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ARTICLE INFO ABSTRACT

Keywords: Independent component analysis (ICA) is a data-driven method that has been increasingly used for analyzing
fMRI functional Magnetic Resonance Imaging (fMRI) data. However, generalizing ICA to multi-subject studies is non-
Unsupervised learning trivial due to the high-dimensionality of the data, the complexity of the underlying neuronal processes, the
Laplacian eigenmaps presence of various noise sources, and inter-subject variability. Current group ICA based approaches typically use
ICA . several forms of the Principal Component Analysis (PCA) method to extend ICA for generating group inferences.
g;ﬁ:g;:;Tr::thiorks However, linear dimensionality reduction techniques have serious limitations including the fact that the under-
lying BOLD signal is a complex function of several nonlinear processes. In this paper, we propose an effective non-
linear ICA-based model for extracting group-level spatial maps from multi-subject fMRI datasets. We use a non-
linear dimensionality reduction algorithm based on Laplacian eigenmaps to identify a manifold subspace common
to the group, such that this mapping preserves the correlation among voxels’ time series as much as possible.
These eigenmaps are modeled as linear mixtures of a set of group-level spatial features, which are then extracted
using ICA. The resulting algorithm is called LEICA (Laplacian Eigenmaps for group ICA decomposition). We
introduce a number of methods to evaluate LEICA using 100-subject resting state and 100-subject working
memory task fMRI datasets from the Human Connectome Project (HCP). The test results show that the extracted
spatial maps from LEICA are meaningful functional networks similar to those produced by some of the best known
methods. Importantly, relative to state-of-the-art methods, our algorithm compares favorably in terms of the
functional cohesiveness of the spatial maps generated, as well as in terms of the reproducibility of the results.

Introduction sources, which can generate the data through linear mixtures. However,

ICA does not naturally provide a suitable method for drawing inferences

Functional magnetic resonance imaging (fMRI) studies have shed
light on the overall functional organization of the brain. For example,
resting state studies have revealed the existence of a number of intrinsic
functional networks, including the “default mode” and ‘“salience” net-
works Biswal et al. (1995); Cole et al. (2014); Greicius et al. (2003).
These studies have also led to the discovery of specific patterns related to
brain disorders Jafri et al. (2008); Greicius et al. (2004); Garrity et al.
(2007), age Damoiseaux et al. (2008), and gender Weissman-Fogel et al.
(2010).

The determination of large-scale patterns of brain activity is a chal-
lenging problem due to several factors, including the high-
dimensionality of the data, various noise sources, and inter-subject
variability. The most widely used approach to capture group-level
functional connectivity is based on Independent Component Analysis
(ICA) McKeown et al. (1998), which is a data-driven approach that as-
sumes the existence of statistically independent latent features, called

about groups of subjects Erhardt et al. (2011), which has led to the
development of several multi-subject approaches that are partly based on
ICA. These approaches revolve around a few strategies. One method is to
concatenate the data from multiple subjects along the temporal dimen-
sion Calhoun et al. (2001) followed by the use of Principal Component
Analysis (PCA) Jolliffe (2002) to reduce the dimensionality of the data,
and ending with the application of ICA to extract spatial features com-
mon at the group level. The tensorial extension to ICA Beckmann and
Smith (2005) uses a three-dimensional tensor to estimate shared spatial
patterns and time courses between subjects, and subject-specific loadings
of the components to capture the multidimensional structure of the data.
In Guo and Pagnoni (2008), a general framework is proposed for using
the expectation maximization algorithm to estimate an unconstrained
mixing matrix for the group-level independent components. Finally, ca-
nonical ICA Varoquaux et al. (2010) uses Canonical Correlation Analysis
(CCA) to find components that maximize cross-correlation before

* Corresponding author. Department of Electrical and Computer Engineering, University of Maryland, College Park, MD 20742, USA.

E-mail address: chliu@umd.edu (C. Liu).

https://doi.org/10.1016/j.neuroimage.2017.12.018

Received 21 July 2017; Received in revised form 5 December 2017; Accepted 9 December 2017

Available online 13 December 2017
1053-8119/© 2017 Elsevier Inc. All rights reserved.



C. Liu et al.

applying the ICA step.

Two methods involving temporal concatenation of the data include
GIFT Calhoun et al. (2001) (http://icatb.sourceforge.net/) and MELODIC
Beckmann and Smith (2004) (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
MELODIC/). GIFT approximates the PCA of the group temporally
concatenated data by first reducing each subject's dataset to dimension
m, and then running the PCA on the concatenation of the principal
components across all subjects to further reduce temporal dimension-
ality. MELODIC, however, uses an incremental approach called ME-
LODIC's Incremental Group PCA (MIGP) Smith et al. (2014) to implement
the approximation. Although MELODIC and GIFT have been broadly used
for group level fMRI analysis, they are not without limitations as will be
explained next.

These ICA-based strategies involve the use of PCA to reduce the
dimensionality of the data. PCA is basically a linear projection of the
original data onto a low-dimensional subspace in such a way as to retain
most of the variance of the data. However, PCA does not distinguish
between variance due to noise versus variance due to inherent underly-
ing signal variations. Moreover, there is no principled justification for
using the variance as the basis for data reduction based solely on a linear
transformation. The BOLD signal is a complex function of neural activity,
oxygen metabolism, cerebral blood volume, cerebral blood flow, and
other physiological parameters Wang et al. (2003). The dynamics un-
derlying neural activity and hemodynamic physiology involve multiple
nonlinearities Birn et al. (2001); Miller et al. (2001); Xie et al. (2008), a
fact that has motivated the exploration of nonlinear approaches for fMRI
analysis Thirion and Faugeras (2004); Mannfolk et al. (2010). To the best
of our knowledge, nonlinear models have not been proposed to extract
common spatial patterns for multi-subject fMRI analysis.

Several nonlinear dimensionality reduction approaches have been
successfully used to address a wide range of applications Van Der Maaten
et al. (2009). Kernel PCA Scholkopf et al. (1998) maps data to a feature
space using a nonlinear transformation (kernel) and performs linear PCA
in the feature space. Isomap Tenenbaum et al. (2000) is based on
computing a low dimensional representation that tries to preserve the
pairwise geodesic distances, which are approximated by the pairwise
shortest paths between corresponding points. Maximum variance
unfolding (MVU) Weinberger and Saul (2006) computes a
low-dimensional manifold such that local distances and angles are pre-
served. Locally linear embedding (LLE) Roweis and Saul (2000) is based
on the geometric intuition of local linearity, which assumes that each
point and its neighbors lie on an approximately linear patch of a
low-dimensional manifold. The mapping is computed by trying to pre-
serve linearity locally, such that each point has the same neighborhood
structure as in the high-dimensional space. A technique of a different
flavor is the t-distributed stochastic neighbor embedding (t-SNE) Maaten
and Hinton (2008), which captures similarities between pairs of
high-dimensional points through a probability distribution, followed by
determining a mapping to a lower-dimensional space that achieves a
similar distribution. Laplacian eigenmaps Belkin and Niyogi (2003)
project data into a low dimensional Euclidean space such that local
proximity relations are preserved as much as possible, mapping close
points in the original space to close points in the low-dimensional space.
Of these techniques, Laplacian eigenmaps appear to be the most suitable
for fMRI data since its overall objective function can be expressed as
minimizing

Sl -yl ws &)
ij

where y;, y; are the low-dimensional vectors corresponding to points i, j
in the original space, and Wj is a proximity measure of points i and j in
the original space. If we choose Wj; to be the zero-thresholded correlation
between voxels i and j in the original space, this nonlinear projection
maps voxels with strong correlations to nearby points in the low-
dimensional Euclidean space. Correlations between voxels in fMRI data
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reveal functional relationships and hence contain the information that
can be used to construct functional networks.

We note that Laplacian eigenmaps have been successfully used in
analyzing fMRI data Marquand et al. (2017); Haak et al. (2016). Our
approach differs from earlier studies in that they are ROI-based methods
focusing on specific networks using prior brain-related knowledge, while
our framework makes use of ICA to extract intrinsic networks for general
fMRI datasets.

In this paper, we propose a group-level model that uses Laplacian
eigenmaps as the main data reduction step, which preserves the corre-
lation information in the original data as best as possible. The nonlinear
map is robust relative to noise in the data and to inter-subject variability.
After the Laplacian eigenmaps transformation, ICA is applied to the
reduced data to estimate spatial features, followed by thresholding to
extract group-level independent spatial maps. We call our algorithm
LEICA (Laplacian Eigenmaps for group ICA decomposition).

The rest of the paper is organized as follows. In section 2, we present
the details of our algorithm and inference method, and describe several
tests used to validate our method and compare the results with state-of-
the-art methods. In section 3, we show the corresponding test results on
both resting state and working memory task fMRI datasets for 100 sub-
jects from the Human Connectome Project. Finally, in section 4, we
discuss our results.

Materials and methods
Group ICA model

Spatial ICA assumes that the observed fMRI data are generated by a
linear mixture of spatially independent components. The underlying
model can be expressed as:

X =MA 2)
where X is the observation matrix whose columns represent the time
series corresponding to the voxels, A consists of the corresponding in-
dependent sources, and M is the mixing matrix. We note that (2) does not
include a noise model, but fMRI data is inevitably confounded by noise.
Moreover, as stated, the model is not suitable for multi-subject fMRI
analysis.

Noisy group level ICA models have been proposed in the literature.
Let {X,; n=1, 2, ..., N} be the fMRI data of N subjects with n being the
subject index. X, has dimensionality T x V, where V is the number of
voxels and T is the number of time frames. To handle noise, group ICA
models have the following form:

X=UA+E 3
where X = [XT XI ... X1]" is the NT x V data matrix formed by tempo-
rally concatenating data across N individuals, A consists of the group-
level independent sources, U is the group mixing matrix, and E is the
noise. Existing methods differ in the assumptions and procedures used to
estimate the group mixing matrix U and the noise E.

In temporal concatenation ICA Calhoun et al. (2001); Smith et al.
(2004), the group mixing matrix has form U = PM and the group model
becomes

X=PMA+E 4
where P is estimated by PCA on the concatenated group data matrix and
MA consists of the group-level principal components, which are assumed
to be a linear subspace of the sources. Low variance components are
considered as noise. The classic noise-free ICA is then used to estimate
the mixing matrix M and the independent sources A.

In the tensor ICA approach Beckmann and Smith (2005), the group
mixing matrix is defined to have the Khatri-Rao product structure U =
M| ® |R where M is the subject-specific loading of the group components
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and R is the time course associated with the independent components.
The group model can now be expressed as

X=(M|®RA+E (5)
where the data are modeled as a trilinear product of group-level inde-
pendent sources A, associated with common time courses R and subject-
specific loadings contained in M, corrupted with additional noise E.

In the unified framework Guo and Pagnoni (2008), no assumption
about the structure of U is made but instead it is estimated using the
expectation maximization algorithm that maximizes the expected like-
lihood that the observed data is generated by this model. The noise is
modeled by a zero-mean multivariate Gaussian distribution.

Canonical ICA Varoquaux et al. (2010) tries to handle noise in a hi-
erarchical fashion in the sense that individual observation noise and
subject variability noise are estimated successively. The group mixing
matrix has the form:

P 0 070
U=|0 - 0 M 6)
0 0 Py||Ox

where the P;’s are the loading matrices for individual principal compo-
nents estimated by PCA, and the Q;’s are the loading matrices for the
common group principal components estimated by CCA, which de-
termines components that maximize cross-correlation.

We propose in this work a new model, called LEICA, based on the
assumption that the linear mixture of independent sources lies in a low-
dimensional manifold that cannot be captured by linear models. We do
not make explicit assumptions about the group mixing matrix either, but
address the noise problem through the construction of a similarity graph.
Our overall model can be expressed as:

Y =MA

X=¢'(Y)+E 2
where ¢ is a nonlinear embedding. We propose to use the Laplacian
eigenmaps algorithm to learn this embedding as explained next.

Dimensionality reduction using Laplacian eigenmaps

Laplacian eigenmaps constitute a nonlinear dimensionality reduction
technique that is based on determining a low dimensional representation
of a high dimensional dataset, which preserves locality information as
much as possible. It maps similar data points to nearby points in
Euclidean space.

We start by normalizing the data of each subject. Then we let
X = [x1 x2 ... xy], where x, € R"T is the concatenated time series for
voxel v across the subjects. The procedure of using Laplacian eigenmaps
to derive a d-dimensional embedding of the voxels is as follows.

First we construct a group-level weighted similarity graph G = (V, E)
with the nodes V representing the voxels and the weights of the edges E
are pairwise similarities chosen to be the Pearson's correlation coefficient

(r3) s 3)

NToo; ®

rj =

where X;, X; are the sample means of x;, x; and o;, o; are the sample
standard deviations of x;, x;j. To avoid explicitly considering the group-
concatenated data, the group-level correlation matrix is computed by
averaging the subject-level correlation matrices, as the data of each
subject have already been normalized.

For each voxel v € [1, ..., V], we determine the k nearest neighbors
set./2/"(v) of v consisting of the k voxels with the largest correlations with
v. We then compute the following weight function
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if i€ 40°(j)orjeMN(i)
otherwise
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where r; is the Pearson's correlation coefficient of voxel i and j. By
considering only positive correlations r;, negative correlations are not
included in a voxel's k nearest graph, which also reflects the intuition that
anti-correlated voxels are less likely to participate in the same network
Fox et al. (2005).

The choice of k needs to be carefully considered. If k is chosen to be
too small, the graph will not contain sufficient local connectivity
strengths for all voxels, and thus the low-dimensional embedding will not
capture enough information. In contrast, if k is too large, many weak
connections will be included in the graph and the graph will be more
subjective to noise and inter-subject variation. Picking a suitable k is a
trade-off between connectivity information and noise, and the best value
depends on the data. We will describe our approach later, which always
leads to a sparse graph.

Once the graph G is constructed, we compute the normalized graph
Laplacian
L=1-D"*wD '/ (10)
where D is diagonal degree matrix whose entries are defined by
Dy = > Wj. The matrix L is also called the normalized Laplacian. Then

j

we compute the smallest few eigenvalues and corresponding eigenvec-
tors of L

Lf = if

Let fo, f1. ..., fq be the d + 1 eigenvectors corresponding to the ei-
genvalues ordered as 0 = 49 < 4; < ... < Aq. The eigenvector f, corre-
sponding to eigenvalue 0 is a constant vector, so we use the other

(1)

d eigenvectors to form embeddings of the original data. Vector y, =
[F10), o), ..., fa)]" € R is the d-dimensional embedding for x,.

Group-level spatial maps

After embedding the data into a lower dimensional manifold, we
obtain a d x V matrix Y = [y; ¥, ... ¥y] in which each row corresponds
to an eigenvector as described in the previous section. We now model this
matrix Y as a linear mixture of a number of spatial independent features
as indicated in equation (7). The common independent spatial features A
can be extracted by applying ICA.

The overall LEICA workflow is illustrated in Fig. 1.

The resulting spatial components extracted by the ICA are continuous
values at each voxel, and hence some form of thresholding is employed to
determine the final spatial maps. Group t-test based and mixture-model
based thresholding methods have been proposed in the literature and
used in GIFT and MELODIC; these methods are applicable to our model as
well. But it has been shown that a simple thresholding approach based on
the absolute values of the voxels also works well Varoquaux et al. (2010)
and is consistent with the FastICA algorithm that we use. Therefore our
thresholding procedure consists of converting the spatial components to
Z-scores (zero mean and unit variance) and then thresholding based on
absolute Z values.

Evaluation strategies

In this section, we introduce a number of approaches to evaluate our
model, which will be applied to resting state and working memory data
sets of the Human Connectome project Van Essen et al. (2013). Given the
extracted group-level spatial maps, we show that thresholded spatial
maps capture important qualitative properties of resting-state networks,
as well as functional organization compatible with working memory task
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Fig. 1. Processing steps used by LEICA. The correlation matrices corresponding to individual subjects (1 through N) are computed first, followed by averaging across subjects, and
constructing the group-level k nearest neighbors (kNN) correlation matrix (the latter is always a sparse matrix). This matrix is used to compute normalized Laplacian eigenmaps followed by

the application of the ICA algorithm.

execution. Furthermore, the results are comparable to those obtained
with state-of-the-art methods. Next, we show that our model is able to
extract more functionally cohesive and stable spatial components than
other methods, and exhibits better generalizability from smaller
subgroups.

Similarity with other methods

The current state-of-the-art and most widely used tools to tackle the
problem addressed here are GIFT and MELODIC. The two toolboxes
implement the same concatenated ICA model with slight variations on
how the group-level PCA estimation and thresholding are conducted.
While their results are comparable, MELODIC seems to have better
reproducibility due to the instability of GIFT's t-test based thresholding
Varoquaux et al. (2010). Hence, we focus our comparison with MELODIC
(but also show results for GIFT). Our model employs different estimation
and inferencing procedures than MELODIC. In addition, the final values
of the spatial maps in our model are Z-scores based on the absolute
strengths of the ICA components, while the values in MELODIC are
Z-statistics based on mixture modeling Beckmann and Smith (2004).
Thus, we compare thresholded maps which are positive with different
magnitude ranges in the two models. We use the cosine similarity mea-
sure to compare the corresponding thresholded maps, a commonly used
similarity measure in high-dimensional positive spaces.

Specifically, after generating the spatial maps from both models, we
apply the corresponding thresholding procedures (the threshold values
are adjusted such that the spatial maps have approximately the same
number of voxels on average). Let a1, a; be the two thresholded spatial
maps from the two models; the cosine similarity is defined as:

aj-dp

T T (12)
llarl>llazll,

Functional connectivity structure

Functional MRI data have been used to capture large-scale functional
connectivity structure in the brain. Voxels in the same intrinsic functional
network are expected to have similar activity patterns, which translates
into correlated voxel time series. In fact, most seed-based analysis Yeo
et al. (2011) and clustering approaches Craddock et al. (2012) are based
on this assumption. We develop an approach to capture the functional
connectivity profile of each spatial map as follows.

Let the rows of the matrix A be a set of thresholded spatial maps, and
let W be the full correlation matrix of all pairs of voxels, averaged over all
subjects. The i-th row (or column) of W is the correlation between voxel i
and the rest of the voxels. We define the correlation maps corresponding
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to the given thresholded spatial maps by:

A, =AW (13)

The i-th row of A; defines in a certain sense the correlation profile of
the i-th spatial map in A. That is, each component of this profile is the
weighted sum of the correlations of all the voxels for the spatial
component, weighted by the magnitude of the corresponding voxel. Note
that our approach differs from commonly used measures such as the
average correlation of the voxels in a region of interest (ROI) Di Martino
et al. (2008); Jiang et al. (2004). Note also that the magnitude of a voxel
in a spatial component indicates the importance of this voxel for this
component. This weighted sum provides a normalized correlation map
for each spatial component over all voxels. It should be pointed out,
however, that using average and weighted average correlations generates
very similar results.

After generating A;, we can threshold A, to maintain only the stron-
gest correlations, followed by comparing the thresholded correlation
map A, with A. If A represents inherent functional connectivity networks
of the brain, we expect the voxels in each spatial component to be highly
correlated with the voxels in the same component, and we expect the
correlations with the rest of the voxels to be relatively weak. Therefore,
the thresholded correlation map A; should be very similar to A. If A; is not
similar with A, this would indicate that there are voxels outside the
component that are very correlated with the voxels in the component.
Finally, the similarity measure we use to compare A; and A is the average
cosine similarity over all the corresponding pairs of spatial maps between
A and A.

Reproducibility and consistency

We introduce two tests to evaluate the reproducibility and consis-
tency of our method. Similar tests have been proposed in Varoquaux et al.
(2010). Let A1, Az be the matrices defining d extracted spatial maps using
two different sets of subjects from the same dataset (“population”). Each
row corresponds to a non-thresholded spatial map that has been con-
verted to zero mean and unit norm. We define the cross correlation of the
spatial maps to be the matrix C = A;A}. Each element Cj is the Pearson
correlation coefficient of the i-th row of A; and the j-th row of A; hence,
Cyj = 1 if and only if the two components are identical. As in Varoquaux
etal. (2010), we use the the parameter to estimate the overlap of the two
subspaces spanned by the rows of A; and A,. The value of p quantifies
how similar the two subspaces are, although the individual spatial maps
may differ significantly even when the two subspaces are similar.
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1
p= Etr(CCT)

a9

Another measure corresponds to the one-to-one matching of the
components. Let A;, A, be two matrices such that each row is a thresh-
olded or non-thresholded spatial component with zero mean and unit
norm, and A;, A, be respectively row permutations of A; and A,. We
define the average one-to-one matching score to be corresponding to all
possible row permutations of the two matrices. In this case, we are
matching the rows of A; and the rows of A, such that the overall corre-
lation score is maximized.

g = max <$ tr(A,A;))

To evaluate our model, we evaluate the p and g measures for several
scenarios. Let S be the complete dataset with N subjects, and let S;, S» be
two sets of subjects selected at random from the complete dataset. We run
our algorithm and both MELODIC and GIFT on the two groups S; and S,.
We then compute the p scores on the non-thresholded spatial components
and the g scores on both thresholded and non-thresholded spatial com-
ponents. The two groups are selected as follows.

(15)

1. S, Sy are two subgroups randomly selected from S each with
{N/5,3N/10,2N/5,N/2} subjects.

2.8 is a subgroup randomly selected
{N/5,3N/10,2N/5,N/2} subjects, Sy = S.

from S with

Both experiments are repeated with random selection of subgroups
and the averaged scores are reported. Test results from 1) illustrate how
reproducible the model is, with varying number of available subjects.
Results from 2) illustrate the consistency between a small subgroup and
the whole group.

fMRI datasets

We use two fMRI datasets to evaluate the methods described above: a
resting state fMRI dataset and a working memory task fMRI dataset.

Resting state fMRI dataset

The resting state fMRI dataset we use is the 100 healthy unrelated
subject dataset from the WU-Minn Human Connectome Project Van
Essen et al. (2013). Each subject was involved in four 15-minute runs
with TR =0.72 s totaling 1200 frames per run. All frames were sampled
into 91,282 grayordinates (a combination of cortex vertices and
subcortical voxels). The data was then temporally preprocessed and
de-noised using the FIX approach Griffanti et al. (2014); Salimi-Khorshidi
et al. (2014). The resulting images were then aligned using MSM regis-
tration Robinson et al. (2014). Full details of this dataset can be found in
publications from the project Van Essen et al. (2013); Smith et al. (2013).
Each voxel's time series was normalized for each run. Note that, out of the
91,282 grayordinates in the resting state f{MRI data, we employed cortical
data only (59,412 vertices of the left and right hemispheres).

Working memory task fMRI dataset

We employed the working memory task dataset of the 100 healthy
unrelated subjects from the WU-Minn Human Connectome Project Van
Essen et al. (2013). Participants were presented with blocks of trials that
consisted of pictures of places, tools, faces and body parts. Within each
run, the 4 different stimulus types were presented in separate blocks such
that half the blocks used a 2-back memory task and half used a 0-back
memory task. Individual subject data includes 2 runs of 405 frames each,
preprocessed using FEAT Woolrich et al. (2001). Full details of this
dataset can be found in Van Essen et al. (2013); Smith et al. (2013). Here,
we analyzed only data from 2-back memory blocks as follows. To account
for head motion, motion parameters were regressed out of the time series
with AFNI's Cox (1996) 3dDeconvolve, which was also used to removed
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slow baseline drifts. Subsequently, time series data were z scored. To
account for the cue stimulus indicating block type at the beginning of
each block, data corresponding to the first 12s of each block were
removed. The remaining data segment of the block, plus 2s due to he-
modynamic lag, were considered to reflect working memory related data.
In this way, 25 frames for each block were used, totaling 200 frames once
the data were concatenated. Each voxel's time series was normalized for
each run.

Model parameters choice

Choosing an appropriate model order d (the number of non-constant
eigenvectors; see equation (11)) depends on the data. Since model order
selection is not the main focus of this paper, we use an empirical value. In
Smith et al. (2013) a model order of 30 was used to conduct group
analysis on both cortical and subcortical data; 23 of the extracted spatial
maps were suggested to be meaningful based on visual inspection of the
maps. As we are only using cortical data, a model order of d = 20 was
employed here.

The determination of the number k of nearest neighbors used in
constructing the similarity graph (see equation (9)) should also be based
on the data. The value of k needs to be large enough to include the
vertices that are closely correlated with a reference voxel, but not so large
as to include too many weak correlations in which case the model be-
comes noisier. The nearest neighbors of a voxel v are those voxels that are
strongly correlated with it. To select a consistent threshold cut-off, we Z-
scored the correlations and utilized a threshold of Z > 2. Specifically, for
each voxel, its correlation values with all other voxels (corresponding to a
single row or column of the group-level correlation matrix) were con-
verted to Z-scores and thresholded. This procedure selects the neighbors
that are the most functionally coupled to the voxel in question. In this
manner, we determine the number of nonzero values obtained after
thresholding for each voxel, and average this count across all voxels. This
average value is then taken as the value of k.

Results
Resting state dataset

Group-level spatial maps

As described in section 2.6, an important parameter that is estimated
from the data by the model is the number k of nearest neighbors used in
constructing the similarity graph. Based on the resting state dataset,
k =1742. Fig. 2 shows the 20 group-level thresholded spatial maps
extracted by LEICA on the resting state dataset. The extracted indepen-
dent spatial components were converted to Z scores and thresholded at
1Z] > 2.

Similarity score

We first visually compared the spatial maps from LEICA and
MELODIC. Subsequently, we computed the similarity scores of pairs
putatively capturing the same brain networks. Out of the 20 LEICA
spatial maps, 18 of them exhibited good matches with the corresponding
MELODIC spatial maps. The cosine similarity scores are presented in
Table 1.

In Fig. 3 we show sample pairs with varying similarity scores. In all
cases, the pairs are visually very similar, and even the least similar pair
(c = 0.53, Fig. 3(f)), shows good correspondence. Furthermore, LEICA
spatial maps are qualitatively smoother than those produced by
MELODIC.

Two LEICA components (1 and 14) did not match components
generated by MELODIC. Nevertheless, the two maps appear to be related
to meaningful functional networks. We tentatively identify spatial map 1
to be related to the auditory network, and spatial map 14 to be related to
the fronto-parietal network important for attention and executive
function.
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Fig. 2. Twenty group spatial maps generated by LEICA on the 100-subject HCP preprocessed resting state fMRI dataset. Spatial maps were thresholded at |Z] > 2.

Table 1

Cosine similarity scores for MELODIC and
LEICA spatial maps (SM) for the resting state
dataset. The numbering of the spatial maps is
the same as in Fig. 2.

SM # c

16 0.96
5 0.90
10 0.87
18 0.83
17 0.80
8 0.78
2 0.77
13 0.72
15 0.72
4 0.71
9 0.71
20 0.68
19 0.61
7 0.60
3 0.59
12 0.57
11 0.56
6 0.53

Next, we describe a quantitative comparison between LEICA and both
MELODIC and GIFT.

Recovery of functional connectivity structure

We start with an example to illustrate the validation strategy
described in section 2.4.2. In Fig. 4 we show two spatial maps (left in
each frame) and the corresponding correlation maps (right). In (a), to
generate an artificial map, a sphere with a geodesic radius of 40 mm was
generated around a vertex near the motor network and weighted by a
Gaussian kernel. In (b), the spatial map corresponded to a motor-related
network generated by LEICA. In both cases, correlation maps were
created by computing the weighted sum of the correlation maps for each
individual vertex (in the spatial maps), as described in section 2.4.2.
When a spatial map does not closely correspond to a meaningful intrinsic
network, such as the case in (a), the similarity score was low (c = 0.42),
and its correlation map is relatively poor (in (a), compare the two left-
most and the rightmost surfaces). When a spatial map better captures an
intrinsic network, such as the case in (b), both images matched well and
the cosine similarity score was high (c = 0.84).

To evaluate the model, we followed the approach above and
compared the individual spatial maps generated by LEICA, MELODIC,
and GIFT with the corresponding correlation maps (Table 2), just as done
in Fig. 4 (b). LEICA exhibited cosine similarity scores (between compo-
nent maps and correlation maps) that were similar or higher than the two
other algorithms, indicating that the method uncovered meaningful
component maps that represent intrinsic functional networks.
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(c)ec=0.83

(f)c=053

Fig. 3. Six sample pairs of spatial maps with different cosine similarity scores c. In each frame, the spatial maps on the left are generated by LEICA and those on the right are generated by
MELODIC. Both models appear to capture the same components (even in the case with least similarity, ¢ = 0.53). The components from our model appear to be smoother than those

by MELODIC.

Table 2

Cosine similarity between 20 spatial maps generated by LEICA, MELODIC, and GIFT and
their correlation maps for the resting state dataset. The numbering of spatial maps (SM #)
applies to LEICA; the values for MELODIC and GIFT are sorted in decreasing order.

SM # LEICA MELODIC GIFT
16 0.96 0.95 0.94
5 0.93 0.93 0.93
18 0.84 0.86 0.86
11 0.82 0.83 0.82
17 0.81 0.79 0.81
6 0.79 0.79 0.81
9 0.79 0.78 0.79
10 0.79 0.78 0.78
13 0.78 0.78 0.78
2 0.78 0.78 0.77
8 0.77 0.77 0.76
7 0.76 0.77 0.76
12 0.74 0.76 0.75
3 0.74 0.74 0.73
14 0.73 0.70 0.67
20 0.73 0.61 0.62
1 0.73 0.54 0.56
19 0.67 0.51 0.50
4 0.66 0.44 0.48
15 0.66 0.18 0.43
average 0.77 0.71 0.73
Reproducibility results

We first describe how the results for GIFT and MELODIC were
generated. For GIFT, the subject-level dimensionality was first reduced to
m = 150 using PCA, followed by the temporal concatenation across all
reduced data. As stated in Calhoun et al. (2001); Smith et al. (2014) the
subject-specific PCA should not over-reduce the data (m > d); usually the
larger the m the better, and we chose m to be large for best performance.
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PCA was then applied on the concatenated data to reduce the dimen-
sionality to d = 20, followed by ICA to extract the independent compo-
nents. For MELODIC, the temporal concatenation PCA was implemented
using the MIGP algorithm to compute group-level principal components
with dimension of 4500, as used in the original paper Smith et al. (2014)
for the same dataset. The MELODIC toolbox was then used to extract 20
independent components.

The reproducibility results generated by cross validating a pair of
subgroups and by cross validating one subgroup relative to the complete
group are shown in Table 3. Overall LEICA achieved the most repro-
ducible and stable results among the models. From Table 3(a), we see
that given any pair of distinct subgroups, LEICA was able to extract a set
of group spatial features that was most stable most often. These results
are important because they indicate that the inter-subject variability was
modeled better using Laplacian eigenmaps than PCA. In Table 3(b), the
values from LEICA are also significantly higher, which indicates that
LEICA was able to extract more consistent group spatial features when
fewer subjects are used.

Working memory dataset

Group-level spatial maps

The method estimated the number of nearest neighbors used in
constructing the similarity graph to be k = 938 for the working memory
dataset. Fig. 5 shows the 20 group-level independent thresholded spatial
maps extracted by LEICA on the 2-back working memory fMRI dataset.
The extracted spatial components were also converted to Z-scores and
thresholded at |Z| > 2.

Similarity score
Out of the 20 LEICA spatial maps, 18 exhibited relatively good
matches with those from MELODIC (cosine similarity scores are
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(a) An artificial spatial map (left) generated by drawing a circle around a vertex (b} The motor network generated by LEICA (left) and its corresponding correla-
near the left motor network (with Gaussian weights) and its corresponding corre- tion map (right). Cosine similarity score: ¢ = (.84,

lation map (right). Cosine similarity score: ¢ = (.42,

Fig. 4. Two spatial maps and their corresponding correlation maps. The correlation maps were created by computing the weighted sum of the correlation maps for each individual vertex

as described in section 2.4.2.

Table 3

Reproducibility results based on pairs of subgroups each with 20, 30, 40, 50 subjects for the
resting state dataset. p quantifies the similarity of the two subspaces and g measures the
one-to-one matching similarity.

(a) Reproducibility results based on pairs of subgroups

Resting State GIFT MELODIC LEICA
20 subjects

p 0.82 0.80 0.88
q - non-thresholded 0.79 0.83 0.83
q - thresholded 0.48 0.82 0.77
30 subjects

p 0.84 0.85 0.91
q - non-thresholded 0.81 0.83 0.85
q - thresholded 0.60 0.84 0.80
40 subjects

p 0.89 0.87 0.92
q - non-thresholded 0.82 0.84 0.86
q - thresholded 0.76 0.84 0.81
50 subjects

p 0.91 0.89 0.93
q - non-thresholded 0.87 0.85 0.89
q - thresholded 0.82 0.85 0.85
(b) Reproducibility results of one subgroup relative to the whole group

Resting State GIFT MELODIC LEICA
20 subjects

p 0.73 0.71 0.92
q - non-thresholded 0.73 0.68 0.86
q - thresholded 0.46 0.65 0.82
30 subjects

p 0.75 0.74 0.94
q - non-thresholded 0.74 0.69 0.90
q - thresholded 0.52 0.68 0.86
40 subjects

p 0.79 0.76 0.95
q - non-thresholded 0.75 0.72 0.90
q - thresholded 0.61 0.70 0.87
50 subjects

p 0.81 0.77 0.96
q - non-thresholded 0.79 0.74 0.91
q - thresholded 0.68 0.72 0.87

presented in Table 4). Thus, the two models captured similar sets of
components.

Recovery of functional connectivity structure

As in the case of the resting state dataset, we compared spatial maps
obtained by LEICA, MELODIC, and GIFT with the corresponding corre-
lation maps (Table 5). For the task dataset, LEICA exhibited cosine sim-
ilarity scores (between component maps and correlation maps) that were
consistently higher than the two other algorithms, indicating that the
method better uncovered functional networks during working memory
performance.
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Reproducibility results

Along the same lines of section 3.1.4, we chose the subject-level PCA
dimension m =90 for GIFT, and a dimension of 200 for MIGP in
MELODIC. The reproducibility results for the three models are shown in
Table 6. Compared with the results for resting state (Table 3), all
reproducibility scores dropped considerably, reflecting the rather limited
amount of task data (200 frames per subject vs. 4800 frames per subject).
However, the performance of LEICA did not decline as much as observed
for the other two models, highlighting the advantage of the method when
more limited data are available, as is typical in most fMRI research.

Discussion

In the present paper, we propose a nonlinear ICA-based model for
extracting group-level spatial maps from multi-subject fMRI datasets.
There are two key elements to our method. The first element is the
construction of a k-nearest neighbor graph based on the group-average
correlation matrix, which makes the final results less noisy and cap-
tures intrinsic functional connectivity. The second element is the use of a
nonlinear dimensionality reduction stage based on Laplacian eigenmaps,
which seeks to identify a manifold subspace common to the group. The
mapping is such that it preserves the correlation structure among the
voxels as much as possible, which we propose is important to capture
functional brain networks during resting and task states.

Model flexibility

LEICA has more parameters than traditional PCA-ICA models. In
particular, the construction of the similarity graph requires the specifi-
cation of the edge weights and the number k of nearest neighbors. A
number of techniques exist for specifying edge weights, including Pear-
son's correlation coefficient, the heat kernel, and binarized weights. As
noted before, we believe that the thresholded Pearson's correlation co-
efficient is appropriate for our application. The number k of nearest
neighbors needs to be determined, as we illustrated earlier. Also, the final
similarity graph can be fine tuned. In this paper, we have provided
practical and simple ways to select the parameters that are particular to
our model. These methods seem to work well in practice and may offer
more flexibility than found in other models.

Number of nearest neighbors k

LEICA provides a principled method for determining the value of k
based on z scoring, which produces good results on both the resting state
and working memory datasets. However, we note that the model is not
very sensitive to the exact value of k. Fig. 6 shows motor-related networks
extracted by the method applied to resting state data with different
values of k. When k is rather small, say k = 50 or even k = 200, the
resulting motor networks do not represent the true network well. For
k = 1000, the motor networks are accurately extracted but the left and
right hemispheres are separated. When k = 2500, the results are nearly
identical to what was extracted automatically (Fig. 2). For k = 5000,
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Fig. 5. Twenty group spatial maps generated by LEICA on the 100-subject HCP preprocessed working memory task dataset. Spatial maps were thresholded at |Z| > 2.

Table 4

Cosine similarity scores for spatial maps (SM)
from MELODIC and LEICA on the working
memory dataset. The numbering of the
spatial maps is the same as in Fig. 5.

SM #

13
7
10
15
4
1
9
6
18
8
11
20
16
19
5
14
17
3

0.41
0.40
0.38
0.35

which we consider as “large” (nearly three times the value of k = 1742

Table 5

Cosine similarity between 20 spatial maps and their correlation maps for LEICA, MELODIC,
GIFT on the working memory dataset. The numbering of spatial maps (SM #) only applies
to LEICA, and the values for MELODIC and GIFT are sorted in decreasing order.

SM # LEICA MELODIC GIFT
2 0.99 0.97 0.99
12 0.99 0.84 0.91
13 0.97 0.80 0.84
9 0.96 0.78 0.81
3 0.93 0.77 0.80
4 0.93 0.74 0.78
11 0.85 0.74 0.77
19 0.85 0.73 0.74
17 0.79 0.72 0.73
15 0.76 0.70 0.71
6 0.74 0.70 0.69
18 0.72 0.64 0.68
5 0.70 0.62 0.67
16 0.69 0.59 0.63
10 0.69 0.55 0.61
20 0.68 0.51 0.60
14 0.68 0.45 0.53
1 0.67 0.44 0.47
8 0.65 0.40 0.34
7 0.61 0.26 0.29
average 0.79 0.65 0.68

obtained by the method), the motor network becomes somewhat noisy
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Table 6
Reproducibility results based on subgroups each with 20, 30, 40, 50 subjects on the
working memory dataset.

(a) Reproducibility results based on pairs of subgroups

Working Memory GIFT MELODIC LEICA
20 subjects

p 0.35 0.36 0.68
q - non-thresholded 0.41 0.41 0.70
q - thresholded 0.27 0.41 0.68
30 subjects

p 0.47 0.45 0.76
q - non-thresholded 0.51 0.49 0.77
q - thresholded 0.39 0.49 0.74
40 subjects

p 0.51 0.52 0.81
q - non-thresholded 0.55 0.55 0.81
q - thresholded 0.49 0.54 0.78
50 subjects

p 0.56 0.55 0.84
q - non-thresholded 0.59 0.57 0.84
q - thresholded 0.55 0.56 0.80
(b) Reproducibility results of one subgroup relative to the whole group

Working Memory GIFT MELODIC LEICA
20 subjects

p 0.49 0.52 0.73
q - non-thresholded 0.53 0.52 0.72
q - thresholded 0.33 0.50 0.69
30 subjects

p 0.60 0.58 0.79
q - non-thresholded 0.63 0.57 0.79
q - thresholded 0.42 0.55 0.76
40 subjects

p 0.66 0.65 0.83
q - non-thresholded 0.60 0.63 0.82
q - thresholded 0.52 0.60 0.79
50 subjects

P 0.69 0.67 0.86
q - non-thresholded 0.64 0.65 0.84
q - thresholded 0.61 0.62 0.81

but the result is still quite reasonable. We note that for the range k €
[1200, 2500] there seems to be no appreciable differences in the results
obtained by the method.

Model order d

The general problem of estimating the model order (here, the number
of components) amounts to estimating the intrinsic dimensionality of a
nonlinear manifold from a given data sample, a notoriously difficult
problem Camastra and Staiano (2016). Moreover, in the context of our
application, we note that it is not clear that there is a single “correct”
value that is needed. A technique used to estimate the number of com-
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parameter estimation but the accuracy is not guaranteed Varoquaux et al.
(2010). Another technique is based on a statistical shape model Varo-
quaux et al. (2010). In the present investigation, we decided against
using such techniques due to their considerable assumptions. Previous
empirical results for fMRI data indicate that the appropriate model
parameter lies between 20 and 100, depending on the dataset. Here, we
found that the model order of 20 was adequate for the two datasets
investigated, as shown by the high quality of the spatial components
generated, but we note that the exploration of methods to estimate model
order was beyond the scope of the paper.

Computational complexity and execution time

When the number of subjects is very large, it becomes computationally
difficult to concatenate the data across all subjects along the temporal
dimension to perform the typical estimation procedures (such as PCA) due
to memory limitations. This issue is handled in GIFT by using successive
PCAs to reduce the dimensionality of each individual's data before
concatenation across subjects, which is then followed by running PCA
again on the concatenated data. In MELODIC, a recently proposed algo-
rithm called MIGP is used to compute an approximation of PCA on the
temporally concatenated data. In contrast, LEICA computes the correlation
matrix of each individual subject, followed by averaging these correlation
matrices over the subjects. We then build a k-nearest neighbor graph based
on the resulting correlation matrix. This is followed by computing the
Laplacian eigenmaps on the sparse correlation matrix, which includes a
sparse eigenvector decomposition that has a fast implementation, and can
be easily boosted by GPU platforms as shown in Jin and Jaja (2016).

The execution times of MELODIC, GIFT, and our model on the 100
subject HCP resting state and working memory datasets are shown in
Table 7. All programs were run on the same machine with Intel(R)
Xeon(R) CPU E5-2630 v3 @ 2.40GHz CPU. Overall, LEICA ran much
faster than both algorithms on the resting state dataset, and slower than
MELODIC and faster than GIFT on the working memory dataset. This can
be explained by the fact that the execution time of MELODIC is domi-
nated by the MIGP step, which is quadratic in terms of the length T of the
time series, while the execution time of LEICA is linear in T (T = 4800 for
the resting state dataset and T = 200 for the working memory dataset).
The MIGP step of MELODIC was implemented in MATLAB (we used the
scripts provided by HCP) and the ICA step was from the MELODIC
toolbox. Both GIFT and our model were implemented in Python (as the
original GIFT toolbox is not compatible with CIFTI data format used by
HCP, we implemented the model in Python).

Conclusion

In this paper, we present a novel model — called LEICA - involving a
non-linear dimensionality reduction procedure followed by ICA to

Table 7
Execution times for MELODIC, GIFT, and LEICA on the 100-subject resting state and
working memory datasets from the Human Connectome Project.

ponents for fMRI data is based on Akaikes information criterion (AIC) MELODIC GIFT LEICA
aI.l(.l the mlmr.num descrlguon length (MDL), both of wh1gh make sig- resting state 2d 5h 17m sh 42m sh 33m
nificant technical assumptions about the model Wax and Kailath (1985). working memory 8m 47s 20m 15s 15m 29s
For fMRI datasets, MELODIC and GIFT use this technique for their model

(a) k=50 (b) k =200 (€) k = 1000 (d) k = 2500 (e) k = 5000

Fig. 6. The motor networks extracted by LEICA on the resting state dataset with different values of k.
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identify group-level spatial features from multi-subject fMRI datasets,
and applied it to resting state and working memory data. The spatial
maps extracted by our model were shown to be related to meaningful
functional networks, and are comparable or better than those generated
by one of the current state-of-the-art models (MELODIC). Evaluation of
the functional connectivity structure of spatial component maps revealed
that LEICA detects functionally cohesive maps. Moreover, LEICA spatial
mabps are at least as functionally cohesive or better than those detected by
MELODIC and GIFT for resting state data, and more functionally cohesive
than by MELODIC and GIFT for working memory data. Tests of repro-
ducibility showed that LEICA is at least as stable as MELODIC and GIFT
when ample data are available (resting state dataset), and more stable
than these methods when more limited data are available (working
memory dataset). Finally, our method is computationally efficient. Our
software is available at https://github.com/liuchihuang/LEICA.
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