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ABSTRACT

Understanding the correlation structure associated with multiple brain measurements informs about potential “functional groupings” and network organization. The
correlation structure can be conveniently captured in a matrix format that summarizes the relationships among a set of brain measurements involving two regions, for
example. Such functional connectivity matrix is an important component of many types of investigation focusing on network-level properties of the brain, including
clustering brain states, characterizing dynamic functional states, performing participant identification (so-called “fingerprinting™) understanding how tasks recon-
figure brain networks, and inter-subject correlation analysis. In these investigations, some notion of proximity or similarity of functional connectivity matrices is
employed, such as their Euclidean distance or Pearson correlation (by correlating the matrix entries). Here, we propose the use of a geodesic distance metric that reflects
the underlying non-Euclidean geometry of functional correlation matrices. The approach is evaluated in the context of participant identification (fingerprinting): given
a participant’s functional connectivity matrix based on resting-state or task data, how effectively can the participant be identified? Using geodesic distance, identi-
fication accuracy was over 95% on resting-state data, and exceeded the Pearson correlation approach by 20%. For whole-cortex regions, accuracy improved on a range
of tasks by between 2% and as much as 20%. We also investigated identification using pairs of subnetworks (say, dorsal attention plus default mode), and particular
combinations improved accuracy over whole-cortex participant identification by over 10%. The geodesic distance also outperformed Pearson correlation when the
former employed a fourth of the data as the latter. Finally, we suggest that low-dimensional distance visualizations based on the geodesic approach help uncover the
geometry of task functional connectivity in relation to that during resting-state. We propose that the use of the geodesic distance is an effective way to compare the

correlation structure of the brain across a broad range of studies.

1. Introduction

Measurements of brain activity are acquired across multiple sensors
or spatial locations, such as those obtained by electro/magneto-
encephalography, electrophysiology recordings, calcium imaging, or
functional magnetic resonance imaging (fMRI) data. Understanding the
correlation structure associated with multiple brain measurements is a
central goal in neuroscience, as it informs about potential “functional
groupings” and network structure (Pessoa, 2014; Sporns, 2010). The
correlation structure can be conveniently captured in a matrix format
that captures the relationships among a set of brain measurements. For
example, in the case of fMRI, each entry of the matrix might contain an
estimate of the functional connectivity (FC) between regions i and j, typi-
cally computed as the correlation between the time series data of the two
regions in question.

In recent years, the FC matrix has become an important component of
many types of investigation focusing on network-level properties of the
brain, particularly in fMRI. For example, it has been used to cluster brain
states (Allen et al., 2014), characterize dynamic functional states (Hansen
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et al., 2015), perform participant identification (Finn et al., 2015), and
understand how tasks reconfigure brain networks (Schultz and Cole,
2016). In these applications, some notion of proximity or similarity of FC
matrices is employed (Fig. 1A). How should similarity be gauged? An
intuitive approach is to “unroll” the FC matrix into a vector and compute
the Pearson correlation between the matrices themselves. Thus if, say,
two brain states captured by FC matrices are similar (for example, during
two similar perceptual conditions), their matrices would be (relatively)
highly correlated. Indeed, the correlation approach has yielded impres-
sive results, such as successfully identifying a participant out of a large
group of participants based on FC matrix similarity, a process dubbed
fingerprinting ((Finn et al., 2015; Finn et al.,, 2017; Amico and Goni,
2018)). Related approaches include computing the Euclidean (L?) dis-
tance between the vectorized matrices (Ponsoda et al., 2017), or using
the so-called Manhattan (L') distance (Allen et al., 2014).

FC matrices computed by Pearson correlating time series data are
objects that lie on a non-linear surface (technically known as a manifold)
called the positive semidefinite cone: their geometry is non-Euclidean.
Accordingly, distances between Pearson FC matrices must be measured
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A. Proximity of FC matrices
FCA

Is FC X closer/more similar to A or B?
Aand B could be:

- different tasks

- different mental states

- different participants

C. Participant Identification
Is participant X, Alice or Bob?

= 1

Participant X
(True Identity: Alice)

Alice
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B. Geometry-aware visualization

—— Geodesic
—  Euclidean

Is Pearson correlation a
good similarity measure
for FC matrices?

Pearson dissimilarity: dg < d,
Geodesic distance: d, < dg

X was correctly labeled using
geodesic distance.

Fig. 1. Functional connectivity matrices and their underlying geometry. (A) Similarity of functional connectivity (FC) matrices. Is the FC matrix X more similar to A or
B? This question arises when the goal is to determine the task being performed, the mental state, or the participant. (B) Illustration of geodesic distance (red) and
Euclidean distance (green) on the so-called positive semidefinite cone. The geodesic and Euclidean distances between two points can differ substantially. (C) Is X, Alice
or Bob? Equivalently, is the FC X more similar to that of Alice or Bob? Identification involves mapping an unknown participant’s data to one of the participants in the
database (only two in this case). In this example, X is correctly labeled as Alice using geodesic distance, but incorrectly labeled as Bob using Pearson dissimilarity.

along the surface of the cone (Fig. 1B). In addition, FC matrices are often
high dimensional, and the proximity measure adopted is critical since
noisy dimensions can contribute substantially to the measure (Aggarwal
et al., 2001).

In the present paper, we characterized the advantages of using a
geodesic proximity measure between FC matrices. We apply the approach
to the problem of participant identification: Given resting-state or task
data, is it possible to determine a participant from her FC matrix (Finn
et al., 2015)? We show that using the geodesic distance, a non-Euclidean
distance metric that considers the manifold on which the data lies, im-
proves participant identification compared to a similarity measure based
on Pearson correlation (Fig. 1C). The improvement is shown to be
non-trivial and consistent across resting-state and task conditions.

We also investigate how distances between high-dimensional FC
matrices can be effectively visualized in low-dimensional spaces. Such
visualization reflected identification accuracy based on the full-
dimensional data, and thus retained important distance information.
We suggest that visualization in lower dimensions aids in understanding
the geometry of task FC structure in relation to resting-state FC.

2. Methods
2.1. Human Connectome Project data

We utilized data from N =100 unrelated participants from the
Human Connectome Project (HCP) of the 1200-participant release (Essen
et al.,, 2013). Data from resting-state and seven tasks were employed:
emotion processing (EM), gambling (GB), language (LG), motor (MT),
relational processing (RL), social cognition (SO), and working memory
(WM). Throughout the paper, we refer to resting-state plus the tasks as
conditions. For a description of the tasks and scan parameters, see (Barch
et al., 2013). Data were collected with a repetition time (TR) of 720 ms.

During each run, stimuli were presented in separate blocks often

interleaved with fixation blocks. Some task runs also contained cues. To
retain only task-related segments of the run, extraneous segments were
trimmed. To account for hemodynamic lag, the first four TRs of the block
were not used, and the first four TRs following the end of the block were
used (Cohen, 1997). Emotional processing, working memory, and motor
tasks contained 3-s cues at block onset. Accordingly, to account for the
cue response and the hemodynamic lag, data from 12 s after the cue onset
to 3 s after the end of the block were used. Time course length for each
condition before and after trimming is provided in Table 1. Note that
trimming the fixation periods is important in characterizing participant
identification from task data, because fixation periods behave much like
“mini resting periods” that can potentially provide information regarding
the participant. Analysis of data without trimming is included in sup-
plemental material (Section S1).

2.2. Preprocessing

Task data were part of the “minimally preprocessed” release, which
included gradient unwarping, fieldmap-based EPI distortion correction,
brain-boundary-based registration of EPI to structural T1-weighted scan,
non-linear registration, and intensity normalization (Glasser et al., 2013).
Cortical data were mapped to a surface representation and utilized here. In
addition, we regressed out 12 motion-related variables (6 translation pa-
rameters and their derivatives) and low frequency signal changes using the

Table 1
Number of frames per run (in samples) before and after trimming fixation
periods.

Condition REST EM GB LG MT RL SO WM

Frames per full 1200 176 253 316 284 232 274 405
Tun

Frames per 1200 141 156 295-305 170 138 160 312

trimmed run
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3dDeconvolve program of the AFNI package (Cox, 1996) with the ortvec
and polort options (the latter removed linear, quadratic, and cubic trends
over the duration of individual runs. Resting-state also followed the
so-called minimal preprocessing pipeline, in addition to denoising using
ICA-FIX (Smith et al., 2013) and regressing out 12 motion-related vari-
ables, as provided with the data distribution. Cortical data were mapped to
a surface representation. Preprocessing included minimal temporal
filtering that essentially removed linear trends in the data. The ICA-FIX
procedure removed “bad” components such as high frequency noise
from the data. No further preprocessing was performed for resting-state
data in the main text. In particular, band pass filtering is not included in
HCP’s preprocessing because they believe it can potentially eliminate
relevant information in resting-state data (Boubela et al., 2013).

For the results in the main text, the global mean was not regressed from
the data. In the supplemental material (Section S2), we repeated some
analyses on resting-state data that included global signal regression as part
of the preprocessing pipeline. Although there is no consensus in the field
whether or not the global mean should be eliminated, some work has re-
ported that removal strengthens the association between resting-state
functional connectivity and behavior (Kong et al., 2018; Li et al., 2019).

2.3. Regions of interest and organization into subnetworks

For simplicity, we focused on cortical regions of interest (ROIs) only.
We used the local-global Schaefer cortical parcellations that divide the
cortex into 300 ROIs (Schaefer et al., 2017) (throughout the text, we refer
to it as “whole-cortex™). A summary ROI-level time series was obtained
by averaging signals within the region. We then used the Yeo 7-network
parcellation to group the ROIs into 7 subnetworks known as visual,
somatomotor, dorsal attention, ventral attention, limbic, frontoparietal,
and default mode (Yeo et al., 2011). The number of ROIs within each of
the subnetworks is provided in Table 2. The ROIs and the grouping into 7
networks is shown in Fig. S4. Some of the effects of varying the number of
ROIs are described in the supplemental material (Section S3).

2.4. Functional connectivity

Functional connectivity was computed by Pearson correlating time
series data between every pair of ROIs, resulting in 300x 300 FC
matrices. A symmetric matrix S that satisfies y’Sy > 0 (where y’ is the
transpose of y) for any non-zero vector y is said to be positive semi-
definite and has eigenvalues greater than or equal to zero. Though it is
well known that covariance matrices are positive semidefinite (Boyd and
Vandenberghe, 2004), we illustrate the proof here. After normalizing the
time series of each ROI to unit variance, let x; = (x;1,%X:2, .., X¢300) be
the vector of activations of all ROIs at time t for t = 1,2, ..., T. If we
denote the mean across time as X, the covariance matrix is given by

0== (n—%)(x—%. )

Note that the (i,j) entry of Q is simply the Pearson correlation coefficient
between the time series of regions i and j. For any non-zero vector y of
dimension 300,

Yoy = (%Z(«n %) :r)’)yzi ¥ - B — %)

=1

= (D=0 (2)
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Thus, covariance matrices are positive semidefinite.

If Q, and Q, are two FC matrices, it can be easily shown following the
steps above that aQ, + Q- is also positive semidefinite for @, > 0. Thus,
the set of all positive semidefinite matrices lie on a cone referred to as the
positive semidefinite cone (Boyd and Vandenberghe, 2004).

2.5. Geometry of functional connectivity matrices

Pearson correlation is often used to characterize the similarity of FC
matrices. However, as correlation matrices lie on a non-linear space, a
natural approach is to compute geodesic distances between FC matrices to
quantify their distance. The geodesic distance between two points on the
positive semidefinite cone, and thus between two FC matrices Q; and Q»,
is the shortest path between them along the manifold (Pennec et al.,
2006). There exists only one geodesic path joining two such points.

For two functional connectivity matrices, their geodesic distance can
be computed as proposed in (Pennec et al., 2006):

do(01,02) = | trace | log? | 0,%0,0, (3)

where the matrix log operator is used here. Note that this definition as-
sumes that the matrix Q; is invertible; when this was not the case the
identity matrix, I, was added as a perturbation matrix to both Q; and Q,
to ensure that all eigenvalues were greater than O (see Section S4). For

matrices Q; and Q; of size n x n (here, n = 300 ROIs), if Q = Q, %QQQI%,
and 4 fori =1 to n are the n eigenvalues > 0 of Q, the geodesic dis-
tance is simply (see https://github.com/makto-toruk/FC_geodesic for
code)

n

de(Q1,02) = > (log(4))*. (4)

i=1

From (4), it is clear that dg > 0. In addition, d; = 0 implies 4, = 1 (i.e,
Q1 = Q2), and vice versa. To verify that the geodesic distance is sym-
metric, note that dg(Q1, Q2) = dg(Q, I) (using Eq. (3)). By the property of
the log operator, d;(Q,I) = ds(I, Q) since log?(Q ') = log?(Q). We refer
the interested reader to (Forstner and Moonen, 2003) for a proof of the
triangular inequality for 2 x 2 matrices. Thus, the geodesic distance
applied to matrices meets the criteria of a metric.

If g, and g- are vectors obtained by stacking the columns of Q; and
Q,, respectively, Pearson dissimilarity between the two matrices is
defined as

1 — corr(gy,q2)
4r(01, 0 = 1~ Oan2) 5)
where the corr function is the Pearson correlation coefficient. Pearson
dissimilarity ranges between 0 and 1 and is not a formal metric because it
does not satisfy the triangular inequality (Van Dongen and Enright,
2012). The units for geodesic distance and Pearson dissimilarity are

arbitrary and thus not comparable across these measures.
2.6. Motivation behind geodesic distance
We motivate the geodesic distance with simple examples from the

space of 2 x 2 FC matrices. Since FC matrices are symmetric and positive
semidefinite, they take the form

Table 2

Number of ROIs in each subnetwork. We used local-global Schaefer cortical parcellations that divide the cortex into 300 ROIs (Schaefer et al., 2017).
Subnetwork Visual SomatoMotor Dorsal Attention Ventral Attention Limbic FrontoParietal Default
Number of ROIs 47 57 34 34 20 40 68
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Xz
0= [ 0y ] E
and satisfy x > 0,y > 0 and xy — 2z > 0. Since the matrices have only
three unique entries, all points that satisfy these equations can be plotted
in three dimensions in Euclidean space, and form a positive semidefinite
cone (Fig. 1B).

In the first example, we considered three points on the cone (i.e.,
three 2 x 2 FC matrices) ‘a’, ‘b’ and ‘c’ such that ‘b’ and ‘¢’ are equidistant
from ‘a’ in terms of the Euclidean distance (Fig. 2A). If a tangent surface
to the cone is drawn at ‘a’, the point ‘c’ is much closer to the tangent
surface than ‘b’. Thus, the geodesic distance between ‘a’ and ‘b’ is larger
than that between ‘a’ and ‘c’ (Fig. 2B). In this case, Pearson dissimilarity
is capable of distinguishing the two distances.

To motivate why Pearson dissimilarity is problematic, consider that
the Pearson correlation between two vectors is equivalent to the cosine of
the angle between them after they have been “centered” individually
(that is, the mean of each vector is subtracted from it) and normalized.

A B 5 Euclidean

15
3 1
0.5
o 0
y ab ac

Geodesic
8
6
4
2
0
ab ac
Pearson
0.4
0.2
0
ab ac
Euclidean
2
15
1
0.5
0
ab ac
Geodesic
6
4
2
0
ab ac
Pearson
0.8
0.6
0.4
s °Z .
3 2 1 ®210 ab ac

Fig. 2. Motivating functional connectivity geometry. (A) Identical Euclidean
distance does not imply identical geodesic distance. (C) Identical geodesic dis-
tance can yield very different Pearson dissimilarity. (B, D) Comparison of dis-
tances/dissimilarity ab and ac in (A) and (C), respectively. Distances/
dissimilarity cannot be compared across measures because their units
are arbitrary.
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Indeed, the computation of Pearson correlation eliminates the contri-
bution of the signal mean, as can be readily seen in the following
equation:

corr(x,y) - Ei(xl - f)(yi - y) (6)
V- DS -9,

where x and y are vectors. For FC matrices, such centering which is im-
plicit in Pearson correlation alters the eigenvalues and the positive
semidefiniteness of the matrix. Since the eigenvalues are the basis for
computing geodesic distances, we see that Pearson correlation in fact
distorts the evaluation of similarity between connectivity matrices
(relative to what is estimated with the geodesic distance). However,
while estimating an individual's FC matrix, mean centering does not
affect positive semidefiniteness, as shown in Eq. (2).

In a second illustrative example (Fig. 2C), we consider three points
a’, ‘b’ and ‘c’ on the cone such that ‘b” and ‘c’ are symmetrically on either
side of ‘a’. By symmetry, ‘a’ is equidistant from ‘b” and ‘c’ in terms of both
the Euclidean distance and geodesic distance. However, Pearson
dissimilarity between the two sets of points can be quite distinct. Suppose
O is the origin and 2£aOb = £aOc (where 2 is the angle subtended be-
tween ‘a’ and ‘b’). Since Pearson correlation mean centers the vectors ‘a’
and ‘b’, the correlation is related to mean-centered vector angles that can
be quite different from the original ones (Fig. 2d). In other words, if ‘a’,
‘b, and ‘¢’ are vectors obtained by centering ‘a’, ‘b’ and ‘¢’, in most cases
£a0b # ~a0c. The upshot is that measures of similarity based on Pearson
correlation do not correspond to actual distances between functional
connectivity matrices.

¢

2.7. Participant identification

Identification involves mapping an unknown participant’s data to one
of the participants in the database. Since each task in the HCP data
contains 2 runs for every participant, we used one run as training data
(that is, to form the database) and the other run for testing. Identification
was performed on each condition (resting-state or task) separately.

Participant identification is equivalent to N-class classification where
the objective is to label an individual's FC matrix in the test data to one of
the N participants in the training data. To do so, we used a 1-Nearest
Neighbor approach (Finn et al., 2015): An FC matrix in the test data is
labeled with the participant identity of the FC that is most similar to it in
the training data. Suppose Q'™ is an unknown participant’s FC matrix.
Then

label(x) = argmin® | d(Q"", Q''), @

where Ql-"ai“ is the ith participant’s FC matrix in the training data and
d( -,-) is a distance or similarity measure. Here we compare the use of a
geodesic distance metric to a Pearson dissimilarity measure.

2.7.1. Identification accuracy

Participant identification was performed using the first run as
training data and the second run as testing data. For the N participants in
the testing data, accuracy was defined as

Number of correctly labeled participants

3

A =
cearacy Total number of participants

Then, the roles of the training and testing data were reversed and
accuracy was computed again. The reported identification accuracy was
the mean of the two accuracy values.

2.8. Bootstrapping

For participant identification statistics, one must confront the non-
independence between participants in the sample. Consider the
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following case. If two participants’ FC matrices Q4 and Qg are close to
each other, B might be mislabeled as A. However, if A was not in the
training database, it is conceivable that B would have been labeled
correctly. Therefore, the entire group must be considered as the unit of
interest; it is the group that determines if identification performance will
be poor or good. In our study, we used data from N = 100 participants in
the age range of 22 — 35 years, but demographic factors such as age and
mental health status can potentially play an important role in identifi-
cation performance.

A convenient procedure to assess variability in identification perfor-
mance is to use bootstrap resamples, with each resample comprising
random draws with replacement of the urn containing the group of
participants. Thus, a bootstrap resample is a proxy for a group of par-
ticipants, and variability can be quantified by resampling it a large
number of times.

More precisely, suppose a dataset of size N for a run is denoted by .
Let 0 < fp(#) <1 and 0 < fg(.%#) <1 be the participant identification
accuracy obtained using Pearson dissimilarity and the geodesic distance,
respectively. Let %7; be a dataset also of size N obtained by resampling 7,
with replacement, N times. Thus, .%; is a bootstrap resample of & and
may contain duplicate entries. The accuracy difference on this bootstrap
resample is given by 5(.%;) = f(%#;) — fe(-#;). Such difference score is
computed for M = 1000 bootstrap resamples %1, %5, ..., #y and the
mean difference score, 5, is computed. This process (based on M resam-
ples) provides exactly one mean difference score. The question of interest
is as follows: How are mean difference scores distributed? Note that this
parallels the question of the distribution of the sample mean in the setting
of the standard Central Limit Theorem. In our case, the distribution of
mean difference scores is of interest. Since the object of interest is the mean
difference score, the procedure to determine a specific § is repeated B =
1000 times, resulting in {&1,dz,...,0g} (that is, B mean differences).
Although the number of resamples, M x B, is large, the distance matrix of
size N x N (between each subject’s test-FC to all subjects’ train-FC) is
calculated only once making the bootstrapping procedure computation-
ally feasible.

Reported p-values were computed as follows. Because accuracy dif-
ferences are percentages, we initially applied a standard Fischer-z
transformation to {&1,52,...,05} so that their distribution would be
approximately normal. To test the null hypothesis Hy : 6 = 0, a one-
sample t-test was then used.

2.8.1. Evaluating shorter data segments

To understand the effect of the length (or the number of frames) of the
run, we truncated runs to smaller segments. For a particular segment
length, 50 segments were obtained each of which had a unique,
randomly-chosen starting point in the run. The objective was to pick
several segments of the same length without favoring those that started at
the beginning of the scan. For each segment, 1000 bootstrap iterations
were used to obtain a mean accuracy score.

2.9. Multidimensional scaling

Naturally, visualizing distances between FC matrices is not straight-
forward given their high dimensionality. Here, we used non-metric
multidimensional scaling to visualize distances in three dimensions
(Kruskal, 1964). Whereas standard multidimensional scaling computes
the Euclidean distance between the high-dimensional vectors of interest,
non-metric multidimensional scaling takes as input any dissimilary matrix
of the form

diy  dip ... diaw
d. d. cee oy
p—| % 22 - 2200 (9)
dyo, oz dyon 200

where d;; is the “dissimilarity” between the FC matrices i and j (the
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dimensionality of the matrix is 200 since we consider a test-FC and a
train-FC for each of the N = 100 participants). Here, either geodesic
distance or Pearson dissimilarity was used. Given D, non-metric multi-
dimensional scaling finds a set of & vectors such that the Euclidean
distance between these vectors preserves, to the extent possible, the high-
dimensional distances:

dig = ||x x|y =~ diy (10)

where the vectors x are low dimensional. Thus, if d;; = d(Q;, Q;) is the

distance between two FC matrices Q; and Qj, and &1- j is the distance in the
lower-dimensional representation, the output (set of points) is produced
by minimizing the stress function:

an

The optimal distances, E[ j» are obtained using a gradient descent
approach that minimizes the stress. The MATLAB, 2018a (MATLAB,
2018) implementation of mdscale with 1000 gradient descent iterations
was used. Multidimensional scaling produces low dimensional repre-
sentatives, x’s, for high dimensional FCs such that the Euclidean dis-
tances between x’s approximate the measured relationships (Pearson
dissimilarity or geodesic distance) between their high-dimensional
counterparts. Given that the two measures have arbitrary units, so do
their estimates in low dimensions.

Note that the objective of using non-metric multidimensional scaling
was to represent in a more intuitive manner the relationships between
high-dimensional functional connectivity matrices. Thus, points in the
lower-dimensional representation no longer lie on the positive semi-
definite cone and closeness should be interpreted in the Euclidean sense
(two points are close if their Euclidean distance is small). The visuali-
zations, approximate as they are, are only provided to aid understanding,
and are not part of the procedure to determine identification accuracy.

2.10. Note on p-values

As discussed by many others recently, we do not view “statistical
significance” dichotomous thresholds (for example, p < 0.05) as the ul-
timate criterion in deciding whether a result is “real” or not ((Amrhein
et al., 2019; McShane et al., 2019)). In any case, understanding vari-
ability and the unlikeliness of a result provides some information. Given
that we compare geodesic distance to Pearson dissimilarity across con-
ditions and other parameters, some form of correction for multiple
comparisons is opportune. Accordingly, we provide the uncorrected
p-value as well as the Bonferroni-corrected a level (which we call the
“reference o) so that the reader can further gauge the “strength” of the
finding. Again, we do not advocate using the Bonferroni-corrected « in a
dichotomous fashion, but provide it as an additional “reference” point for
the reader.

3. Results

Readers interested in additional motivation concerning functional
connectivity geometry should consult Section 2.6 and Fig. 2.

3.1. Geodesic distance and participant identification

Participant identification (N = 100) was performed on each condi-
tion (resting-state and tasks) using two measures: geodesic distance and
Pearson dissimilarity (Methods 2.7). FC matrices obtained from one run
were used as training data and matrices from the second run as testing
data. Identification accuracy for each condition is shown in Fig. 3 (ac-
curacy based on chance would be 1%).
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Fig. 3. Participant identification for the eight conditions using the geodesic
distance and Pearson dissimilarity. Training and testing data were from the
same condition. Accuracy improved using the geodesic distance on each con-
dition. Error bars indicate standard error of the mean across bootstrap iterations.
Abbreviations: EM, emotion processing; GB, gambling; LG, language; MT, motor;
RL, relational processing; RS, resting-state; SO, social cognition; WM, work-
ing memory.

To assess the robustness of the results and for statistical comparisons
between the two measures, identification was performed on bootstrap
resamples. For each bootstrap resample, the difference between accuracy
using geodesic distance and Pearson dissimilarity was computed. A one-
sample two-tailed t-test was then used to assess the null hypothesis that
the difference distribution had zero mean (Methods 2.8). For each con-
dition, using the geodesic distance improved identification accuracy over
Pearson dissimilarity (p < 107 for all conditions; reference a = 0.05/
8 = 0.00625 given 8 conditions; Fig. S6). The mean improvement using
geodesic distance was around 8%, ranging from 2% (relational processing)
to as much as 19% (resting-state). For resting-state and the language con-
ditions, the accuracy obtained using the geodesic distance was very hight
and close to 95%.

Finn et al. (2015) reported a mean accuracy of 93.65% on resting-state
data using Pearson dissimilarity, which is considerably higher than the
77.5% we obtained. Given that in the HCP dataset four runs of resting--
state data are available per participant (collected over separate days),
they averaged the FC matrices obtained during the same day into a single
FC matrix.! By including this averaging procedure, we replicated their
findings more closely and obtained an accuracy of 91% using Pearson
dissimilarity. Using geodesic distance, accuracy increased to 98%.
However, since conditions other than resting-state contained only two
runs, we did not use the averaging procedure on the four runs of
resting-state data in the remainder of our work.

3.2. Low-dimensional visualization of functional connectivity matrices

Since FC matrices are high dimensional, multidimensional scaling
was used to visualize the distances between them in three dimensions
(Fig. 4). The goal of using multidimensional scaling was to represent in a
more intuitive manner the relationships between high-dimensional FC
matrices. Accordingly, points in the lower-dimensional representation
should be interpreted in the Euclidean sense (two points are close if their
Euclidean distance is small). But note that the visualizations are
approximate only, and provided to aid understanding (they are not part
of the procedure to determine identification accuracy).

1 We thank one of the reviewers for helping solve this puzzle.
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A. Resting-state

Pearson dissimilarity

Geodesic distance

* Testdata
* Train data

s (O

B. Emotional Processing

Geodesic distance Pearson dissimilarity
¢ Testdata

3 * Train data

Fig. 4. Visualization of geodesic distance and Pearson dissimilarity. Distance/
similarity between high-dimensional functional connectivity matrices (300 x
300) was visualized in three dimensions using non-metric multi-dimensional
scaling. Training data (blue) and testing data (pink) were selected from five
random participants (numbers 1-5). Mislabeled participants are encircled in
red. (A) Resting-state. (B) Emotional processing task. For resting-state, within-
participant geodesic distances were very small relative to between-participant
distances in the lower-dimensional representation (when numbers labeling the
participants overlapped, only one of them is visible). Online figures are available
(Venkatesh, 2019).

Within- and between-participant distances estimated in three di-
mensijons were indicative of varying identification accuracy (obtained
using high dimensional FC matrices) across conditions. For resting-state,
FC matrices within-participant geodesic distances between training and
testing were very small, whereas distances between different participants
were considerably larger, consistent with the high identification accu-
racy. Visualization of Pearson dissimilarity revealed similar characteris-
tics, but the ratios of within-to between-participant distances were not as
large. In fact, using Pearson dissimilarity resulted in participant 5 being
mislabeled as participant 2, for example.

For the emotional processing task, within-participant distances were
not much smaller than between-participant distances even for the
geodesic distance consistent with the lower accuracy on this task. How-
ever, all participants in the randomly chosen subset were still labeled
correctly. Using Pearson dissimilarity, two participants were mislabeled.
In general, using the geodesic distance resulted in more favorable ratios
of within-to between-participant FC distances.

3.3. Identification accuracy and time course length: resting-state data

Since the length of the time course plays a key role in the quality of
the estimate of the FC matrix (Leonardi and Ville, 2015; Zalesky and
Breakspear, 2015), we sought to characterize its effect on participant
identification. Because resting-state data had the longest time course
(1200 TRs), shorter segments varying from 100 to 1100 TRs (in steps of
100) were extracted. Accuracy improved with length for both measures
(Fig. 5). Accuracy using the geodesic distance was higher than Pearson
dissimilarity for segment lengths greater than 200 TRs (p < 10~*; refer-
ence a =0.05/11 = 0.0045 given 11 segment lengths; Fig. S7). For
segment length of 100 TRs, accuracy using geodesic distance was still
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Fig. 5. Participant identification accuracy as a function of segment length for
resting-state data. Accuracy using geodesic distance exceeded Pearson dissimi-
larity at each segment length (see text). Error bars indicate standard error of the
mean across bootstrap iterations.

higher than Pearson dissimilarity (but p = 0.051). Notably, the geodesic
distance, with segment lengths as short as 300 TRs, outperformed the
best accuracy using Pearson dissimilarity which was obtained with the
full time course (four times more data; p < 10 *; reference a = 0.05/
11 = 0.0045 given 11 segment lengths).

3.4. Identification accuracy and time course length: task data

Although accuracy increased with segment length for resting state,
length did not predict performance straightforwardly (Fig. 6A). In
particular, working memory and language tasks had comparable time
course lengths, but identification accuracy differed by as much as 10%.
To probe this issue further, runs were trimmed so that they all had the
same duration (138 TRs, which was the length of the shortest task; for
conditions with more data, this target length was obtained by deleting
time points at the beginning and end of the data segment, thereby
retaining the middle part).

With time course length equated, accuracy still varied considerably
across tasks (Fig. 6B). Accuracy obtained using the geodesic distance
exceeded that of Pearson dissimilarity for all conditions except the
gambling task (p = 1 for gambling, p < 10~ for all other tasks; reference
a=0.05/8 = 0.00625 given 8 conditions; Fig. S8). Notably, although
resting-state had the highest identification accuracy when the entire time
course was used, it had the lowest identification accuracy when length
was equated across conditions.

3.5. Brain subnetworks and participant identification

Particular brain subnetworks are known to be engaged more promi-
nently, as well as exhibit enhanced functional connectivity, during
particular tasks (Pessoa, 2014). To evaluate performance based on sub-
sets of regions, ROIs were grouped into seven subnetworks (Methods
2.3). Was the best subnetwork for identification dependent on condition?
Data for all conditions were trimmed so that they had the same length
(138 TRs; the limbic subnetwork was excluded because identification
accuracy was less than 10% across conditions).

Using geodesic distance improved the accuracy across most condi-
tions for most subnetworks (Fig. 7A). In particular, for the visual, dorsal
attention, frontoparietal and default mode subnetworks, accuracy was
comparable to that obtained with the whole cortex. For example, the
default mode subnetwork produced accuracy over 90% for the language
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Fig. 6. Participant identification and time course length. (A) Accuracy based on
geodesic distance for resting-state and task conditions (time course length in TRs
in the inset). The red curve shows the accuracy for resting-state data trimmed to
segment lengths shorter and longer than those of task data (lengths from left to
right: 100, 125, 145, 170, 200, 300, 600, 900, and 1200 TRs). (B) Accuracy
when data was trimmed such that all conditions had the same time course length
(138 TRs). Error bars indicate standard error of the mean across bootstrap it-
erations. Abbreviations: EM, emotion processing; GB, gambling; LG, language;
MT, motor; RL, relational processing; RS, resting-state; SO, social cognition;
WM, working memory.

task. The frontoparietal performance on resting-state and emotion pro-
cessing was close to 80%. Further inspection of Fig. 7A revealed addi-
tional features of condition/subnetwork combinations. For example, the
visual subnetwork was not very suitable for identification based on
resting-state data. Not surprisingly, the default mode subnetwork per-
formed well with resting-state data. Interestingly, the frontoparietal sub-
network performed nearly as well with resting-state data, too. These two
subnetworks obtained even higher identification accuracy during the
language task.

To further evaluate performance of subnetworks, identification ac-
curacy was averaged across conditions (Fig. 7B). By using the geodesic
distance, accuracy improved substantially, with several subnetworks
improving by over 20%. Except for the somatomotor subnetwork, using
the geodesic distance resulted in improved performance (p = 0.996 for
somatomotor, p < 10 ° for all other subnetworks; reference @ = 0.05/
7 = 0.0071 given 7 subnetworks; see Fig. SO for bootstrap distributions).
The highest mean accuracies were observed in the visual, dorsal
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Fig. 7. (A) Participant identification accuracy using subnetworks. Runs were trimmed such that all conditions had the same time course length. Some subnetworks
were more suitable than others for identifying individual differences. The use of geodesic distance showed considerable improvements in accuracy for most sub-
networks. (B) Across subnetworks, average participant identification accuracy is displayed. The geodesic distance substantially improved identification accuracy. Error
bars indicate standard error of mean across bootstrap iterations. Abbreviations: EM, emotion processing; GB, gambling; LG, language; MT, motor; RL, relational

processing; RS, resting-state; SO, social cognition; WM, working memory.

attention, frontoparietal, and default mode networks for both geodesic
and Pearson measures, indicating that some subnetworks are more
suitable than others for participant identification.

Fig. 8 displays geodesic identification accuracy for each condition as a
function of subnetwork size. Whereas the smallest subnetwork (limbic)
performed poorly for all conditions, accuracy did not always increase
with size. For example, the dorsal attention and ventral attention sub-
networks have the same size, but the former produced considerably
higher accuracy on each condition (p < 10712 for all conditions; refer-
ence a = 0.05/8 = 0.00625 given the 8 conditions; see Fig. S10 for
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bootstrap distributions). Across conditions, the dorsal attention
improved over the same-sized ventral attention by over 20%. Of note, the
somatomotor subnetwork was larger than all but the default mode sub-
network, but it produced relatively low identification accuracy; at the
same time, the largest subnetwork (default mode), was associated with
consistently high accuracy across conditions. Finally, no single subnet-
work exhibited the highest accuracy for all conditions. In fact, perfor-
mance varied across conditions, but also varied in particular ways across
subnetworks for each condition. Notably, the visual, textttdorsal atten-
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Fig. 8. Participant identification accuracy plotted against subnetwork size for each condition (geodesic distance). The size of the subnetwork (the number of ROIs) is
also indicated in the inset. The error bars represent standard error of the mean across bootstrap iterations.
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consistently well. Similar trends were observed for the Pearson dissimi-
larity measure but overall accuracy levels were lower (Fig. S11).

3.6. Combining subnetworks improved identification accuracy

As described, subnetworks had comparable (and sometimes higher)
identification accuracy than whole-cortex performance, although sub-
networks were associated with much smaller matrices, of course. Could
particular subnetworks be combined to further improve identification?
We tested this possibility by targeting two subnetworks that exhibited
high performance overall, namely frontoparietal and default mode (see
Fig. 7B). The combined network included all within-network functional
connections of course, but also all between-network links (for example, a
functional connection between a region of the frontoparietal network
and a region of the default mode network). Time course length was
equated for all conditions as in Section 3.4. Accuracy using geodesic
distance was superior to Pearson dissimilarity (Fig. 9; p < 1015 for all
conditions; reference « =0.05/8=0.00625 given 8 conditions;
Fig. S12).

Using geodesic distance, the combined subnetwork also out-
performed both the individual subnetworks on all conditions except the
language task (p = 0.24 for the language task, p < 10712 for all other
conditions; a« = 0.05/16 = 0.003125 given 8 conditions and compari-
sons with two subnetworks; see Figs. S13-514 for bootstrap distribu-
tions). In addition, for the geodesic distance, the combined subnetworks
exhibited higher accuracy than whole-cortex FC matrices (p < 10712 for
all conditions; @ = 0.05/8 = 0.00625 given 8 conditions; see Fig. 515 for
bootstrap distributions) although the number of ROIs in the combined
subnetwork (108) was nearly a third as those in the cortex (300). Clearly,
the improvement in accuracy was not a simple consequence of increased
size, but resulted from improved identity characterization.

To understand whether addition of other subnetworks to the com-
bined network further improved accuracy, we performed identification
using combinations of the seven networks taken two, three, four, five, or
six at a time. The maximum identification accuracy across all combina-
tions of subnetworks is displayed against the number of combined sub-
networks in Fig. 10A. The minimum identification accuracy across the
combinations of subnetworks is also indicated. For all conditions,
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Fig. 9. Participant identification accuracy by combining subnetworks. For the
geodesic distance, the frontoparietal (subnetl) and default mode (subnet2)
subnetworks were combined. For the Pearson dissimilarity measure, the dorsal
attention (subnetl) and default mode (subnet2) subnetworks were combined
(the top two subnetworks based on mean accuracy across conditions for this
measure). Abbreviations: EM, emotion processing; GB, gambling; LG, language;
MT, motor; RL, relational processing; RS, resting-state; SO, social cognition;
WM, working memory.
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Fig. 10. Combining up to seven subnetworks. (A) Participant identification
accuracy using geodesic distance as a function of the number of subnetworks for
each condition. For a particular condition and number of combined sub-
networks, the maximum identification accuracy across all combinations of
subnetworks is shown with the red bar (the minimum is indicated by the yellow
line). Accuracy initially increased with the number of subnetworks but then
decreased, and was lowest using whole-cortex FCs (i.e, number of combined
subnetworks = 7). (B) Participant identification accuracy averaged across
conditions is displayed against number of combined subnetworks.

accuracy initially increased as more subnetworks were considered but
then decreased. Performance peaked at 2 or 3 subnetworks for all con-
ditions. Accuracy varied across the combinations of subnetworks (when
the number of subnetworks was held constant), and the minimum value
(shown in yellow) was less than half the maximum when less than four
subnetworks were combined. In Fig. 10B, identification accuracy was
averaged across conditions and displayed as a function of the number of
combined subnetworks.

3.7. Transfer of identifiability between conditions

In the previous sections, training and testing data were based on the
same condition. Here, we sought to understand if participants could be
identified if the training and testing data were obtained from different
conditions; for example, identifying a participant performing a working
memory task when the training used resting-state data. Time series length
was not equated across conditions because our goal was to evaluate how
transferable identity-related information was between pairs of condi-
tions. Accordingly, we did not want to potentially degrade FC informa-
tion by using shorter data segments. Identification was performed on the
combined default-plus-frontoparietal network, which as discussed per-
formed well across conditions (Fig. 9).

Results for both geodesic distance and Pearson dissimilary are dis-
played in Fig. 11. Whereas Pearson dissimilarity was useful in identifying
participants when they performed the same task (within-conditions,
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Fig. 11. Participant identification accuracy when the training and testing data were based on different conditions. The combined network containing the fronto-
parietal and default mode subnetworks was employed. The mean accuracy for each train and test condition is also indicated. For example, when resting-state is used as
training data, the column mean is computed as the accuracy across all other conditions (i.e., except resting-state itself). The row means are computed in a similar
fashion by excluding the diagonal term. Abbreviations: EM, emotion processing; GB, gambling; LG, language; MT, motor; RL, relational processing; RS, resting-state;

S0, social cognition; WM, working memory.

diagonal entries), performance deteriorated when the training and test
data originated from different tasks. Notably, across-condition identifi-
cation was considerably higher with the geodesic distance, and this
enhancement was rather striking when the training data was from resting-
state, and to some extent based on the language and working memory tasks.
For example, testing working memory data based on training with resting-
state data yielded 94.6% accuracy, which intriguingly was even better
than when training with working memory itself (accuracy: 92.9%, p <
10~%). On average, training with resting-state yielded 83.4% accuracy
when testing on other conditions (see the “column mean™ in Fig. 11). The
present results indicate that the geometry of FC is especially important
for across-task identification (see Discussion).

Because in this section time course length was not equated across
conditions, we note that those with longer lengths aided across-task
identification. Accordingly, transfer might particularly benefit from
employing training sets with longer data segments. Nevertheless, future
research should also evaluate transfer effects when longer data segments
are available for a wider range of tasks (for example, > 300 TRs) so as to
characterize their transfer potential.

3.8. FC geometry of task and resting-state data

As some conditions yielded high identification accuracy when
training and testing were based on different conditions, we sought to
visualize distance/dissimilarity in a lower dimensional space via multi-
dimensional scaling. Fig. 12A displays the low-dimensional representa-
tion of the distances/dissimilarities for a set of randomly chosen
participants when resting-state was employed for training data and
working memory for testing (untrimmed data). Based on the geodesic
distance, resting-state FC matrices were relatively close together to one
another; in contrast, working memory FC matrices were further “spread
out™. Intriguingly, such geometry allowed for the separation of FCs based
on participant identity. To see this, consider the panels in Fig. 12B, which
show participant-level distances. In contrast, using Pearson dissimilarity,
the geometry did not allow accurate participant identity. In fact, nearly
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all participants in this illustrative sample were misidentified.

The results in Fig. 12A prompted us to investigate, in an exploratory
fashion, distance/dissimilarity between conditions, specifically, resting-
state, motor, and language (Fig. 13). Intriguingly, the geometry of dis-
tances was quite different when geodesic distances were used compared
to Pearson dissimilarity. These observations suggest that when FC
matrices are used for task classification (not identification as done here),
different algorithms may be more suited for this aim. For example, non-
linear radial basis functions might function better for the geodesic case,
and linear classifiers for Pearson dissimilarity. Although a fuller inves-
tigation of this issue is beyond the scope of the present paper, we believe
this is a fruitful direction. Furthermore, the analysis of functional con-
nectivity of mental states should take into account participant-related
information since it plays a potentially dominant contribution in the
identification of mental states (Xie et al., 2018).

4. Discussion

In this paper, we investigated participant identification based on FC
matrices from fMRI data by employing geometry-aware methods. Cor-
relation matrices are objects that lie on non-linear surfaces, and thereby
benefit from non-Euclidean distance measures. Indeed, we show that
using the geodesic distance improved participant identification, at times
by as much as 20%. Further, low-dimensional visualization based on
geodesic distance contributes to understanding how FC geometry affects
identification.

4.1. Factors influencing participant identification

Scan duration determines the amount of data used to estimate FC
matrices, and played a key role in identification accuracy (see Fig. 5). For
resting-state data, accuracy improved with time course length and was
close to 95% when the entire data were employed (1200 TRs), but fell to
under 50% when trimmed to under 150 TRs. The steep drop is possibly
due to the underlying dynamics of resting-state data (Allen et al., 2014),
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Fig. 12. Visualization of task and resting-state functional connectivity distances/
dissimilarities in a three-dimensional space using multidimensional scaling. The
numbers indicate participant IDs. (A) Distances/dissimilarities between the
functional connectivity matrices of resting-state (RS, used for training) and
working memory (WM, used for testing) for a set of 10 randomly chosen par-
ticipants. Online figures are available (Venkatesh, 2019). (B) Participant-level
distances/similarities between training and testing data. Correct identification
is marked in green and incorrect in red. For example, when using geodesic
distance, the best candidate for WM participant 1 (call it WM1) was RS
participant 1 (RS1), and the best candidate for WM2 was RS2. However,
incorrect classifications were also observed, such as RS4 (not RS7) being closest
to WM7. For Pearson dissimilarity most classifications were incorrect, such as
RS1 (not RS10) being most similar to WM10. Distances based on the two
measures have arbitrary units, and are not comparable across them.
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Fig. 13. Functional connectivity geometry of resting-state and task conditions
(online figures are available (Venkatesh, 2019)). Training data for 10 random
participants employed (indicated by the numbers). Dis-
tances/dissimilarities in low dimensions were obtained via multidimensional
scaling. Note that the geometry in low dimensions differed considerably for
geodesic and Pearson, suggesting that condition categorization (not participant
identification) should capitalize on such geometry for better performance. Ab-
breviations: MT, motor; LG, language; RS, resting-state.

were

and reveals that longer data segments are required to more robustly
identify functional connectivity patterns that are unique to individuals.
Notably, inspection of Fig. 5 indicates that accuracy using Pearson
dissimilarity increased very modestly despite substantial increases in
data length. If such trends can be extrapolated, it would suggest that it is
unlikely that accuracy with Pearson dissimilarity would reach that ob-
tained using geodesic distance. Conversely, using the geodesic distance
resulted in higher accuracy than Pearson dissimilarity even when, say,
only a fourth of the data were employed for FC estimation. Thus, a more
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suitable geometry is particularly appealing when data-limited scenarios
are envisioned.

When time course length was trimmed to the same duration, identi-
fication accuracy still varied across scanning conditions. The resting-state
condition resulted in the lowest accuracy. With the data trimmed to the
minimum amount of data, the language task exhibited over 80% accuracy.
Accuracy of all task conditions exceeded 50%, with four of them
exceeding 60%. Thus, even with rather limited amounts of data identi-
fying the participant was considerably better than the chance level of 1%.
In addition, we observed considerable variability is performance across
conditions, consistent with previous literature suggesting that brain
states can be manipulated to emphasize individual differences in FC
(Finn et al., 2017).

Thus far, we have discussed findings based on whole-cortex FC
matrices (300 ROIs were employed). We reasoned that particular subsets
of regions potentially might be more informative than others. To evaluate
this possibility identification was applied to resting-state and task condi-
tions separately for each individual subnetwork of the Yeo parcellation
((Yeo et al., 2011)). The FC matrices employed were therefore relatively
small (the number of ROIs ranged from 20 to 68). Four subnetworks
(vision, dorsal-attention, frontoparietal, default) stood out as consistently
exhibiting the highest levels of performance. The average accuracy across
conditions approach 70% for the four networks. Intriguingly, accuracy
for the language task based on the frontoparietal and default subnetworks
exceeded that observed with the whole cortex. Whereas subnetwork size
might contribute to its ability to identify participants, it is clearly not the
driving factor. For example, the dorsal-attention and the
ventral-attention networks had the same number of ROIs, but the former
outperformed the latter consistently (on average by over 30%).

To further explore subnetwork contributions we also combined the
two that displayed the highest individual accuracy (frontoparietal and
default) into a single network. Remarkably, the combined network al-
ways numerically outperformed the individual subnetworks, and indeed
the entire cortex. When additional subnetworks were combined, accu-
racy initially increased but then decreased. Accuracy peaked at two or
three subnetworks, with whole-cortex FCs having the worst performance
across conditions. Accuracy also varied across combinations of sub-
networks, with the minimum value less than half that of the maximum
when less than four subnetworks were combined. These results are
related to the non-uniformity of within-subject test-retest reliability of
connectivity profiles, and might inform how individual differences are
associated with heritability and cognitive ability (Elliott et al., 2019).
Thus, future work on individual differences using connectomes should
not only consider tasks but also choose appropriate measures and sub-
networks that emphasize these differences.

Although it was beyond the scope of the present study, it would be
valuable to investigate in future studies factors contributing to the per-
formance of individual subnetworks, and their combinations. For
example, subnetworks may contribute highly to identification because
their individual-specific functional connectivity information capitalizes
on the contributions of these subnetworks to task performance. Alter-
natively, but not mutually exclusively, subnetworks that do not partici-
pate as much during a task may contain diagnostic information with
respect to participant identity.

To what extent does participant identification transfer between
experimental conditions? We found that training with one condition and
testing with another produced good levels of identification accuracy.
Certain combinations that on the surface were not obvious produced
particularly impressive results; for example, training with gambling and
testing with working-memory, or training with working-memory and testing
with language. Training with motor produced the least transfer to other
tasks, perhaps due to the low-level specificity of this task. Notably,
training with resting-state produced very high transfer, such that testing
with each task attained accuracy over 75% (with the exception of rela-
tional processing), and in some instances over 90%. The choice of measure
was particularly important for transfer of identifiability and accuracy,
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with working-memory attaining nearly 95% using geodesic distance but
less than 42% using Pearson dissimilarity.

4.2. Low-dimensional distance visualizations

Relationships between high-dimensional FC matrices (300 x 300)
were visualized in three Euclidean-space dimensions using multidimen-
sional scaling. Both the Pearson dissimilarity measure and geodesic dis-
tance were used. Note that computing geodesic distances takes into
account the non-linear geometry of correlation matrices. Once their
distances are computed, and the space nonlinearity taken into account,
they can be illustrated in Euclidean space (naturally, some distortion
ensues due to dimensionality reduction).

In our explorations, low-dimensional visualizations reflected identi-
fication accuracy on the full data, and thus preserved important distance
information. In particular, the higher identification accuracy using the
geodesic distance resulted in relatively low within- and high between-
participant distances. Visualization of FC from task data revealed in-
sights into the geometry of task correlation matrices in relation to resting-
state. Identification accuracy is related to the ratio of within-to between-
participant distances. Surprisingly, with geodesic distances, tasks asso-
ciated with higher identification accuracy exhibited smaller between-
participant distances. Still, the more favorable ratio of within-to be-
tween-participant distances led to favorable identification accuracy.
Thus, the underlying geometry of functional connectivity may provide
further insights into our finding that high identification accuracy was
attained when training and testing were based on different scanning
conditions.

In the visualizations based on geodesic distance, distances between
task FCs did not appear to form convex sets (if A and B are two points in a
convex set, any point on the line joining them also belongs to the set), and
were instead in clustered arrangements. Of note, previous work per-
forming clustering of FCs (Allen et al., 2014; Gonzalez-Castillo et al.,
2015) have used k-means which are not well suited to finding
non-convex clusters (Estivill-Castro, 2002). Instead, methods such as
spectral clustering (Ng et al., 2002) and non-linear support-vector kernels
(Cortes and Vapnik, 1995) are capable of capturing very general struc-
tures, and are potentially more suitable for classifying functional
connectivity.

Pearson correlation is a common approach to compare FC matrices.
The present study demonstrates that non-linear measures are better
suited to characterize functional connectivity relationships. The low-
dimensional visualization briefly explored here hints at the different
geometries associated with the geodesic non-linear metric and the
Pearson approach. Surprisingly, we noted in our investigations that
simple visual inspection of the correlation matrices as commonly done in
the field to highlight similarities between conditions can also be prob-
lematic, and in fact can lead to unintuitive scenarios (Fig. 14).

4.3. Conclusions

Time series correlation matrices capture important aspects of brain
functional organization. Here, we propose the use of a geodesic distance
metric that reflects the underlying non-Euclidean geometry of functional
connectivity matrices. We compared identification performance (also
called “fingerprinting”; that is, assigning a participant label to novel
functional connectivity data) obtained with standard Pearson correlation
and the proposed geodesic distance. The latter not only improved iden-
tification accuracy but also provided insights into the geometry of task
and resting-state conditions. Importantly, the approach advocated here is
general and can be utilized to study the clustering of brain states, how
tasks potentially reconfigure brain networks, and to characterize inter-
subject correlations. Code and html figures are available at https://githu
b.com/makto-toruk/FC_geodesic.
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Fig. 14. Visual comparison of functional connectivity (FC) matrices can be
unintuitive. (A) Example FCs from resting-state data where the geodesic distance
correctly labeled the test participant but Pearson dissimilarity did not. Pearson
dissimilarities and geodesic distances between the test-FC and each of the FCs in
the training data are shown in (B) and (C). The green bar indicates the distance
between the test-FC to the correct training set FC; the red bar indicates an
incorrectly labeled training set FC. For the geodesic distance, the labeled
participant had indeed the smallest value; not so in the case of Pearson
dissimilarity. This example also questions the common practice of informally
evaluating functional connectivity similarity via simple visual inspection. At the
very least, it is not immediate that participant X is more similar to Alice
than Bob.
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