broadest

level, our goal was to develop a multivariate and temporal technique to study fMRI signals that

help address the following question: what combination of signals (from multiple regions or

voxels), from particular temporal windows, support particular brain states and/or behavior? In

essence, how can we characterize multivariate dynamics?

A central goal of our study was to investigate how latent representations obtained by learn-

ing brain dynamics captures useful information, despite being detached from the input signals.

More broadly, our objective was to outline and validate an approach that can be employed

when dynamic paradigms are employed. Finally, although we used non-linear neural net-

works, we investigated ways in which the approach can be used that go beyond using a “black

box”, including a combination of “importance” and lesion analysis.

Results

Our goal was to develop a spatiotemporal decoding framework to predict a stimulus, mental

state, behavior, and/or personality traits based on brain signals. A key element of our model

was a recurrent neural network based on Gated Recurrent Units (GRUs; [34]) sensitive to cur-

rent and past inputs (Fig 1A). To determine the generalizability of our findings, all results

reported below were obtained with data not used in any fashion for training and/or tuning.

For a complete description of the architecture, please refer to Materials and methods.

Generalizability of spatiotemporal patterns

To test the system’s ability to generalize spatiotemporal brain patterns across participants, we

employed the GRU classifier to predict movie clip labels from functional MRI data available

from the Human Connectome Project. We performed 15-way classification as a function of

time (Fig 2A). Accuracy increased sharply during the first 60 seconds, and stabilized around

90 seconds. Mean classification accuracy after this transient period was 89.46% (Fig 2B). For

completeness, a formal evaluation of chance performance based on the null distribution

obtained through permutation testing resulted in a mean accuracy of 8.40% (1000 iterations;

[54]).

Is temporal information necessary for clip prediction?

If capturing temporal information and long-term dependencies are important for classifica-

tion, performance should be affected by temporal order. To evaluate this, we shuffled the tem-

poral order of fMRI time series for test data. To preserve the autocorrelation structure in fMRI
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Fig 1. Model architectures based on neural networks with gated recurrent units (GRUs). (A) Classifier. At each time step, time series data,xt,

provided inputs. The recurrent neural network transformed the inputs into a latent representation, ht, which then determined the output class scores,

ŷ t . The unit with highest activation determined the model’s prediction of the input stimulus at each time. (B) Dimensionality reduction. The encoder

shares the GRU component shown in A. GRU outputs, ht, were first linearly projected to a lower-dimensional space using a fully-connected layer

(DR-FC). Classification was then performed based on the low-dimensional representation, ĥ t . (C) Input signal reconstruction. A separate GRU was

trained independently to reconstruct the original brain signals based on the low-dimensional signals, ĥ t .

https://doi.org/10.1371/journal.pcbi.1008943.g001

Fig 2. Prediction of movie clip (15-way classification). (A) Average clip prediction accuracy using the neural network architecture with gated

recurrent units (GRUs) as a function of time (dark yellow). Accuracy increased sharply during the first 60 seconds, and stabilized around 90 seconds.

Results using multinomial logistic regression (Log-Reg), a feed-forward architecture (FF; 1 layer, 103 units), temporal convolutional networks (TCN;

kernel widths of 5 and 40) also also shown (see part B for labels). Error bars show the 95% confidence interval of the mean across test participants. (B)

Summary of accuracy results after the 90-second transient period (see dashed line in part A).

https://doi.org/10.1371/journal.pcbi.1008943.g002

PLOS COMPUTATIONAL BIOLOGY Learning brain dynamics for decoding and predicting individual differences

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008943 September 3, 2021 4 / 25



data while shuffling, we used a wavestrapping approach [55]. Classification accuracy reduced

considerably to 54.14%.

We then compared the GRU classifier to alternative schemes. Our objective was not to

benchmark our proposal against possible competitors, but to further probe properties captured

by our architecture. First, using a simple feed-forward (FF) network with one hidden layer,

classification accuracy was 44.86%, which was considerably above the chance accuracy of

8.40% determined via permutation testing (the latter was essentially what we obtained when

using multinomial logistic regression; 8.10%). We constrained our choice of units (103) such

that the the total number of parameters of the feed-forward classifier (32, 563 parameters) was

approximately equal to that of the GRU classifier (32, 559 parameters). As feed-forward classi-

fiers do not capture temporal dependencies, we next employed temporal convolutional net-

works (TCNs). We used 25 kernels with a width (W) of 5 time steps such that the number of

parameters of the classifier (37, 915 parameters) approximated that of the GRU classifier (see

Materials and methods for kernel details). Classification accuracy was only 36.22%. Increasing

the kernel width to 10 time steps (75, 415 parameters) modestly improved accuracy to 41.56%,

and even using a kernel width of size 40 accuracy was only 54.85%, although the number of

parameters (300, 415) was close to ten times that of the GRU classifier.

Together, the results above are consistent with the notion that temporal information is

essential for high-accuracy classification, and that our GRU-based architecture is capable of

capturing long-term dependencies that are missed by temporal convolutional networks, for

example. Note, however, that temporal shuffling of the time series still allowed the GRU classi-

fier to attain classification at around 54% correct. As the temporal shuffling was unique for

each training permutation, order information was broken down, indicating that non-temporal

information supported considerably above-chance performance. It is conceivable that spatial

information of specific movie scenes provided sufficient information to account for that level

of accuracy.

Low-dimensional trajectories as spatiotemporal signatures

We investigated the dimensionality of the inputs required for successful stimulus prediction

by using a supervised non-linear dimensionality reduction approach (Fig 1B). The original

dimensionality of the input, xt, was the number of regions (Nx = 300). After learning, the GRU

outputs provide a low-dimensional latent spatiotemporal representation of the input, which is

encoded in the vector ht (Nh = 32). To further reduce dimensions, GRU signals, ht, were line-

arly projected onto a lower-dimensional space, ĥt, using a fully connected layer. We refer to

this weight matrix as the Dimensionality Reduction Fully-Connected (DRFC) layer, and to this

model as the GRU encoder. Since ĥt is a low-dimensional representation of the history of xt,

the inputs are not treated independently, effectively leading to non-linear temporal

dimensionality reduction. As in the original classifier, a final FC layer was used to predict

labels based on ĥt.

Performance with low-dimensional encoding was surprisingly high; 3 dimensions yielded

71.21% accuracy. In Fig 3A, we show low-dimensional signals for each clip, which we refer to

as trajectories: consecutive low-dimensional ĥt states, ðĥ1ðtÞ; ĥ2ðtÞ; ĥ3ðtÞÞ, describe the trajec-

tory in state space. In other words, at each time t, the value of each unit is plotted along the (x,

y, z) axes.

To quantify a notion of proximity between trajectories, we computed the Euclidean dis-

tance between them as a function of time (Fig 3B). To compute the distance between clips A
and a reference clip B, we first computed the mean trajectory of B averaged across participants.

Then, for each participant’s clip A trajectory, we computed the Euclidean distance between A
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and the mean trajectory of B at every time step. Accordingly, the proximity of a clip with itself

was not zero (indicated by a thicker line), and reflected the variability of participant trajectories

around the clip’s average. As expected, the evolution of low-dimensional trajectories closely

reflected the temporal accuracy obtained using the original GRU classifier. Clip trajectories

were initially close to one another, but slowly separated during the first 60- 90 seconds of the

clip. The results in Fig 3B also help clarify why the trajectories in (Fig 3A) originate from a

common part of space. In the first few seconds, discrimination is very low and all trajectories

are very close to one another in three dimensions. As time progresses, discrimination increases

and the trajectories gradually separate from one another.

We further investigated low-dimensional projections with 4, 5, and 10 dimensions, at

which point performance (87.84%) was not far (within 2%) from that of full dimensionality

(Fig 3C). These results reveal that latent representations with as few as 10 dimensions captured

essential discriminative information. The effectiveness of the GRU encoder in capturing low-

dimensional information can be appreciated by applying principal components analysis on the

input data, xt, which yielded very low prediction accuracy, although it was capable of recover-

ing 60% of the input signal variance with 10 dimensions (Fig 3C).

To investigate the content of the latent space uncovered by the GRU encoder, we performed

the following analysis. By construction, the low-dimensional vector captures information to

classify the input signals. How much information about the input does this projection pre-

serve? To evaluate this, we considered the low-dimensional signal, ĥt, and used it to try to

Fig 3. Low-dimensional trajectories. (A) Trajectories for all clips. Solid line: mean trajectory averaged across participants (line thickness is scaled by

variance, which was highest at the end of the clip). All trajectories progressed away from the center (see sample arrows). The inset provides clip

abbreviations. (B) Euclidean distance between trajectories. The Euclidean distance between the clip trajectory while watching Home Alone and the

mean trajectory across participants for a second clip was computed. The thicker line corresponds to the distance of participants’ Home Alone
trajectories to the mean of this clip. The same results are shown for all clips in S1 Fig. (C) Clip prediction accuracy and fraction of variance captured

after reconstruction using low-dimensional models. Error bars correspond to the standard error of the mean across participants.

https://doi.org/10.1371/journal.pcbi.1008943.g003
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reconstruct the input signal, xt. Within our framework, it is natural to do so using a GRU

decoder (Fig 1C), which reconstructs the input time series (the reconstructed signal is called

x̂ t). Doing so captured a very modest amount of signal variance (less than 10%).

Spatiotemporal importance maps

The GRU representation that supports classification lies in a latent space that is fairly discon-

nected from the original brain activation signals, xt. It is therefore important to relate GRU

states to brain activation. We defined a saliency measure to capture the contribution of a brain

region to classification as a function of time (see Materials and methods). This analysis

attempts to identify sets of brain regions, and particular temporal windows, that are important

for the task at hand.

Fig 4A shows a saliency map at t = 8 for the Star Wars clip, also shown dynamically for the

first 60 seconds (S2 Video). The saliency time series in a few brain regions shows that values

were relatively high initially and gradually decreased over the first minute of the clip (Fig 4B).

The evolution of saliency for the Home Alone clip was somewhat similar (see also the saliency

map video for the Brokovich clip in S1 Video).

Lesion analysis

We further investigated region importance by performing a lesion analysis. After training, first

we lesioned each of the seven large-scale networks described by Schaefer and colleagues [32]

(Fig 5A). Lesioning the visual, somato-motor, and default networks produced the

largest drop in test accuracy. Lesion of the other networks produced essentially no deficits.

Fig 4. Determining brain contributions to classification. (A) Saliency map for the “Star Wars” clip. For illustration, the top 30 regions are shown.

Color scale in arbritary units. See also the video for dynamics. (B) Saliency values for the first 60 seconds of two clips. The gray bands corresponds to the

95-th percentile of null saliency values generated via permutation testing. Scale of the y-axis is arbitrary.

https://doi.org/10.1371/journal.pcbi.1008943.g004
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Fig 5. Lesion analysis. (A) The impact of a lesion in each of the seven standard networks is shown. The orange line shows accuracy without any lesion.

(B) The impact of lesions to specific subnetworks was also evaluated, revealing greater contributions to clip classification by specific sets of brain

regions. (C) Comparison of removal of regions from a given network (visual, somato-motor, or default mode) relative to a random set of

regions from that same network. Removing regions in descending order of overall saliency (see text) impacted classification more than selecting

regions without considering saliency (without replacement). For illustration, we also display the regions of the most impactful subnetworks observed in

part B (red dots; also shown in the insets). The gray region shows the 95% confidence interval when the same number of regions were excluded at

random.

https://doi.org/10.1371/journal.pcbi.1008943.g005
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Next, we capitalized on the parcellation available in terms of seventeen networks, allowing us

to investigate how sectors of the seven “canonical” networks contributed to performance(Fig

5B). We found that the temporal-parietal was the only one of the default network

subgroups that had an appreciable impact on performance. In addition, only the central
extra-striate regions in the visual network, and the early auditory regions in

the somato-motor network had more appreciable impacts.

Both saliency and lesion analyses highlight brain regions that are important for classifica-

tion. To relate the two, we tested the following conjecture: regions with higher saliency values

should have larger effects on classification when lesioned. To test this, we sequentially excluded

regions progressing from the highest to the lowest overall saliency values, which was defined as

the mean saliency value across time, clips, and participants. We performed tests on the

visual, somato-motor, and default networks, which were found to be important for

classification. According to the conjecture, accuracy should more sharply decrease after

excluding the most salient ROIs. To test for the alternate hypothesis, we lesioned ROIs based

on random selection (repeated for 1000 iterations). Thus, we contrasted performance when

selecting regions of the, say, visual network based on saliency values relative to selecting

regions from the same network randomly. Fig 5C shows that when ROIs were lesioned in

sequence of decreasing saliency there was a larger drop in accuracy compared to random selec-

tion, therefore supporting our conjecture.

Predicting behavior

Recent studies have employed brain data to predict participants’ behavioral capabilities or per-

sonality-based measures [56–60]. We tested the extent to which spatiotemporal information

captures individual-based measures based on our recurrent neural network framework. Here,

we targeted individual scores for fluid intelligence and verbal IQ. The same approach used for

classification was employed, with the model predicting a scalar, namely, a participant’s score.

We used all clips for training (rather than training a separate model based on each clip) to pro-

mote learning representations that are not idiosyncratic to a particular clip.

Fig 6 shows model performance temporally for the Star Wars clip, one of the best predicting

clips. At every time point, predicted scores are correlated with actual participants’ scores. For

fluid intelligence, the observed correlations were often above chance levels (gray zone indicates

95% confidence level at specific time t), but more modestly for verbal IQ. As our model made

predictions as a function of time, we developed a permutation-based test to evaluate the pre-

dictions while controlling for multiple comparisons (fluid intelligence, p = 0.0013; verbal IQ:

p = 0.0038). The supplementary figures (S2, S3, S4 and S5 Figs) show results for all clips. As an

alternative to evaluating prediction at every time point, we developed an “oracle test” that

uses training data to learn to guess a time to test prediction once on the separate test set (See

Materials and methods). For reference, we compared our approach to connectome-based pre-

dictive modeling based on patterns of functional connectivity (CPM; [51]), possibly the state-

of-the-art in this regard (see also [56, 58]). We include values predicted with this technique to

provide an informal comparison, as this method provides a single prediction per clip, unlike

our approach which is time varying.

Dynamic multivariate pattern analysis

Thus far, we applied our model to region-based activation patterns. The approach can also be

employed to perform voxel-based (or grayordinate-based) dynamic multivariate pattern analy-

sis (MVPA). Here, we applied our model to the prediction of experimental conditions from a

dataset collected in our laboratory [3]. Briefly, in the “moving circles” paradigm, over periods
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of three-minute blocks, two circles moved on the screen, at times approaching and at times

retreating from each other. If they touched, participants received a non-painful but highly

unpleasant electrical shock. The movement of the circles was smooth but not predictable. In

particular, the circle motions were set up to include multiple instances of “near misses”: peri-

ods of approach followed by retreat; in such instances, the circles came close to each other and

retreated just before colliding. Based on near-misses, we defined approach and retreat states:

each lasted seven time steps (total of 11.25 seconds) during which the circles approached or

retreated from each other.

We performed dynamic MVPA by using voxels from the anterior insula, a region strongly

engaged by the experimental paradigm [2, 3]. Classification accuracy ranged from 59- 63%

over the approach and retreat segments (the upper bound of the 95% confidence interval

determined with permutation testing was 50.37%). We also computed saliency in a voxelwise

manner; values were substantially higher at the outset of a approach/retreat segment and rela-

tively lower for the subsequent time points. Fig 7 shows a snapshot at t = 6 seconds, illustrating

the spatial organization of the map.

Discussion

We sought to characterize distributed spatiotemporal patterns of functional MRI data during

movie watching and continuous task conditions. To do so, we employed recurrent neural net-

works sensitive to the long-term history of the input signals, and applied them to the problem

of input classification. The model was tested on brain data both at the level of region of interest

and voxels. All neural network training and model tuning were performed using a training set

independent of the test set to establish the model’s ability to generalize learned representations

to unseen participants. The framework we developed is general and its subcomponents can be

easily exchanged to utilize other algorithms (e.g., long short-term memory networks, or novel

developments).

Fig 6. Prediction of behavior. (A) Prediction of fluid intelligence scores as a function of time. Prediction (blue) fluctuates considerably but consistently

exceeds chance values (indicated by the tic marks at the bottom). Values obtained by connectome-based predictive modeling (CPM) are indicated for

comparison (red: CPM applied to Star Wars data; maroon: highest value applying CPM across all clips). The gray region indicates the 95th percentile

region based on permutation testing (N.B.: applies to our method only, not CPM). (B) Prediction of verbal IQ as a function of time. Only short periods

of time of the Star Wars clip exceeded chance levels. The green bar indicates a segment of the time series that is significant at the 0.05 level corrected for

multiple comparisons.

https://doi.org/10.1371/journal.pcbi.1008943.g006
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Spatiotemporal representations

Spatiotemporal information learned in a given set of participants generalized very well to new

participants, where challenging 15-way classification was�90% correct for movie clip data.

These results are noteworthy because they suggest that activation patterns distributed across

space and time are shared across participants when viewing naturalistic stimuli. To understand

the type of information captured by our model, we compared it to a few simple schemes,

including a simple feedforward network, and temporal convolutional networks. The low per-

formance with these models (�40%) suggests that long-term dependencies are essential for

input classification. Indeed, temporal shuffling of the input time series decreased performance

to�50%. As temporal shuffling preserves the input signals but scrambles their sequence, these

results reveal that the precise temporal order is key for the ability to generalize to unseen data.

Latent dimensionality

The question of the “inherent” dimensionality of brain signals has attracted considerable atten-

tion in recent years [22, 23, 61–64]. Here, we investigated this issue for the movie clip data,

where inputs were 300-dimensional based on the ROI time series. As the number of units in

the hidden layer was 32, a considerable amount of dimensionality reduction was accomplished

at the outset. Further investigation revealed that this signal could be further reduced to�10

dimensions without compromising prediction accuracy appreciably. Strikingly, even with

three dimensions, accuracy was relatively high (77.30%).

Two issues about dimensionality deserve attention here. First, as the transformation of the

input by the model is non-linear, when stating that one has, say, a 10-dimensional space, the

non-linearity of the space must be kept in mind, as contrasted to a space obtained by linear

techniques, such as those based on singular value decomposition. Second, the system processes

temporal data. Thus, in a sense the dimensionality of the system is considerably higher (for

example, “10d+time”).

Whereas the mapping onto a lower dimensionality space preserved classification informa-

tion about the input category, it was very poor at reconstructing the input time series itself.

Thus, the content of the latent low-dimensional representation was substantially distinct from

the fMRI signal itself. This observation raises the concern that the non-linear projection of the

original input signal is too far removed from the brain time series. In other words, that the sys-

tem works in a strongly “black box” fashion. In the present case, we believe this concern is

Fig 7. Voxelwise prediction of experimental conditions: Threat vs. safe. Only voxels from the anterior insula were employed. Saliency values at t = 6

are shown; for illustration no thresholding was applied.

https://doi.org/10.1371/journal.pcbi.1008943.g007
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considerably assuaged by the results of the saliency and lesion analysis (see below). Another

way to probe this issue would involve applying the present architecture to datasets with a more

clear input or behavioral “space”. For example, using the model to learn about the spatiotem-

poral content of classes of movies, much like research with static stimuli organized along cer-

tain natural axes [28], allowing the representational content of the low-dimensional signals to

be evaluated. Finally, note that related issues apply to linear dimensionality reduction, too. In

many cases, the first principle component may carry high signal variance, but other compo-

nents associated with low, and even very low, input signal variance explain most of the behav-

ioral variance [65–68].

Saliency and lesion analysis

Although prediction is valuable in some settings (e.g., clinical diagnosis), our general goal was

to develop a framework to characterize distributed spatiotemporal brain signals. Thus, one of

our objectives was to identify sets of brain regions, and particular temporal windows, that are

important for the classification task at hand, having in mind future applications of our model

to characterizing spatiotemporal patterns linked to behavioral conditions or states.

Together, the saliency and lesion analyses uncovered several notable findings. Regions of

the of the visual and auditory cortex were important for classification. Whereas this was to

be expected, it serves as an important confirmation that the modeling approach captured

biologically relevant information. Corroborating this statement, the model also identified as

important regions of the inferior temporal cortex (such as the fusiform gyrus and the para-

hippocampal cortex), which are involved in high-level object recognition (not simply “low-

level” visual processing).

Our findings also illustrate how the method can be used to formulate hypotheses that can

be subsequently studied in more targeted studies. We found, for example, that the inferior

frontal cortex and the orbitofrontal cortex supported clip classification, too. The lesion analysis

also identified specific parts of the default network that are particularly important. Thus, the

model makes novel predictions that can be further studied, for instance, by developing clips to

address the types of spatiotemporal information being captured by these regions (social? emo-

tional?). Taken together, our results support the idea that the model captured biologically rele-

vant spatiotemporal information that can inform specific research questions.

Individual differences

Recent work has sought to predict individual differences based on functional MRI data [51,

56–60, 69, 70]. Our model was capable of predicting fluid intelligence and verbal IQ from

unseen participants at levels comparable to, and possibly better than, established methods such

as connectome-based predictive modeling, which is based on information from functional

connectivity matrices [51]. Some movies (e.g., Star Wars, Social Net, Oceans) performed much

better at prediction than others, and at particular segments of the movie [71].

Why does movie watching correlate with individual differences, including fluid intelli-

gence? We note that the main reason for our analysis was to demonstrate the feasibility of our

approach, not a priori hypotheses. The approach adopted here holds more promise when the

content of the naturalistic task is chosen or designed to investigate the behavioral dimension

of interest. For example, Finn and colleagues found that trait paranoia is linked to brain signals

during ambiguous social narratives ([72]; for further discussion, see also [71]). We plan to

apply the method described here to investigate individual differences in reward sensitivity and

anxiety-related measures in work employing dynamic paradigms [3].
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Should prediction of behavioral differences be performed in a time-varying manner? Such

strategy could be potentially beneficial if particular segments were better “tuned” to particular

individual differences; for example, very suspenseful parts might be particularly associated

with anxiety-related traits. This possibility remains speculative and needs to be investigated in

future studies. Nevertheless, we showed that it is possible to perform above-chance prediction

by making a single prediction of behavior. In this approach, the best-predictive segment is

selected based on training data, and this specific temporal window is used with unseen, test

data.

Dynamic multivariate pattern analysis

We applied the model developed here with inputs at the level of voxels, so as to implement

dynamic MVPA. We tested the approach in a dataset involving continuous changes in threat

level based on the proximity of two moving circles. Voxels from the anterior insula were

used to predict stimulus condition (threat vs. safe). Although accuracy was relatively modest

(�60%), the results demonstrate the feasibility of the approach. Saliency maps also uncovered

subsectors of the anterior insula with increased importance for prediction, illustrating how it

is possible to identify voxels that contribute to decoding the experimental conditions, opening

an avenue for the application of representational similarity analysis [28] in a dynamic setting.

Other approaches

Decoding approaches using some temporal information have been used in the past [11–16].

Recurrent neural networks have also been employed for brain decoding more recently, albeit

in some cases on relatively static task paradigms, such as working memory which generates

stable brain states at the temporal scale of fMRI [21, 73]; working memory conditions can be

predicted even when temporal information is eliminated [68]. Because most fMRI datasets are

typically small, they are often evaluated using cross-validation without assessing their generali-

zation on held-out data (see Discussion by [74]). The size of the datasets studied allowed us to

test the model in a separate set of participants thereby evaluating the model’s ability to general-

ize beyond trained data (see also [73]). Finally, we stress that the goal of the present study was

not to describe a model that outcompetes others but to describe a general, modular modeling

approach to investigating spatiotemporal dynamics of brain data, here applied to fMRI.

Materials and methods

Data

Movie data. We employed Human Connectome Project (HCP; [29]) data of participants

scanned while watching movie excerpts (Hollywood and independent films) and other short

videos, which we call “clips”. The legend of Fig 3 provides further information. All 15 clips

contained some degree of social content. Participants viewed each clip once, except for the

test-retest clip that was viewed 4 times. Clip lengths varied from 65 to 260 seconds (average:

198 seconds).

We employed all available movie-watching data, except those of 8 participants with runs

missing; thus we used N = 176 participants. Data were sampled every 1 second. The prepro-

cessed HCP data included FIX-denoising, motion correction, and surface registration [30, 31].

We analyzed data at the region of interest (ROI) level, with one time series per ROI (average

time series across locations). We employed a standard 300-ROI cortical parcellation [32].

Thus, the input time series consisted of a vector of Nx = 300 dimensions at each time, t.
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Individual ROI time courses were normalized by z-scoring (i.e. centered to zero mean and

unit standard deviation) to help remove potential differences across runs/participants.

Moving-circles paradigm. We employed data from a separate dataset collected in our lab-

oratory [3]. Briefly, the experimental paradigm was as follows. Over a period of 3 minutes, two

circles moved on the screen, at times approaching and at times retreating from each other. If

they touched, participants received a non-painful, but highly unpleasant electrical shock. The

movement of the circles was smooth but not predictable. In particular, the circle motions were

set up with multiple instances of what we called “near misses”: periods of approach followed

by retreat; in such instances, the circles came close to each other and retreated just before col-

liding. Based on near-misses, we defined approach and retreat states: each lasted 6–9 seconds

during which the circles approached or retreated from each other.

Data from N = 122 participants were employed (sampled every 1.25 seconds). Preprocess-

ing steps included motion correction (ICA-AROMA via FSL). We analyzed data at the voxel

level from the right anterior insula, which corresponds to region numbers 230 and 231 of the

Schaefer-300 17-network parcellation [32]. The input time series consisted of a vector of

Nx = 745 dimensions at each time, t.

Performance evaluation

Accuracy. At each point in time, t, we computed accuracy as the average true positive rate

(TPR) across inputs of a given class (movie clip or experimental condition). Specifically, for

each class label c:

TPRc ¼

PNc
n¼1

Ifpredicted labeln ¼ cg
Nc

ð1Þ

where Nc is the total number of data samples belonging to class c, predicted_labeln is the label

predicted by the model for the nth data sample, and I is an indicator function which equates to

1 if predicted_labeln = c and 0 otherwise. We computed accuracy at each time step and visual-

ized it as a function of time (see Fig 2).

Training/testing split and cross-validation. Movie data from 100 participants were used

for training, and the remaining 76 participants were used as a test set (thus completely invisible

to model tuning/learning). There were more participants in the train set to have a little more

data for training. To determine optimal hyperparameters for clip prediction, we employed a

5-fold cross-validation approach on the training set. In each fold, participants in the training

set were not included in the validation set. After determining optimal hyperparameters, we

retrained the model on the entire training data. Final results were generated exclusively based

on test data. A similar approach was used for the the moving-circles paradigm, where data

from 62 and 60 participants were used as a training set and test set, respectively. For cross vali-

dation, the folds had size {13, 13, 12, 12, 12}.

Basic recurrent architecture for classification

Recurrent neural networks allow signals at the current time step to be influenced by long-term

past information. Although it was originally difficult to develop effective learning procedures

for these algorithms (e.g., vanishing/exploding gradients prevented them from learning rela-

tionships beyond 5–10 time steps; [33]), recent developments have largely overcome these

challenges. Here, we employed a recurrent neural network architecture based on Gated Recur-

rent Units (GRUs; [34]). As our goal was to use an architecture that would learn the long-term

history of the inputs, we could have used different architectures, such as based on Long Short

Term Memory models [35]. The choice of a GRU-based architecture was based on the fact
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that they perform well across many applications [36], as well as computational availability and

expediency.

Fig 1A shows the model. Briefly, inputs xt were provided to a GRU network that produced

a “hidden” representation, ht, of the incoming signal based on current and past signals. For

classification purposes, the hidden-layer signals were transformed to create a vector of class

scores, the maximum of which determined the model’s prediction of the input. Next, we

describe the model formally.

Time series data from units of interest (ROIs or voxels) comprised the input vector at each

time, xt. The GRU network (with one or more layers) transformed its input, xt, non-linearly

onto its output, ht, the hidden layer of the classifier system (see S1 Appendix for details).

Because our goal was input classification, GRU outputs at each time, ht, passed through an

additionally fully-connected (FC) layer of units generating a vector of class scores:

ŷ t ¼ SoftmaxðWFCht þ bFCÞ; ð2Þ

where Softmax is the generalized logistic activation function. As the outputs are in the range

[0, 1] and and add up to 1, they can be treated as probabilities. The output of the model was

the unit label, i, such that it selected the class with largest probability: arg max
i

ŷ t . As all opera-

tions were performed at every time, t, the final output was a time series of label predictions.

For movie clips, we employed data from 300 ROIs, so the dimensionality of the input was Nx =

300. The GRU network employed a single layer with 32 units (Nh = 32). The dimensionality of

ŷ t was Ny = 15 to implement 15-way classification (based on the number of clips). For the

moving-circles data, we employed data from 745 voxels (Nx = 745). The GRU network con-

tained three layers of 32 units each; the third layer corresponded to the vector ht (Nh = 32).

The dimensionality of ŷ t was Ny = 2 to implement threat vs. safe classification.

All weight matrices, W, required for GRU tuning (see S1 Appendix) and the bias parame-

ters, b, underwent supervised training. Training sought to minimize the cross-entropy (CE)

loss between predicted labels, ŷ t, and true labels, yt (as provided by the supervisor), and was

evaluated at at each time step:

LCEðŷ t; yt;YÞ ¼ �
XNy

i¼1

yi
tlogðŷ

i
tÞ; ð3Þ

where the superscript i indexes the dimension of the predicted and teaching signals. The set of

trainable parameters was denoted as Θ. The cross-entropy attains its minimum value when the

two distributions, ŷ t and yt, are identical. We defined the total loss function, J(Θ), as the aver-

age cross-entropy loss across time points (i.e., the average value across time of Eq 3), thus

encouraging predicted labels to be as close to the true labels as possible across time. We mini-

mized J(Θ) using the backpropagation through time algorithm [37]; gradient descent was opti-

mised with the Adam optimizer [38]. The model was implemented using TensorFlow [39].

As our goal was not necessarily maximizing model performance, we explored a small set of

potential architectures by varying the number of hidden layers and number of units per layer

(Fig 8). For the region-based analysis, we explored the {1, 2, 3} × {16, 32, 64} space (layers by

units). As accuracy was relatively high overall (>70%) and improvements were relatively mod-

est as a function of these parameters, we chose the simplest case (one layer) but with 32 units

which improved performance over 16 units (for evaluation performance, we considered all

time points, even those during the first 60–90 seconds when accuracy increased sharply; see

Fig 2). For the voxel-based analysis, we explored the {1, 2, 3} × {16, 32, 64, 128, 256} space.
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Classification of approach vs. retreat was a challenging problem, so we utilized 3 layers; we

employed 32 units per layer for consistency with the clip classification architecture.

Dimensionality reduction

The basic architecture (Fig 1A) automatically implemented considerable dimensionality

reduction. For example, for movie data, the GRU layer contained 32 units, whereas inputs

from 300 regions were employed. This initial step implemented a version of non-linear

dimensionality reduction. However, we included a separate stage of linear dimensionality

reduction that was obtained by adding an extra fully connected layer, as described next. This

two-step procedures was adopted to create a modular architecture that could be probed as

desired: an initial step used to learn a temporal prediction problem, and an additional

dimensionality reduction stage. Our approach can thus be contrasted to employing, for

instance, auto-encoder architectures with a single non-linear dimensionality reduction step

associated with hidden layers [40–42].

Several dimensionality reduction techniques exist that could be used to probe lower-dimen-

sional representations in our system. To capture the temporal relationships in the time series

data in the dimensionality reduction process, we combined the GRU network with a simple

additional fully connected layer for dimensionality reduction (DR-FC). We refer to this model

as the GRU encoder (Fig 1B). Formally, GRU outputs, ht, were linearly projected onto a lower-

dimensional space containing units with linear activation:

ĥt ¼ ðWDRFCht þ bDRFCÞ; ð4Þ

Fig 8. Selection of model architectures via cross validation on data from 100 participants. Val: validation portion of training data. Error bars show

95% confidence intervals across folds.

https://doi.org/10.1371/journal.pcbi.1008943.g008
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where the weight matrix (WDRFC had dimensions Nh � Nĥ ; Nĥ < Nh). We refer to the layer as

the Dimensionality Reduction Fully Connected (DR-FC) layer. The output of this layer, ĥt , is

sensitive to past inputs, xt, thus effectively capturing temporal dependencies. An additional

fully connected layer was used to predict labels, as in the previous subsection.

For dimensionality reduction, only the DRFC and final FC layers were trained (via standard

backprogapation). In other words, the training weights of the GRU network for classification

were frozen in place after that initial learning phase. For visualization, when the dimensional-

ity of ĥt was reduced to three, we plotted “trajectories” in a state-space representation (Fig 3A).

GRU decoder

Can low-dimensional representations obtained for classification be used to reconstruct the

original data? Another GRU-based module was used to reconstruct brain activation from the

learned low-dimensional representations, ĥt, which we refer to as the GRU decoder (Fig 1C).

The GRU decoder was trained independently (that is, separately from the GRU encoder), by

minimizing the mean squared error between the GRU decoder output, x̂ t , and the original

time series input, xt, at each time step.

Saliency maps: Explaining model predictions via sensitivity analysis

Given an input activation vector, xt, the GRU classifier generates a prediction output vector,

yt, encoding class-scores. As the process is supervised, the true class label, c 2 {1, � � �, C}, is

known. Thus, the cth element of the output vector, ŷc
t , is the class score for the input’s true class

label.

To help evaluate the contribution of individual input features (ROIs or voxels) to classifica-

tion, we employed a saliency measure [43] that was used in the context of sensitivity analysis, a

widely used approach in machine learning applications [44–47]. Sensitivity analysis helps in

the interpretation of complex nonlinear models by representing variation of class-scores in

terms of variation of individual input features. Input features are more salient if their class-

scores are more sensitive to changes in their values.

Mathematically, the class-score, ŷc
t , is a multivariate function of input features, xi

t:

ŷc
tðx

1
t ; � � � ; x

Nx
t Þ: ð5Þ

The total differential of class-score, dŷc
t , can be expressed as a weighted sum of the differentials

of individual input features, dxi
t; i ¼ 1; � � � ;Nx, weighted by their corresponding partial deriva-

tives, @ŷc
t=@x

i
t:

dŷc
t ¼

@ŷc
t

@x1
t

dx1

t þ � � � þ
@ŷc

t

@xNx
t
dxNx

t

¼
@ŷc

t

@x1
t

; � � � ;
@ŷc

t

@xNx
t

� �>

dx1
t ; � � � ; dx

Nx
t

� �

¼ ðrxt
ŷc

tÞ
>dxt

� w>t dxt;

ð6Þ

where the operator> is the transpose. Since the gradient vector, ðrxt
ŷc

tÞ, captures the sensitiv-

ity of class-score w.r.t changes in input features, we define the saliency vector, wt, as the gradi-

ent vector of the class-score evaluated at the current input, xt,:

wt � rxt
ŷc

t : ð7Þ
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The value of the ith element, wi
t, is the saliency value for the ith input feature (ROI or voxel) at

time t. The saliency indicates ROIs or voxels which, when their values change, have the largest

impact on the true-class score, and consequently a larger effect on predicting the output class.

The saliency vector is straightforward to implement for our model, as the gradient can be com-

puted using the backpropagation through time algorithm [37].

To consider saliency values across participants, we z-scored the gradient values, wi
t, across

inputs and time steps for each participant. Because positive or negative contributions were

potentially equally important (i.e., increases or decreases in brain activation altered the class

prediction), we considered the absolute values of the z-scores above. Finally, we averaged these

values across participants to obtain group-level saliency estimates.

To evaluate the robustness of the saliency results, we compared them to those obtained

from a null model. To generate a null distribution, using test data, class labels were randomly

shuffled, and saliency values computed as defined above. The procedure was repeated 1000

times, yielding a distribution of null-saliency values at each time step (see Fig 4).

Lesion analysis

To further characterize region importance, we performed a lesion analysis. After the learning

phase with the full input, particular groups of ROIs were “lesioned” (masked) by setting their

input time series to zero in the test phase. Initially, we masked each network from the cortical

Schaefer-300 seven-network parcellation [32]. We then grouped ROIs within the seven

“standard” networks into smaller groups using the seventeen-network Schaefer-300
parcellation.

Baseline models

We compared the GRU classifier to two baseline models. Training was based on computing

cross-entropy loss between predicted and true labels at each time step (similar to Eq 3). The

standard backpropagation algorithm was employed (Adam optimizer), as implemented in

TensorFlow.

Feed-forward network. The feed-forward (FF classifier) network consisted of three fully-

connected (FC) layers. Brain inputs at time, xt, were fed into a fully-connected hidden layer,

and then transformed into a vector of class scores, as with the GRU classifier. Formally, the

hidden layer, hFF
t , and output layer, ŷFF

t , activations were obtained as follows:

hFF
t ¼ ReLUðWFC1xt þ bFC1Þ;

ŷFF
t ¼ SoftmaxðWFC2h

FF
t þ bFC2Þ:

ð8Þ

where the ReLU and Softmax operations are standard rectified linear and generalized logistic

functions, respectively. The vectors hFF
t and ŷFF

t had dimensions NFF
h ¼ 103 and NFF

ŷ ¼ 15 (for

15-way classification) respectively. The number of hidden units was set to 103 in order to

maintain the total number of parameters of the classifier (32563) comparable to that of the

GRU classifier (32559).

Temporal convolutional network. We investigated whether static fixed-sized windows

would be sufficient for modeling dynamics. A temporal convolutional network (TCN classifier)
uses fixed-sized convolutional filters, where the output at a time depends upon a fixed tempo-

ral window, which is determined by the filter length l [48, 49]. Activations after temporal con-

volution were then transformed to obtain class scores. Formally, brain inputs at each time, xt,

were convolved temporally with k filters, each with length of l time steps. A single filter of size

Nx × l convolved along the time dimension (input time series) and generated a scalar time
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series. Therefore, k such filters produced a k-dimensional convolutional layer activation at

each time, hTCN
t , which was used to generate class scores:

ŷTCN
t ¼ SoftmaxðWFCh

TCN
t þ bFCÞ: ð9Þ

The vectors hTCN
t and ŷTCN

t were of dimensions k = 25 and NTCN
ŷ ¼ 15, respectively. The choice

of k = 25 filters, each of width of l = 5 time steps, was chosen to keep the the total number of

parameters (37915) similar to that of the GRU classifier (32559).

Predicting behavior

To predict participants’ scores, we employed a GRU-based model, essentially a GRU regressor.
Separate models were trained to predict fluid intelligence and verbal IQ [50]. In each case, all

movie clips were used for training (rather than training a separate model for each clip) to pro-

mote learning representations that were not idiosyncratic to a particular clip, and thus general-

izable across clips.

We applied the GRU classifier approach (Fig 1). The GRU outputs, ht (dimensionality: Nh =

32), were input to a fully-connected layer with a single unit having a linear activation function.

The models learned to predict a single score, ŷt, at every time step t:

ŷt ¼WFCht þ bFC: ð10Þ

Thus, we were able to generate predicted scores as a function of time, which could be compared

with the true score, allowing evaluation of how model predictions evolved. We computed the

mean squared error (MSE) between true, yt, and predicted, ŷt, scores at each time point:

LMSE yt; ŷt;Yð Þ ¼
1

2
ðyt � ŷtÞ

2
; ð11Þ

where Θ was the set of learnable parameters. The total loss was defined as the average MSE loss

across all time points. The models were trained using backprogagation, using the Adam optmi-

zer for gradient descent.

We compared our approach to connectome-based predictive modeling (CPM; [51]), possi-

bly the state-of-the-art in this regard. In this approach, a functional connectivity matrix is ini-

tially formed for each clip based on the Pearson correlation between every pair of brain region

time series. Subsequently, the entries in the matrix (or edges) that correlate with the individual

differences measure beyond a set threshold (here, 0.2) are retained and a linear model is fit to

predict scores based on the functional connectivity values. Given that functional connectivity

is employed, CPM predictions rely on activations during the entire clip.

We tested our model statistically when making predictions at every time point. At each

time t, once the model was trained (training set only), we evaluated chance performance based

upon a null distribution obtained through permutation testing. For each iteration, we ran-

domly shuffled the true scores of test data across participants and then calculated Spearman’s

rank correlation between predicted and shuffled scores (1000 iterations). The 95% confidence

interval is shown by the gray zone in Fig 6. Because this test evaluates differences at every time

t, it suffers from the problem of multiple comparisons.

To address multiple comparisons, we performed a single test (hence eschewing multiple

tests) that evaluated if the maximum average correlation over a temporal window of length l
could be observed by chance. The null scenario was generated by shuffling participants (i.e.,

the fMRI and fluid intelligent were randomly associated, not based on participant ID). The

permutation-based test draws from ideas used in the MEG/EEG field to evaluate if two time

series differ in time [52]. Specifically, our method was as follows. Consider a sliding window of
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length l over the entire clip time series, and compute the value of the average correlation over

the sliding window. This allows us to determine the window that has the highest average corre-

lation. For example, in Fig 6, the window of length l = 10 extended from t = 139, . . ., 148, for

fluid intelligence. To determine the probability that such value would be observed by chance,

we computed the same highest average correlation based on values for shuffled participants

(1000 iterations), providing a null distribution (Fig 6, S3 and S5 Figs).

The above approach handles multiple comparisons by performing a single statistical evalua-

tion based on the test dataset (after training). However, it considers all temporal windows to be

able to select the one that has the highest average score. Another possible approach is to select

the best temporal window based on training data, and apply that temporal interval to the test
data (as a test of generalization). We call this test the oracle test because it uses test data to

guess what will work (generalize) in the test data. No correction for multiple comparisons is

needed because a single test is applied to the test dataset. For Fluid Intelligence prediction, the

best windows were 20–29 seconds for Socialnet (p = 0.0014) and 73–84 seconds for Starwars

(p = 0.0007). For Verbal IQ, the best window was 128–137 seconds for Oceans (p = 0.0034).

These tests pass or just miss a Bonferroni correction with 15 movies (0.05/15 = 0.0033).

Summary of models used

Table 1 summarizes all model architectures and documents all hyperparameters used for training.

Conclusion

In the present paper, we developed a computational approach to study and characterize spatio-

temporal brain signals in the context of fMRI. The framework can be applied to other types of

brain data for discovering and interpreting brain dynamics.

Supporting information

S1 Fig. Euclidean distances between trajectories for all movie clips. Euclidean distances

between trajectories. In the inset, the duration of every clip is indicated in parenthesis.

(PDF)

Table 1. Summary of models implemented in the paper. Hyperparameters and other parameters: LR: controlled the rate of update for gradient descent; Dr: dropout for

the GRU layer [53]; L2: L2 regularization coefficient for the GRU layer; BS: Batch Size, number of training samples before updating model parameters; Ep: Epochs, num-

ber of passes through the training dataset.

Model (Dataset) Architecture Layer (unit(s)) # layers LR Dr L2 BS Ep

GRU classifier (movie-watching) 1 × GRU (32 units) 2 6 × 10−3 10−6 10−3 32 45

1 × FC (15 units)

FF classifier (movie-watching) 1 × FC (103 units) 2 10−3 NA NA 32 45

1 × FC (15 units)

TCN classifier (movie-watching) 1 × TCN (25 filters) 2 10−3 NA NA 32 50

1 × FC (15 units)

GRU encoder (movie-watching) 1 × GRU (32 units) 3 6 × 10−3 10−6 10−3 32 45

1 × FC (Nĥ units)

1 × FC (15 units)

GRU regressor (movie-watching) 1 × GRU (1 unit) 2 10−3 NA NA 30 20

1 × FC (1 unit)

GRU classifier (moving-circles) 3 × GRU (32 units) 4 6 × 10−3 10−6 10−3 32 28

1 × FC (1 unit)

https://doi.org/10.1371/journal.pcbi.1008943.t001
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S2 Fig. Fluid intelligence predictions for all movie clips. Fluid Intelligence predictions for all

movie clips. Conventions as in Fig 6 in the main text.

(PDF)

S3 Fig. Fluid intelligence predictions: Null distributions. Null distributions of fluid intelli-

gence predictions. Vertical blue lines indicate the prediction based on actual data.

(PDF)

S4 Fig. Verbal IQ predictions for all movie clips. Verbal IQ predictions for all movie clips.

Conventions as in Fig 6 in the main text.

(PDF)

S5 Fig. Verbal IQ predictions: Null distributions. Verbal IQ predictions: null distributions.

Vertical blue lines indicate the prediction based on actual data.

(PDF)

S1 Video. Saliency movie for Brokovich clip.

(MP4)

S2 Video. Saliency movie for Star Wars clip.

(MP4)

S1 Appendix. Gated recurrent units.

(PDF)
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