
Optimized Strategies for Mapping
Three-dimensional FFTs onto CUDA GPUs

[Extended Abstract]

Jing Wu
Dept. of Electrical and Computer Engineering

and Inst. for Advanced Computer Studies
University of Maryland, College Park, MD

jingwu@umiacs.umd.edu

Joseph JaJa
Dept. of Electrical and Computer Engineering

and Inst. for Advanced Computer Studies
University of Maryland, College Park, MD

joseph@umiacs.umd.edu

ABSTRACT
We address in this paper the problem of mapping three-
dimensional Fast Fourier Transforms (FFTs) onto the re-
cent, highly multithreaded CUDA Graphics Processing Units
(GPUs) and present some of the fastest known algorithms
for a wide range of 3-D FFTs on the NVIDIA Tesla and
Fermi architectures. We exploit the high-degree of multi-
threading offered by the CUDA environment while carefully
managing the multiple levels of the memory hierarchy in
such a way that: (i) all global memory accesses are coalesced
into 128-byte device memory transactions issued in such a
way as to optimize effects related to partition camping [19],
locality [22], and associativity. and (ii) all computations
are carried out on the registers with effective data move-
ment involved in shared memory transposition. In particu-
lar, the number of global memory accesses to the entire 3-D
dataset is minimized and the FFT computations along the
X dimension are almost completely overlapped with global
memory data transfers needed to compute the FFTs along
the Y or Z dimensions. We were able to achieve perfor-
mance between 135 GFlops and 172 GFlops on the Tesla
architecture (Tesla C1060 and GTX280) and between 192
GFlops and 290 GFlops on the Fermi architecture (Tesla
C2050 and GTX480). The bandwidths achieved by our al-
gorithms reach over 90 GB/s for the GTX280 and around
140 GB/s for the GTX480.

Categories and Subject Descriptors
D.1.3 [Concurrent Programming]: Parallel Programming

General Terms
Algorithm, Performance

Keywords
Fast Fourier Transform, GPU, Multi-threaded Algorithms,
Scientific Computing

1. INTRODUCTION
The Fourier Transform and its discrete version, the Dis-

crete Fourier Transform (DFT), constitute some of the most
fundamental tools used throughout science and engineer-
ing. The introduction of the Cooley-Tukey [1] Fast Fourier
Transform (FFT) algorithm is considered to be a break-
through that has led to a number of very efficient methods

for computing the DFT. These methods have enabled the
widespread use of the FFT algorithm by both practition-
ers and researchers in a wide range of science and engineer-
ing applications such as computational fluid dynamics and
digital signal processing. Since its introduction, consider-
able efforts have been devoted to map the FFT computation
onto various specialized and general purpose parallel archi-
tectures, as they emerged over the years, so as to enable
computational scientists to handle larger and larger scale
applications. However, three-dimensional FFTs remain a
significant computational challenge whenever the transform
size is very large, which is often the case for large scale ap-
plications.

In this paper we address the problem of mapping power-
of-two size three-dimensional FFTs onto the recent multi-
threaded GPUs and present some of the fastest known al-
gorithms on four recent NVIDIA platforms. GPUs offer
an extremely attractive choice because of their high per-
formance and low cost, and are now widely available as co-
processors on CPUs. For example, the Tesla C1060 contains
240 streaming processors (SPs), and can deliver in princi-
ple peak performance of up to 1 TFLOPS and peak band-
width of up to 102GB/s to the 4GB device memory, at a
cost of a few hundred dollars. Moreover, the CUDA paral-
lel programming model [16][15] has played a critical role in
ensuring the success of the recent GPUs due to the relative
simplicity of the programming model, and its highly multi-
threaded and data parallel framework. Substantial perfor-
mance gains have recently been reported on a wide range of
scientific computations on GPUs using CUDA.

The main contributions of this paper are:

• A new approach for mapping power-of-two sizes 3D
FFT computation onto CUDA GPUs which overlaps
the FFT computation along the X dimension with data
transfers required for the FFT computations along the
Y and Z dimensions by adjusting the granularity of
consecutive issue of device memory transactions and
streaming multiprocessor (SM) executions of resident
blocks.

• A minimal number of global data accesses such that
all memory accesses are coalesced into 128-byte mem-
ory transactions, coupled with highly multi-threaded
operations executed directly on the registers.

• The execution plan is tuned to optimize global memory
accesses based on new strategies to deal with partition

1

camping, row access locality, and associativity.

• A general strategy to avoid shared memory bank con-
flicts in data transposition.

• Extensive tests that illustrate superior performance,
both in terms of numbers of floating-point operations
per second and global memory bandwidth achieved, on
four different platforms.

The rest of the paper is organized as follow. Section 2
introduces recent GPU architectures and the CUDA pro-
gramming model, with a particular emphasis on the memory
model since our three-dimensional FFT computations are
bandwidth-bound. This will be followed in Section 3 with
an overview of recent related work using CUDA algorithms.
In the following section, we will describe our overall strategy
and the techniques used in implementing our algorithms. In
Section 5, we will report a summary of the experimental
results achieved by our algorithms on four recent NVIDIA
platforms, and we conclude in Section 6.

2. CUDA OVERVIEW
Recent GPUs using the CUDA programming model have

attracted considerable interest in the high-performance com-
puting community due to their extremely high peak perfor-
mance, low cost, and the relative simplicity of the program-
ming model. Moreover these many-core processors tend to
achieve much better performance to power ratios than the
corresponding multicore CPUs while at the same time scal-
ing to thousands of cores on a single card. The CUDA pro-
gramming model uses multi-threading and data parallelism
to exploit the many-core architectures of the recent NVIDIA
GPUs, thereby achieving orders of magnitude better perfor-
mance compared to multicore CPUs, especially on scientific
applications. In this section, we start by giving an overview
of such architectures, focusing on the four platforms used in
our tests, followed by a summary of the main features of the
CUDA programming model. We pay a particular attention
to the memory model since this will play a central role in
our algorithms.

The basic architecture of the recent NVIDIA GPUs con-
sists of a set of Streaming Multiprocessors (SMs), each of
which containing up to 32 Streaming Processors (SPs or
cores) executing in a SIMD fashion; a large number of reg-
isters; and a small shared memory organized into multiple
banks. Threads running on the same SM can share data
and synchronize, limited by the available resources (num-
ber of registers and size of the shared memory) on the SM.
Each GPU has small constant and texture caches (typically
around 64KB). All the SMs have access to a very high band-
width Global Memory; such a bandwidth is achieved only
when simultaneous accesses are coalesced into contiguous 16-
word lines. However the latency to access the global memory
is around 400-800 cycles, which is quite high. A summary
of the parameters of the four platforms we use in this paper
is given in Table 1.

The CUDA programming model envisions phases of com-
putations running on a host CPU and a massively data par-
allel GPU acting as a co-processor. The GPU executes data

1The shared memory size of the two Fermi devices is the
default size
2Our TESLA C2050 card is not the typical card, and has
around 2.62GB of device memory.

parallel functions called kernels using thousands of threads.
Each GPU phase is defined by a grid consisting of all the
threads that execute some kernel function. Each grid con-
sists of a number of thread blocks such that all the threads in
a thread block are assigned to the same SM. Several thread
blocks can be executed on the same SM, but this will limit
the number of threads per thread block since they all have
to compete for the resources (registers and shared memory)
available on the SM. Programmers need to optimize the use
of shared memory and registers among the thread blocks
executing on the same SM, if any.

Each SM schedules the execution of its threads into warps,
each of which consists of 32 parallel threads. For the Tesla
architecture (16 banks), a shared memory request for a warp
is issued in two memory requests, one for each half-warp with
a speed of two clock cycles. On the other hand, for the Fermi
architecture (32 banks), a shared memory request for a warp
is issued in one memory request with a speed of two clock
cycles. When all the operands of the warps are available in
the shared memory, the SM issues a single instruction for
the 16 threads in a half-warp. The cores within an SM will
be fully utilized as long as operands in the shared memory
reside in different banks of the shared memory (or access
the same location from a bank). If a warp stalls, the SM
switches to another warp resident in the same SM.

Optimizing performance of multithreaded computations
on CUDA requires careful consideration of global memory
accesses (as few as possible and should be coalesced into mul-
tiple of contiguous 16-word lines); shared memory accesses
(threads in a warp should access different banks); and parti-
tioning of thread blocks among SMs; in addition to carefully
designing highly data parallel implementations for all the
kernels involved in the computation. In particular, threads
in a half-warp which access contiguous words in the global
memory are grouped together into a single coalesced global
memory access thereby achieving the best possible through-
put. Otherwise CUDA uses the minimum number of coa-
lesced global memory accesses to cover the region touched
by the half warp.

3. THREE-DIMENSIONAL FFTS AND RE-
LATED GPU ALGORITHMS

We introduce in this section the basic FFT algorithms
indicating those that will be used in the rest of the paper,
and review the related GPU algorithms that have recently
appeared in the literature.

3.1 FFT Algorithms
The one-dimensional discrete Fourier transform of n com-

plex numbers represented by an array X is the complex vec-
tor represented by the array Y defined by:

Y [k] =

n−1∑
j=0

X[j]ωjk
n (1)

where 0≤k<n, and ωn = e
−2π
√
−1

n the nth root of unity.
Various Fast Fourier Transform (FFT) algorithms have been
proposed since the early 1960’s, each of which has compu-
tational complexity of O(n logn). The most famous FFT
algorithm is the Cooley-Tukey algorithm that uses a divide-
and-conquer strategy to decompose a large size DFT into
smaller size DFT’s and compute these DFT’s recursively.
More specifically, let n = n1n2 and let j = j1n2 + j2 and

2

Table 1: Basic Parameters of our Four Platforms

of SMs# of SPs per SM# of Registers Shared Mem.Global Mem.Peak Mem. BWClock Freq.
Tesla C1060 30 8 16K 16KB 4GB 102GB/s 1296MHz
GTX280 30 8 16K 16KB 1GB 141.7GB/s 1296MHz

Tesla C20501 14 32 32K 48KB2 3GB 144GB/s 1147MHz
GTX480 15 32 32K 48KB2 1.5GB 177.4GB/s 1401MHz

k = k1 + k2n1 for 0 ≤ j, k < n with 0 ≤ j1, k1 < n1, and
0≤j2, k2<n2. Then Eq (1) can be re-written as:

Y [k1+k2n1]=

n2−1∑
j2=0

[(
n1−1∑
j1=0

X[j1n2+j2]ωj1k1
n1

)
ωj2k1
n

]
ωj2k2
n2

(2)

Eq (2) expresses the DFT computation as a sequence of
three steps. The first step consists of n2 DFT’s each of
size n1, called radix-n1 DFT, and the second step consists
of a set of twiddle factor multiplications (multiplications by
ωj2k1
n). Finally, the third step consists of n1 DFTs each of

size n2, called radix-n2 DFT.
The Cooley-Tukey algorithm can be implemented in a

number of ways depending on the recursive structure and
the input/output order. Two important variations based
on the recursive structure are the so-called the decimation
in time (DIT) and the decimation in frequency (DIF) al-
gorithms. The DIT algorithm uses n2 as the initial radix,
and recursively decomposes the DFTs of size n1; while the
DIF algorithm uses n1 as the initial radix, and recursively
decomposes the DFTs of size n2. In this paper, we will focus
on the DIF algorithm.

We note the two variations regarding the input and output
orderings, namely in-order and bit-reversed order. Assum-
ing that all the steps are carried out in-place, an examina-
tion of Eq(2) indicates that, after the first step, the output
array becomes XA[k1n2 + j2], and after the twiddle factor
multiplication step, the output array is XB[k1n2 +j2], while
after the 3rd step, the output array becomes of the form
XC[k1n2 + k2]. A quick comparison against the DFT out-
put array Y [k1 +k2n1] implies that if both the radix-n1 and
radix-n2 DFTs are in order, we would need a transposition of
the intermediate output array after the 2nd step so that the
output is in order. However, if both the radix-n1 and radix-
n2 DFTs are computed in bit-reversed order (namely, direct
butterfly execution), and no transposition is done after the
2nd step, we would generate a size n DFT with bit-reversed
order output. In this paper, we will use the in-order input,
bit-reversed order output since the corresponding in-place
computation will allow us to better exploit the character-
istics of the global memory. However, our algorithm can
be converted to the in-order input, in-order output version
accordingly.

A multi-dimensional DFT can be defined recursively as
a set of DFTs along each of the dimensions of a multi-
dimensional array. In particular, the 3D DFT of a 3D array
of size I×J×K is defined as follows:

Y [i, j, k] =

K−1∑
n=0

J−1∑
m=0

I−1∑
l=0

X[l,m, n]ωil
I ω

jm
J ωkn

K (3)

For each element in the DFT array, it is a summation of
all the input elements multiplied by a specific coefficient de-
termined by the input and output indices. Clearly, the order
of the dimensions can be arbitrary, and the computational
can be carried out in any order of the dimensions. Applying

the Cooley-Tukey algorithm along each dimension, we can
compute the 3D FFT on N elements in O(N logN) com-
plexity.

3.2 GPU Related Algorithms
During the past few years, a number of efficient multi-

dimensional FFT implementations on GPUs have been re-
ported (for example, [9, 18, 6, 13, 12]). Here we summarize
the results that are most relevant to our work.

Since 2006 NVIDIA has provided a CUFFT library[17],
supporting 1D, 2D and 3D FFTs, and whose performance
has shown continuous improvements over successive versions.
In particular, a significant improvement appears in the later
versions tailored for the Fermi architecture (devices with
compute capability 2.x). However, the new library does
not seem to achieve similar performance improvements for
the Tesla architecture (devices with compute capability 1.x);
moreover, the improvements on the Fermi architecture seem
to depend significantly on the particular size of the trans-
form.

The work of Govindaraju et al. [5] [6] has mainly targeted
the one-dimensional case, showing a factor of 2-4 perfor-
mance improvement relative to CUFFT version 1.1. Their
library utilizes different algorithms for different transform
sizes: 1) a global memory algorithm for larger FFTs with
higher radixes; 2) a shared memory algorithm for smaller
FFTs; 3) a hierarchical algorithm that makes use of both
the shared memory and the global memory for larger FFTs
with small radixes; and 4) mixed-radix FFTs for sizes with
smaller prime factors and Bluestein’s algorithm implemen-
tation for larger prime factors.

The work of Nukada et al. [13, 12, 11] has focused on the
computation of the 3D FFT. Their algorithm distinguishes
the X dimension transform from the Y and the Z dimension
transform: the X dimension transform is performed using
shared memory within a single kernel; the Y and the Z di-
mension transforms are computed using the multirow FFT
algorithm [20], [10], [4], [8]. Their latest paper published in
2009 [12] introduces their auto-tuning library, showing per-
formance that is 2.6-8.0 times higher than CUFFT library
2.1 for a number of transform sizes. Recently, they published
a library called Nukada FFT library online [11] without ex-
plaining whether any new techniques beyond their earlier
work were used. The performance of this library shows some
improvements for the Tesla architecture but only modest
performance is achieved on the Fermi architecture.

Finally, Gu et al. [7] proposed an empirically tuned 2D
and 3D FFT library for power-of-two sizes using the in-order
Cooley-Tukey FFT algorithm, achieving performance that is
superior to the previously published results on a number of
transform sizes. Their method is based on an extension of an
IO tensor representation for multi-dimensional FFT and the
use of codelets, both of which were originally developed for
the well-known FFTW algorithm[3]. The authors point out
possibilities for grouping or interleaving of different dimen-
sions or computation steps to improve global memory per-

3

formance as well as overall performance. Their framework
starts by generating a large number of possible FFT imple-
mentation strategies, followed by empirically going through
these strategies until an optimized one is found. No details
were given about the search strategy or the corresponding
overhead.

4. OUR OVERALL STRATEGY AND CORE
TECHNIQUES

Our work is based on the DIF version of the original
Cooley-Tukey algorithm with in-order input and bit-reversed
order output. A key feature of this algorithm is the “in-
place” computation for all stages of the computation, which
we will exploit to use memory access patterns that achieve
good memory bandwidth. Our scheme targets large size 3D
FFT such that no dimension is smaller than 128 as long as
the input data can fit in the device memory. Every data
element is assumed to be a complex number such that each
of the real and imaginary parts is a single-precision float-
ing point number, and hence each complex number is rep-
resented by 8 consecutive bytes. Our implementations are
tuned to both the Tesla and Fermi architectures, which turn
out to require slightly different implementations but with the
same overall approach.

4.1 Representation of the 3D FFT Decompo-
sition

As noted before, the Cooley-Tukey algorithm to compute
the DFT of n = n1×n2 elements consists of three steps, the
first of which involves n2 radix-n1 DFTs, followed by twiddle
factor multiplications, and ending with n1 radix-n2 DFTs.
Since we are dealing with 3D data, we need to specify the de-
composition for computing the DFT along each dimension,
as well as the data sets used for each radix computation.
We will represent such a decomposition by making use of
the tensor representation originally introduced in FFTW.

We first note that the data elements of a 3-D array will
be stored in the device memory along the X dimension first,
then the Y dimension followed by the Z dimension. Consider
for example an array of size 256 × 256 × 256. The entries
of each vector along the X dimension will appear as a con-
tiguous block of 256 complex numbers, while the entries of
a vector along the Y dimension will have a stride of 256
between any consecutive entries of the vector. Along the Z
dimension, consecutive entries will be 256×256 entries apart
on the device memory. The FFT computation along each di-
mension will be specified by a number of FFTs each with a
possibly different radix and each operating on the data along
the dimension using a stride relative to that dimension. The
actual global memory stride can easily be computed from
such a specification. More specifically, a decomposition say
n = n1 × n2 (that is, radix-n1 followed by radix-n2) along
the X dimension will be represented as follows:

• X(n2, n1, n2, n, tw)
• X(n1, n2, 1, n2, no−tw)

The above representation should be interpreted as follows.
We start by performing n2 FFTs each of radix n1 on data
along the X dimension with stride n2, and hence these FFTs
encompass n entries, followed by twiddle factor multiplica-
tions (which in our case are computed on the fly using fast
intrinsic sine/cosine functions provided by CUDA). Then n1

FFTs, each of radix n2 is computed on the data along the

X dimension with a stride of 1, and hence each FFT en-
compasses n2 contiguous elements. We can extend the same
representation to a decomposition with more factors such
as n = n1×n2×n3. Assuming that n is the size of the X
dimension, this decomposition can be represented as:

• X(n2n3, n1, n2n3, n, tw)
• X(n1n3, n2, n3, n2n3, tw)
• X(n1n2, n3, 1, n3, no−tw)

The use of dimension name (X in the above equation) is
necessary since we will be interleaving the radix computa-
tions between the different dimensions. Let’s consider for a
simple example the case of 256×256×256 where the decom-
position along the X dimension is given by 256 = 16×4×4,
while the decompositions along the Y and Z dimensions are
identical 256 = 16× 16. One (extremely inefficient) way to
compute the corresponding 3D FFT can be represented as
follows:

• X(16, 16, 16, 256, tw)X(64, 4, 4, 16, tw)
X(64, 4, 1, 4, no−tw)
• Y (16, 16, 16, 256, tw)Y (16, 16, 1, 16, no−tw)
• Z(16, 16, 16, 256, tw)Y (16, 16, 1, 16, no−tw)

4.2 CUDA Architecture Constraints
In this section we outline our main strategies to map the

FFT computation on the Tesla and Fermi architectures so as
to optimize the use of the available resources (both computa-
tion and memory resources) while managing the constraints
imposed by these architectures.

4.2.1 Managing the CUDA Memory Hierarchy
The CUDA memory hierarchy consists of a global mem-

ory accessible by all the streaming processors, coupled with
a shared memory and a set of registers on each of the SMs.
Given that the FFT computation involves operations along
each of the dimensions over a large 3D dataset stored in
global memory, we have to pay a particular attention to the
memory hierarchy while trying to execute a highly multi-
threaded computation.

Given the typical size of our FFT computations, all the
input, intermediate, and output data have to be held in the
global memory, which has the largest access latency (400-
800 cycles) in the memory hierarchy. Global memory ac-
cesses are carried out as 32-byte, 64-byte, or 128-byte device
memory transactions. To achieve high bandwidth, global
memory accesses must be coalesced - that is, global memory
loads and stores by a half thread warp must be contigu-
ous so as to result in a very few (one if possible) memory
transactions. Since each complex number in our computa-
tion is represented by 8 bytes, aligned consecutive memory
access of threads of a half-warp satisfies the largest 128-byte
memory transaction size. In fact, global memory accesses
issued by the threads in a warp will be executed as two
128-byte device memory transactions on either architecture
thereby achieving a very good memory bandwidth. Unlike
previously published GPU FFT algorithms, we always en-
sure coalesced 128-byte global/device memory transactions
in addition to exploiting spatial and temporal locality to op-
timize effective device memory bandwidth. In particular, we
exploit low-level device memory system hardware features
to approach the theoretical device memory bandwidth. De-
vice memory partition [19] and memory locality [22] are two
important issues for a very good bandwidth. For example,

4

the device memory of GTX280 has 8 partitions and hence
active warps should avoid issuing transactions that touch
only a subset of them (so-called partition camping). Row
access locality of device memory [22] is also preferred for
high memory bandwidth, which can be interrupted by both
algorithm restrictions and memory access streams issued by
active warps. Note that the performance bottleneck of a
relatively optimized radix FFT kernel is still the effective
global/device memory throughput and hence we focus on
memory optimization.

Compared to the global memory, the shared memory is
much faster. The size of the shared memory per SM is 16KB
for compute capability 1.3 (GTX280 and Tesla C1060) and
48KB (the default size) for compute capability 2.0 (GTX480
and Tesla C2050). Note that the shared memory size of the
Fermi architecture can be configured between 16 KB and 48
KB. Each shared memory is divided into equal-sized memory
modules (banks) so as to enable concurrent access. For the
Tesla architecture, the bank count is 16 (half-warp) and for
the Fermi architecture, the bank count is 32 (warp). The
shared memory access is most efficient when bank conflicts
are avoided, and hence we developed a general bank conflict
free data transposition strategy. We observe that the L1
cache available on the Fermi architecture does not seem to
significantly speed-up our FFT implementations while the
L2 cache plays an important role.

Registers represent the fastest level of the memory hier-
archy and are allocated to live threads; the peak arithmetic
throughput can only be achieved by using registers rather
than the shared memory[21]. The total number of 32-bit
registers available is 16KB for compute capability 1.3 and
32 K for compute capability 2.0. We note that a thread is
allocated at most 128 registers for compute capability 1.3
and 64 registers for compute capability 2.0 even though the
compute capability 2.0 SM has more registers overall. The
number of registers available and the maximum number of
registers that can be allocated to a thread will have a di-
rect impact on the radix decomposition adopted for each
size. In particular, the maximum number of registers that
can be allocated to a single thread on the Tesla architecture
allows us to compute a radix-32 FFT using only the regis-
ters, which cannot be done on the Fermi architecture. For
the latter architecture, we have to use more than a single
thread to compute a radix-32 FFT. In our implementation,
an FFT of any radix along X, Y or Z dimension is computed
directly on the registers, with the FFT computations along
the X dimension almost completely overlapped with global
memory data transfers needed to compute the FFTs along
the Y or the Z dimension. This constitutes a major feature
of our algorithms which distinguishes it from other published
algorithms.

4.2.2 Managing CUDA Threads
Note that CUDA programs rely on thread parallelism to

hide memory and arithmetic latencies. However, relying
only on increasing thread parallelism to optimize perfor-
mance is not necessarily a good strategy because of the limits
on several hardware resources such as number of registers
and size of shared memory. Based on our experience, 64
threads per block on the Tesla architecture and 128 threads
per block on the Fermi architecture seem to achieve the best
balanced performance. In addition, we try to overlap global
data movement and small radix computations along the X

dimension to alleviate the latency dependency with the rel-
atively small thread block parallelism. Our strategy is to
make each thread compute a relatively small size FFT di-
rectly and use more threads to compute a single radix FFT
if necessary. We will explain this process further later.

4.3 Overall Strategy
In our implementation, each kernel loads and stores the

entire 3D data once from and into the global memory during
which FFTs of certain radix sizes are carried out along possi-
bly two dimensions concurrently. In general, we attempt to
overlap a small radix FFT computation along the X dimen-
sion with data movement from the global memory needed
for FFT computations along other dimensions. The mathe-
matical properties of the Cooley-Tukey algorithm provide a
rich set of possibilities for decomposing and re-ordering the
overall computation so as to exploit the main characteristics
of either the Tesla or Fermi architecture.

We start by stating an immediate implication of the math-
ematical formulation of the Cooley-Tukey FFT algorithm
related to the ordering of the FFT subcomputations.

• Given a decomposition of the FFT along each dimen-
sion into a series of small-radix FFTs, each of which to
be called an FFT sub-computation, we can arbitrarily
inter-mix the FFT sub-computations of different di-
mensions as long as the relative ordering of the FFT
sub-computations along each dimension is preserved.

This property was also observed by Gu et al. [7] .
We are now in a position to provide the main features of

our strategy.

• The FFTs along the Y and the Z dimension are com-
puted through separate kernels (typically two kernels
for each dimension) while the FFT sub-computations
along the X dimension are inserted into the kernels
corresponding to the Y and Z dimensions. Occasion-
ally, the FFT sub-computations along the Y and the
Z dimension may be combined in the same kernel for
improved performance on the Tesla architecture.

• The kernels to execute the FFT sub-computations along
the Y and Z dimensions achieve high-bandwidth global
memory accesses through the coalesced access of chunks
of contiguous 128-bytes (16 elements) along the X di-
mension and through tuning the memory transactions
issue sequence for device memory locality optimiza-
tion. The corresponding radix FFTs are computed
directly on registers.

• The FFT sub-computations along the X dimension are
computed during the execution of the kernels for the
Y and Z dimension FFT computations through the
use of the shared memory to transpose data across the
registers while avoiding bank conflicts.

• Within each kernel, the data loading (from global mem-
ory or shared memory rearrangement) and the FFT
sub-computations are organized in such a way that the
dependency between the data supply and the compu-
tations is optimized to match the execution pipeline.

The implementation of this strategy consists of three main
steps. The first amounts to decomposing appropriately each
of the Y and Z dimension size into a product of radixes (typ-
ically two) each of which is handled by a kernel. The second

5

step involves a decomposition of the X dimension, taking
into consideration the decompositions along the Y and Z
dimensions. At this step, we need to figure how to insert
each of the corresponding FFT sub-computations along X
into one of the Y or Z kernels so as to achieve high mem-
ory bandwidth and overlapped computation and data move-
ment. Finally, we have to determine the workload of each
thread and allocate the appropriate number of threads to
each FFT radix computation. We will next describe the
strategy to carry out each of these steps using the case of
256×256×256 on the Tesla architecture.

4.3.1 Y and Z Dimension Decomposition
Two main factors seem to play a dominant role in de-

termining the best decomposition for each of the Y and Z
dimensions. Given that each Y or Z FFT sub-computation
will access memory in a coalesced manner along the X di-
mension, the available resources have to be able to support
a batch of 16× 2k Y and Z FFT sub-computations in the X
dimension in parallel, for some non-negative integer k. The
second factor is to try to achieve a load balance between dif-
ferent kernels while ensuring overall effective global memory
access by the kernels.

The first factor puts an upper bound on the size of the
radix that can be used on a given architecture, and the sec-
ond implies almost balanced decomposition for each of the Y
and Z dimensions whenever such a decomposition is needed.

Consider our running example of an input of size 256×256×
256. Since we won’t be able to accommodate 16 FFT(256)
on a single SM of Tesla (which is usually the case for large
size Y/Z dimension transform), each of the Y and Z dimen-
sions has to be decomposed into a product of radixes. A
balanced decomposition suggests that we use 256 = 16×16
for each of the Y and Z dimensions, implying the following
four FFT sub-computations along the Y and Z dimensions:

• {Y (16, 16, 16, 256, tw)}
• {Y (16, 16, 1, 16, no−tw)}
• {Z(16, 16, 16, 256, tw)}
• {Z(16, 16, 1, 16, no−tw)}

Braces are used to indicate the boundaries of each kernel.
We will next describe how to insert the FFT sub-computations
along X into these kernels in such a way that their execu-
tions will be almost completely overlapped with the coa-
lesced memory accesses for the above kernels.

4.3.2 X Dimension Decomposition
As we move data from the global memory in a coalesced

fashion to carry out the FFT sub-computations along Y
and Z, we organize each of the X dimension transforms into
smaller-radix FFTs that can be incorporated into the ker-
nels executing the Y and Z FFT sub-computations. There-
fore the data movement should be organized so that each
of the FFT sub-computations along X can be carried out
by the same thread block executing the kernels. However,
our Cooley-Tukey algorithm (DIF version) requires larger
strides in early stages and smaller strides in later stages
while the coalesced global memory access requires consecu-
tive accesses to contiguous 128×2k bytes of data. We resolve
this tension between these requirements by using a number
of small contiguous chunks with some stride in the X di-
mension for the earlier stages while using a large contiguous
chunk for the later stages. Loading the data through the use

Figure 1: X Dimension Element Partition

of multiple small chunks (each chunk is of size 128 bytes) will
incur a certain performance degradation, which depends on
the size of the strides. In general, the FFT along X dimen-
sion is decomposed into three or four small-radix FFTs such
as radix-2, radix-4, or radix-8 FFTs.

Consider again our running example of 256×256×256 data
size whose FFT has to be computed on a Tesla GPU. We
decompose the X dimension as 256 = 4 × 8 × 8 and hence
each such FFT can be computed as the sequence:

• X(64, 4, 64, 256, tw)
• X(32, 8, 8, 64, tw)
• X(32, 8, 1, 8, no−tw)

Suppose we want to insert the first FFT sub-computation
into a Y kernel, which implies 64 sets of radix-4, stride 64
computation with associated twiddle factors for each row of
256 elements. For the Tesla architecture, we use a 64-thread
block to load 64 elements for the X dimension in one row
and exchange elements using block synchronization. To ac-
commodate the computation and performance requirement,
256 elements in a row are partitioned into 4×4 sub-groups
each of size 16 denoted from (0, 0), (0, 1) up to (3, 3) accord-
ingly. This partition imposes a stride-64 (Figure 1) between
elements of the same sub-group index from (0, x), (1, x), (2,
x) and (3, x). Then 4 blocks of 64 threads consisting of 16
half-warps will be responsible for the 16 sub-groups and 4
half-warps from the same thread block will access the corre-
sponding sub-group (0, x), (1, x), (2, x) and (3, x), (x can
be 0, 1, 2, 3 for 4 blocks). Note sub-group data chunks are
each of size 128-byte, namely the maximum coalesced de-
vice memory transaction size. Finally our overall algorithm
for computing FFT(256×256×256) can be summarized by
the following representation in which each kernel is enclosed
between braces.)

• {Y (16, 16, 16, 256, tw)}
• {X(64, 4, 64, 256, tw), Y (16, 16, 1, 16, no−tw)}
• {X(32, 8, 8, 64, tw), Z(16, 16, 16, 156, tw)}
• {X(32, 8, 1, 8, no−tw), Z(16, 16, 1, 16, no−tw)}

We will later provide the details about how the various
small-radix FFTs are allocated to the thread blocks. Since
each of the last three kernels contains FFT sub-computations
along two distinct dimensions, the intermediate data needs
to be appropriately transposed through the shared mem-
ory so that the corresponding FFT sub-computations can
be carried out effectively. This is explained next.

4.3.3 Bank Conflict Free Shared Memory Transposi-
tion

The FFT sub-computations along the Y and Z dimensions
are always carried out directly on registers. To compute
a small-radix FFT along the X dimension, we have to use
the shared memory to transpose the data and move it back
into registers before completing the sub-computations, af-
ter which we have to transpose back the elements into the
registers as in the original layout for further processing.

To make efficient use of the shared memory, bank conflicts
have to be avoided, although occasionally, trading bank con-
flicts for smaller shared memory usage can actually result in

6

better performance. This will occur in some kernels on the
Fermi architecture.

Additional requirements on the shared memory transpo-
sition include balanced workload and avoiding warp diver-
gence among the threads in a thread block.

The word size of each bank is 32-bit, the same size of
a register and half the size of a complex number. To avoid
bank conflicts, we separate the transposition of the real parts
and the imaginary parts and add padding as necessary. We
only consider the real parts for now; the imaginary parts are
handled in a similar way. The transpose operation is carried
out more or less the same way on both the Tesla and the
Fermi architectures. At the beginning, the elements held
in the registers are transferred into the shared memory and
then loaded back in a transposed fashion into the registers.
After the X dimension radix computation, a reverse trans-
pose is conducted through the shared memory to restore the
original layout of the data.

(a)

(b)

(c)

Figure 2: Shared Memory Transposition: (a) Register Ar-
rays of 64 threads; (b) Store Elements from Registers to the
Shared Memory Array; (c) Load Elements from the Shared
Memory to Registers.

Continuing with our 256×256×256 example and focus-
ing on the second kernel above, we use 64 threads to load a
64×16 sub-array along the X×Y dimensions such that each
half-warp loads four 128-byte chunks along the X dimension
each time, for a total of 16 times load, ending up with each

thread holds 16 Y dimensional elements with stride 16 in
the end. Note that to ensure full utilization of the threads
and maintain balanced workloads, each thread will have to
compute 4 sets of radix-4 FFT along the X dimension and
one set of radix-16 FFT along the Y dimension in four ex-
ecution loops; namely, each time 4 rows of 64 elements are
transposed. The data layout in the registers is illustrated
in (Figure 2a) where the column corresponding to thread i
represents the data held in the registers allocated to that
thread. Our goal is to“transpose” this initial data layout
so that it is stored into the shared memory as illustrated
in (Figure 2b) and is loaded from the shared memory as
illustrated in (Figure 2c).

Bank conflicts occur when multiple threads try to access
different words from the same bank. The Tesla architec-
ture has 16 banks and in this transposition scenario, bank
conflicts do not occur. In other cases, we may have to use
padding. Consider for example the case when we have to
perform X(8, 8, 8, 64, tw), namely, the workload of one block
from the 4 blocks computing one row of X(32, 8, 8, 64, tw).
In this case, we need an 8×64 shared memory to trans-
pose so that each thread will have its 8 elements required by
the radix-8 FFT along the X dimension. This time, upon
loading, every 8 consecutive threads will load 8 times of 8
consecutive elements from each 64-element row. Since 64 is
a multiple of the number of banks (16), the number of banks
used in the first row will need to be shifted in the second
row to avoid threads in two consecutive rows trying to ac-
cess the same bank. Namely, we need to pad 8 elements per
64-element row in this step and hence the resulting shared
memory is of size 8×(64 + 8).

In general, the key idea is to stagger the banks from row
to row so that bank conflicts are avoided. By using this
strategy, it is clear that we will always be able to avoid
bank conflicts.

4.4 Execution Plans
Once we have decided on the sequence of kernels to be ex-

ecuted, we have to allocate the operations to threads, which
have to be organized into thread blocks and grid blocks.

It turns out that we use more or less fixed-size thread
blocks for each of the Tesla and Fermi architectures. More
specifically, we typically use 64 threads per block on the
Tesla and 128 threads per block on the Fermi. We assign
operations to thread blocks in such a way as to optimize
the device memory throughput with respect to the parti-
tion camping problem and the row locality issue. We use
a 2D representation {xsize, ysize} for each block. The xsize

is used to represent the number of threads along the X di-
mension, for each fixed value of X. The ysize is used to
represent the number of threads used to compute the radix-
FFT sub-computations along either the Y or the Z dimen-
sion. Therefore the total number of threads in a block is
xsize× ysize. Clearly the xsize threads are allocated to han-
dle the X-dimension FFT sub-computations as well as trans-
position.

The organization of the grid of thread blocks is managed
as a 2D array [x, y]. The x dimension of the array corre-
sponds to the number of blocks used to cover the X dimen-
sion of the input data. For example, if the X dimension FFT
size is 256 and the number of the threads in a block is 64,
then we should have 4 blocks for the X dimension. The y
dimension of the grid corresponds to the number of blocks

7

in Y and Z dimension. For our running example, the first
kernel of the Y dimension needs 16 of 256/16 blocks to cover
the data plane corresponding to a single Z coordinate value.
To cover the entire data set, we need 16 × 256 blocks. We
may change to a more balanced execution declaration (i.e.
4 × 16 as the x vector and 256 as the y vector) to avoid
the CUDA grid size declaration limit. The thread blocks
are executed in the order of their block IDs, so the block ID
assignment should be tuned to optimize the device memory
throughput, mainly for locality. For the Y dimension sub-
steps, assigning block ID according to memory layout {x, y,
z} is in general quite good.

We end this section by stating a couple of optimization
techniques that may need to be applied to achieve optimized
device memory throughput.

• In-place or out-of-place execution. Our algorithm is an
in-place algorithm (reading and writing with the same
stride), which helps to manipulate the memory access
pattern. However occasionally, we may want to ex-
ploit out-of-place execution order (options) for global
memory accesses locality possibility. Out-of-place ex-
ecution for Y and Z dimension involves transposition
in Y/Z dimension between sub-steps of the same di-
mension transform (which is merely a different stride
access of device memory among rows (X dimension)
of 256 elements). Such transposition can be done to-
gether during the storing into and the loading from the
global memory step and results in global memory ac-
cess with a balanced stride among kernels for the same
dimension FFT computation. Whether it is actually
adopted needs to be tuned with specific data sizes.
Take size 256 FFT in the Y dimension for example. It
is decomposed into 16x16. An in-order execution will
consist of (i)16 sets of radix-16 with input and out-
put stride 16 with twiddle, (ii) 16 sets of radix-16 with
input and output stride 1. However, an out-of-order
execution will consist of two 16 sets of radix-16 with
input stride 16 and output stride 1, in addition to the
twiddle multiplications. Note that we only tune this
execution order for Y and Z dimension for the over-
all global memory latency while the properties of the
memory access in the X dimension are all preserved.
• Intermediate memory for smaller memory stride in Z

dimension transform. Based on the algorithm, the
strides of the Z dimension are much larger than the
Y dimension; if Z dimension transform is computed
in more than one kernel, strictly implemented from
the algorithm will yield relatively large global memory
latency. This optimization attempts to make use of
device memory transaction locality. We believe such
an approach will provide more opportunities to achieve
better device memory bandwidth throughput.
• Ordering of Y and Z dimensions. We always compute

the Y dimension transform before the Z dimension. In-
serting the X dimension sub-steps will involve stride-
coalesced global memory access. Inserting such an X
dimension access stride into the Y dimension kernels
is much smaller than that the corresponding Z dimen-
sion kernels. Also, sub-steps of the same dimension
matter when the sizes are not the same. For exam-
ple, if we decompose Y dimension FFT size 128 into
16x8, which radix to compute first matters because
this results in different memory strides. This probably

arises from different pipeline granularities of continu-
ous device memory transaction issues and computation
workload of the same thread.

5. EXPERIMENTAL RESULTS
The performance of our 3D FFT scheme is evaluated on

four NVIDIA GPU cards: two Tesla architecture cards with
compute capability 1.3 (GTX280 and Tesla C1060), and
two Fermi architecture cards with compute capability 2.0
(GTX480 and Tesla C2050). Hence for each architecture
we have two cards with similar execution units but dif-
ferent memory bandwidths. Specifically, the GTX280 and
the Tesla C1060 have the same number of identical stream-
ing multiprocessors with respectively 141GB/s and 102GB/s
peak device memory bandwidths. For the other two varia-
tions of the Fermi architecture, the peak device memory
bandwidths are respectively 144GB/s (Tesla C2050) and
177GB/s (GTX480). Hence, for actual memory-bounded
implementations of 3D FFT, we expect to see a performance
increase when we move from Tesla C1060 to GTX280 or from
Tesla C2050 to GTX480. Details about the various proces-
sors are shown in Table 1.

In our tests, the size of each dimension of the 3D FFT
is a power of two and all of our implementations have been
carefully compared to the output produced by CUFFT for
correctness.

We capture two performance measures: the number of
GFlops and the global memory bandwidth by our imple-
mentations. More precisely, if the execution time of our 3D
FFT on data of size NX×NY×NZ is t seconds, then its GFlops
is measured using the standard formula:

GFlops =
5·NX ·NY ·NZ ·[log2 (NX ·NY ·NZ)]·10−9

t

Regarding the effective global memory bandwidth achieved,
we use the formula:

BW =
8 ·NX ·NY ·NZ ·# of accesses · 10−9

t

where the # of accesses is the total number of global
memory accesses (loading or storing). Each of our tests (our
algorithm and other libraries as available) is run 5 times af-
ter which the arithmetic mean of the total runtime is used
to compute the performance measures introduced above.

5.1 Performance Evaluation on the Tesla Ar-
chitecture

Figure 3 illustrates the performance of our algorithm on
the Tesla C1060 card compared to the best previous algo-
rithms, and Figure 4 illustrates the corresponding perfor-
mance on the GTX280. For each case, we try to increase
the 3D data size up to the maximum possible that can fit
into the global memory of the device. We run the tests using
our algorithm, the CUFFT library, and the Nukada Library
[11]. For Gu’s performance on GTX280, we extracted the
numbers from their paper [7]. The detailed decomposition,
grouping and ordering schemes used for our implementa-
tions are given in the appendix. It is clear that our strategy
achieves significantly better performance than the previous
known schemes.

In our implementations, we used the same programs for
the Tesla architecture, except for the data size 256×128×128.

8

Figure 3: Performance on Tesla C1060

Figure 4: Performance on GTX280

We slightly re-tuned the 256× 128× 128 directly on the
GTX280. As mentioned earlier, we expect better perfor-
mance on the GTX280 since the theoretical bandwidth in-
creases from 102GB/s to 141.7GB/s. The performance
for the original code on data of size 256×128×128 is re-
spectively 144 GFlops and 140 GFlops on the Tesla C1060
and the GTX280. In the initial code, we decompose each
of the Y and Z dimension transforms into 32×4 and 4×32
and combine the radix-4 sub-steps from the two dimensions
into one kernel, inserting the X dimension transforms into
kernels. This results into a relatively significant computa-
tion workload for each kernel, including large radix FFTs
and transpositions. Such workload allocation is favored by
the Tesla C1060 since the overhead of the device memory
latency is much more significant (around 30%) than that of
the GTX280. The code for 128×128×128 is the same because
of its competitive performance on both cards; the computa-
tion overhead is not as significant as that of 256×128×128
since the X dimension size is smaller.

Figure 5 and Table 2 show the actual bandwidth utiliza-
tion of our implementations. As we can see from the fig-
ure, the actual device memory bandwidth of Tesla C1060
is usually lower than that of the GTX280 except for the
computation-bound data size (128×128×128).

5.2 Performance Evaluation on the Fermi Ar-
chitectures

1“NA” indicates cases of memory size usage larger than the
global memory capacity.

Figure 5: Actual Bandwidth on Tesla Devices

Figure 6: Performance on Tesla C2050

Figures 6 and 7 illustrate the performance of our algo-
rithms on the Tesla C2050 and the GTX480, compared to
the best known 3D FFT algorithms on these platforms.
Figure 8 illustrates the actual global memory bandwidth
achieved on the two Fermi devices. The numbers reported
were obtained by running our algorithms, the CUFFT li-
brary, and the Nukada library [11], on the same size 3D
datasets.

Similarly, we use the same code, initially tuned on Tesla
C2050, and evaluate the performance on both cards. Hence
we are able to achieve around 200 GFlops on the C2050 and
above 260 GFlops on the GTX480. We note the possibility of
using caching on Fermi by setting the compilation flag on L1
and L2 cache. According to [14] all accesses to GPU DRAM
go through L2, including CPU-GPU memory copies. For
Fermi devices, global memory accesses are cached: the com-
pilation flag -dlcm is used to determine if it can be cached
in both L1 and L2 (the default setting) (dlcm=ca) or in L2
only (dlcm=cg). We evaluate the performance difference of
caching effects on the two cards and is shown in Table 3 and
Table 4. The evaluation indicates the L1 cache does not help
much.

Table 5 shows the actual bandwidth utilization of our im-
plementations with both L1 and L2 cache and just with
L2 cache. As expected, the actual device memory band-
width achieved on the Tesla C2050 is lower than that of the
GTX480.

9

Table 2: Bandwidth achieved on the Tesla architecture cards

Data size BW on Tesla
C1060 (GB/s)

BW on GTX280
(GB/s)

128x128x128 63.27 65.85
256x128x128 62.86 89.70
256x256x256 71.64 91.76
512x256x256 72.02 87.92
1024x256x256 71.39 NA1

512x512x512 65.37 NA1

Figure 7: Performance on GTX480

6. CONCLUSIONS
We presented in this paper a new approach to map mul-

tidimensional FFTs onto GPUs which seems to lead to ex-
tremely fast implementations for a wide number of data sizes
across the Tesla and Fermi architectures. Our approach is
carefully tailored to exploit the highly multithreaded envi-
ronment in such a way as to almost completely overlap the
FFT computations along the X dimension with the data
transfers needed for the FFT computations along the other
two dimensions. Moreover we minimize the number of global
memory accesses while ensuring that each global memory
access is a coalesced 128-byte memory transaction and op-
timizing the effects of related to partition camping, locality,
and associativity. Our approach can easily be applied to 2D
and 4D FFT computations to generate fast implementations
on GPUs.

7. ACKNOWLEDGMENTS
This work was partially supported by an NSF PetaApps

award, grant OCI0904920, the NVIDIA Research Excellence
Center at the University of Maryland, and by an NSF Re-
search Infrastructure Award, grant number CNS 0403313.
We also thank the anonymous reviewers for their comments,
noting that one of them pointed out reference [2] to us, which
reports on mapping FFT algorithms on GPUs done concur-
rently with ours.

8. REFERENCES
[1] J. Cooley and J. Tukey. An algorithm for the machine

calculation of complex fourier series. Mathematics of
Computation, 19(90):297–301, 1965.

[2] Y. Dotsenko, S. Baghsorkhi, B. Lloyd, and
N. Govindaraju. Auto-tuning of fast fourier transform

Figure 8: Actual Bandwidth on Fermi Devices

Table 3: Cache Effects of Perf. on Tesla C2050 (GFlops)

Data size Tesla C2050 with
L1+L2 Cache

Tesla C2050 with
L2 Cache only

128x512x512 195.70 195.42
256x512x512 192.69 200.97
128x512x1024 202.97 203.04
512x512x512 191.70 195.04
256x512x1024 193.07 191.04
128x1024x1024 200.37 201.60

on graphics processors. In Proceedings of the 16th
ACM symposium on Principles and practice of parallel
programming, PPoPP ’11, pages 257–266, New York,
NY, USA, 2011. ACM.

[3] M. Frigo, Steven, and G. Johnson. The design and
implementation of fftw3. In Proceedings of the IEEE,
pages 216–231, 2005.

[4] S. Goedecker. Rotating a three-dimensional array in an
optimal position for vector processing: case study for
a three-dimensional fast fourier transform. Computer
Physics Communications, 76:294–300, Aug. 1993.

[5] N. K. Govindaraju, S. Larsen, J. Gray, and
D. Manocha. A memory model for scientific
algorithms on graphics processors. In Proceedings of
the 2006 ACM/IEEE conference on Supercomputing,
SC ’06, New York, NY, USA, 2006. ACM.

[6] N. K. Govindaraju, B. Lloyd, Y. Dotsenko, B. Smith,
and J. Manferdelli. High performance discrete fourier
transforms on graphics processors. In Proceedings of
the 2008 ACM/IEEE conference on Supercomputing,
SC ’08, pages 2:1–2:12, Piscataway, NJ, USA, 2008.
IEEE Press.

[7] L. Gu, X. Li, and J. Siegel. An empirically tuned 2d
and 3d fft library on cuda gpu. In Proceedings of the
24th ACM International Conference on
Supercomputing, ICS ’10, pages 305–314, New York,
NY, USA, 2010. ACM.

[8] D. G. Korn and J. J. Lambiotte. Computing the Fast
Fourier Transform on a Vector Computer.
Mathematics of Computation, 33:977–992, 1979.

[9] K. Moreland and E. Angel. The fft on a gpu. In
Proceedings of the ACM
SIGGRAPH/EUROGRAPHICS conference on

10

Table 4: Cache Effects of Perf. on GTX480 (GFlops)

Data size GTX480 with
L1+L2 Cache

GTX480 with L2
Cache only

128x512x512 275.58 284.88
256x512x512 266.42 280.05
128x512x1024 290.83 289.53

Table 5: Actual Bandwidth of Fermi Devices (GB/s)

Data size C2050
L1+L2

C2050
L2

GTX480
L1+L2

GTX480
L2

128x512x512 100.20 100.06 141.10 145.86
256x512x512 94.86 98.94 131.14 137.87
128x512x1024 99.92 99.96 143.18 142.53
512x512x512 91.01 92.47 NA NA
256x512x1024 91.53 90.57 NA NA
128x1024x1024 94.99 95.58 NA NA

Graphics hardware, HWWS ’03, pages 112–119,
Aire-la-Ville, Switzerland, Switzerland, 2003.
Eurographics Association.

[10] P. N. and Swarztrauber. Fft algorithms for vector
computers. Parallel Computing, 1(1):45 – 63, 1984.

[11] Nukada. Nukada FFT Library website.
http://matsu-www.is.titech.ac.jp/ nukada/nufft/,
2011.

[12] A. Nukada and S. Matsuoka. Auto-tuning 3-d fft
library for cuda gpus. In Proceedings of the Conference
on High Performance Computing Networking, Storage
and Analysis, SC ’09, pages 30:1–30:10, New York,
NY, USA, 2009. ACM.

[13] A. Nukada, Y. Ogata, T. Endo, and S. Matsuoka.
Bandwidth intensive 3-d fft kernel for gpus using
cuda. In Proceedings of the 2008 ACM/IEEE
conference on Supercomputing, SC ’08, pages 5:1–5:11,
Piscataway, NJ, USA, 2008. IEEE Press.

[14] NVIDIA Corporation. CUDA and Fermi Update,
2010.

[15] NVIDIA Corporation. NVIDIA CUDA C
programming best practices guide, 2011.

[16] NVIDIA Corporation. NVIDIA CUDA C
programming guide, 2011.

[17] NVIDIA Corporation. NVIDIA CUDA cufft library,
2011.

[18] Y. Ogata, T. Endo, N. Maruyama, and S. Matsuoka.
An efficient, model-based cpu-gpu heterogeneous fft
library. In Parallel and Distributed Processing, 2008.
IPDPS 2008. IEEE International Symposium on,
pages 1 –10, april 2008.

[19] Ruetsh, Greg and Micikevicius, Paulius. Optimizing
Matrix Transpose in CUDA, 2011.

[20] C. Van Loan. Computational frameworks for the fast
Fourier transform. Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA, 1992.

[21] V. Volkov. Better Performance at Lower Occupancy,
2010.

[22] G. L. Yuan, A. Bakhoda, and T. M. Aamodt.
Complexity effective memory access scheduling for

many-core accelerator architectures. In Proceedings of
the 42nd Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO 42, pages
34–44, New York, NY, USA, 2009. ACM.

APPENDIX
A. EXECUTION PLANS

A.1 Tesla Architecture Plans

A.1.1 Tesla 256×256×256

• {Y (16, 16, 16, 256, tw)}
• {X(64, 4, 64, 256, tw), Y (16, 16, 1, 16, no−tw)}
• {X(32, 8, 8, 64, tw), Z(16, 16, 16, 256, tw)}
• {X(32, 8, 1, 8, no−tw), Z(16, 16, 1, 16, no−tw)}

A.1.2 Tesla 512×256×256

• {X(128, 4, 128, 512, tw), Y (16, 16, 16, 256, tw)}
• {X(256, 2, 64, 128, tw), Y (16, 16, 1, 16, no−tw)}
• {X(64, 8, 8, 64, tw), Z(16, 16, 16, 256, tw)}
• {X(64, 8, 1, 8, no−tw), Z(16, 16, 1, 16, no−tw)}

A.1.3 Tesla 1024×256×256

• {X(256, 4, 256, 1024, tw), Y (16, 16, 16, 256, tw)}
• {X(256, 4, 64, 256, tw), Y (16, 16, 1, 16, no−tw)}
• {X(128, 8, 8, 64, tw), Z(16, 16, 16, 256, tw)}
• {X(128, 8, 1, 8, no−tw), Z(16, 16, 1, 16, no−tw)}

A.1.4 Tesla 128×128×128

• {X(32, 4, 32, 128, tw), Y (4, 32, 4, 128, tw)}
• {X(16, 8, 4, 32, tw), Y (32, 4, 1, 4, no−tw),

Z(32, 4, 32, 128, tw)}
• {X(32, 4, 1, 4, no−tw), Z(4, 32, 1, 32, no−tw)}

A.1.5 Tesla 256×128×128

• {X(64, 4, 64, 256, tw), Y (4, 32, 4, 128, tw)}
• {X(32, 8, 8, 64, tw), Y (32, 4, 1, 4, no−tw),

Z(32, 4, 32, 128, tw)}
• {X(32, 8, 1, 8, no−tw), Z(4, 32, 1, 32, no−tw)}

A.1.6 Tesla 512×512×512

• {X(128, 4, 128, 512, tw), Y (32, 16, 32, 512, tw)}
• {X(128, 4, 32, 128, tw), Y (16, 32, 1, 32, no−tw)}
• {X(64, 8, 4, 32, tw), Z(32, 16, 32, 512, tw)}
• {X(128, 4, 1, 4, no−tw), Z(16, 32, 1, 32, no−tw)}

A.2 Fermi Architecture Plans

A.2.1 Fermi 128×512×1024

• {X(64, 2, 64, 128, tw), Y (16, 32, 16, 512, tw)}
• {X(16, 8, 8, 64, tw), Y (32, 16, 1, 16, no−tw)}
• {Z(32, 32, 32, 1024, tw)}
• {X(16, 8, 1, 8, no−tw), Z(32, 32, 1, 32, no−tw)}

11

A.2.2 Fermi 128×1024×1024

• {X(64, 2, 64, 128, tw), Y (32, 32, 32, 1024, tw)}
• {X(16, 8, 8, 64, tw), Y (32, 32, 1, 32, no−tw)}
• {Z(32, 32, 32, 1024, tw)}
• {X(16, 8, 1, 8, no−tw), Z(32, 32, 1, 32, no−tw)}

A.2.3 Fermi 128×512×512

• {X(64, 2, 64, 128, tw), Y (16, 32, 16, 512, tw)}
• {X(16, 8, 8, 64, tw), Y (32, 16, 1, 16, no−tw)}
• {X(16, 8, 1, 8, no−tw), Z(32, 16, 32, 512, tw)}
• {Z(16, 32, 1, 32, no−tw)}

A.2.4 Fermi 256×512×512

• {X(64, 4, 64, 256, tw), Y (32, 16, 32, 512, tw)}
• {Y (16, 32, 1, 32, no−tw)}
• {X(32, 8, 8, 64, tw), Z(32, 16, 32, 512, tw)}
• {X(32, 8, 1, 8, no−tw), Z(16, 32, 1, 32, no−tw)}

A.2.5 Fermi 256×512×1024

• {X(64, 4, 64, 256, tw), Y (32, 16, 32, 512, tw)}
• {X(32, 8, 8, 64, tw), Y (16, 32, 1, 32, no−tw)}
• {X(32, 8, 1, 8, no−tw), Z(32, 32, 32, 512, tw)}
• {Z(32, 32, 1, 32, no−tw)}

A.2.6 Fermi 512×512×512

• {X(64, 8, 64, 512, tw), Y (32, 16, 32, 512, tw)}
• {X(64, 8, 8, 64, tw), Y (16, 32, 1, 32, no−tw)}
• {Z(32, 16, 32, 512, tw)}
• {X(64, 8, 1, 8, no−tw), Z(16, 32, 1, 32, no−tw)}

12

