
 1

Constructing Inverted Files: To MapReduce
or Not Revisited

Zheng Wei, Student Member, IEEE and Joseph JaJa, Fellow, IEEE

Abstract— Current high-throughput algorithms for constructing inverted files all follow the MapReduce framework, which

presents a high-level programming model that hides the complexities of parallel programming. In this paper, we take an

alternative approach and develop a novel strategy that exploits the current and emerging architectures of multicore processors.

Our algorithm is based on a high-throughput pipelined strategy that produces parallel parsed streams, which are immediately

consumed at the same rate by parallel indexers. We have performed extensive tests of our algorithm on a cluster of 32 nodes,

and were able to achieve a throughput close to the peak throughput of the I/O system: a throughput of 280 MB/s on a single

node and a throughput that ranges between 5.15 GB/s (1 Gb/s Ethernet interconnect) and 6.12GB/s (10Gb/s InfiniBand

interconnect) on a cluster with 32 nodes for processing the ClueWeb09 dataset. Such a performance represents a substantial

gain over the best known MapReduce algorithms even when comparing the single node performance of our algorithm to

MapReduce algorithms running on large clusters. Our results shed a light on the extent of the performance cost that may be

incurred by using the simpler, higher-level MapReduce programming model for large scale applications.

Key Words— inverted files, MapReduce, multicore processors, cluster, I/O throughput, parallel algorithms, parallel parsing and

indexing, pipeline.

——————————  ——————————

1 INTRODUCTION

HE main goal of this work is to develop optimized
throughput strategies for constructing inverted files
on a cluster of multicore processors, which exploit

current and emerging architectures of multicore proces-
sors. At the same time, we compare the resulting perfor-
mance to the best performance achieved by the much
simpler and higher level MapReduce algorithms thereby
shedding some light on the tradeoff between the pro-
gramming simplicity of the MapReduce framework and
the performance of carefully fine-tuned strategies to the
underlying architectures. The current trend in CPU archi-
tectures increasingly includes more cores on a single chip,
several levels of cache, and a large RAM. In particular, it
is expected that the number of cores will double every 18
to 24 months, and such trend is likely to continue in the
foreseeable future, and such a trend is likely to continue
in the foreseeable future. These multicore processors offer
opportunities for speeding up demanding computations
if the available resources can be effectively used, which is
in general very hard to accomplish for large complex
computations such as the generation of inverted files.

 The extraction of inverted files from a very large col-
lection of documents forms a critical component of all
information retrieval systems including web search en-
gines. A considerable amount of research has been con-
ducted to deal with various aspects related to inverted
files. In this paper, we are primarily concerned with
methods to generate the inverted files with the best pos-

sible throughput. All the recent fast indexers use the sim-
ple MapReduce framework on large clusters, which ena-
bles quick development of parallel algorithms dealing
with internet scale datasets without having to deal with
the complexities of low-level parallel programming. Such
framework leaves the details of scheduling, processor
allocation, and communication to the underlying run time
system, and hence relieves programmers from all the ex-
tra work related to these details. However such an ab-
straction may come at a price in terms of performance,
especially when using the emerging multicore processors.
In this paper, we take the different approach that tries to
exploit the common features present on current multicore
processors to develop an optimized high-throughput al-
gorithm and compare its performance to the best known
MapReduce algorithms.

We conduct extensive tests of our algorithm on a clus-
ter of 32 nodes, each node consisting of two Quad-core
Intel Xeon X5560 processors with 24 GB of main memory
and each quad-core shares an 8MB L3 cache. In our tests,
either a 10Gb/s InfiniBand or a 1Gb/s Ethernet is used as
the interconnect fabric in our cluster; moreover, the input
collection of documents is either distributed among the
disks attached to the nodes or stored on a separate stor-
age pool connected to the cluster through a 4Gb/s pipe.
Each node offers a multithreaded environment with a
shared memory programming model and the nodes
communicate with each other using the Message Passing
Interface (MPI) framework.

The main contributions of this paper are:

 Development of an optimized high-throughput

pipelined strategy for a cluster of multicore

T

————————————————

 Z. Wei and J. JaJa are with the Department of Electrical and Computer
Engineering and Institute for Advanced Computer Studies, University of
Maryland, College Park, MD 20742. E-mail: {zwei, joseph}
@umiacs.umd.edu.

2

processors, under either the 1Gb/s Ethernet or the

10Gb/s interconnect, and under either the

distributed storage model or the centralized storage

pool model.

 Introduction of a number of new techniques to

partition the indexing workload while minimizing

the communication and ensuring load balancing in

such a way that the parallel parsed streams are

immediately consumed at the same fast rate by the

distributed, parallel indexers.

 Generation of extensive experimental results

illustrating scalability relative to the optimized

single node algorithm. In particular, each node

achieves a throughput of 280MB/s, leading to over

6GB/s for the 32-node cluster when the InfiniBand

interconnect is used and over 5GB/s when the 1

Gb/s Ethernet is used. The performance results

seem to be substantially better than the best

previous published results that adopt the

MapReduce framework.

The rest of the paper is organized as follows. In the
next section, we provide a brief background about the
typical strategy used to build inverted files and a sum-
mary of the previous work that is most related to our pa-
per. Section 3 provides a description of an algorithm op-
timized for a single node with multicore processors,
which was introduced in our earlier work [1]. Section 4
extends the algorithm to a cluster of multicore processors
while Section 5 provides a summary of our test results on
three very different, significant benchmarks. We conclude
in Section 6.

2 BACKGROUND AND PREVIOUS RELATED WORK

Our overall process converts a collection of documents
into inverted files consisting of a postings list for each of
the terms appearing in the collection as follows. This
well-known strategy starts by parsing each document into
a “bag of words” of the form <term, document ID> tu-
ples, followed by constructing a postings list for each
term such that each posting contains the ID of the docu-
ment containing the term, term frequency, and possibly
other information. Parsing consists of a sequence of sim-
ple steps: tokenization, stemming, and removal of stop words.
Tokenization splits a document into individual tokens;
stemming converts different forms of a root term into a
single common one (e.g. “parallelize”, “parallelization”,
“parallelism” are all based on “parallel”); and removal of
stop words consists of eliminating common terms, such as
“the”, “to”, “and”, etc. The overall parsing process is well
understood, and follows more or less the same linguistic
rules, even though there exist different stemming strate-
gies.

The next phase consists of constructing the inverted
index. All <term, document ID> tuples belonging to the
same term are combined together to form the postings list
of that term. During the construction, a dictionary is usu-

ally built to maintain the location of the postings list of
each term and to collect some related statistics. Postings
on the same list are usually organized in a sorted order of
document IDs for faster look up. Indexing is a relatively
simple operation—group tuples for the same term to-
gether and then carry out sorting by document IDs—but
it is always by far the most time consuming part given the
typical size of the collection to be indexed.

Recent work includes the sort-based indexing [2] pro-
posed by Moffat and Bell for limited memory. Their strat-
egy builds temporary postings lists in memory until the
memory space is exhausted, sorts them by term and doc-
ument ID and then writes the result to disk for each run.
When all runs are completed, it merges all these interme-
diate results into the final postings lists file. The diction-
ary is kept in memory; however as the size grows, there
may be insufficient space for temporary postings lists.
Heinz and Zobel [3] further improved this strategy to a
single-pass in-memory indexing version by writing the
temporary dictionary to disk as well at the end of each
run. Dictionary is processed in lexicographical term order
so adjacent terms are likely to share the same prefix and
front-coding compression is employed to reduce the size.

We now turn to a review of the major parallel strate-
gies that appeared in the literature. In [4], the indexing
process is divided into loading, processing and flushing;
these three stages are pipelined by software in such a way
that loading and flushing are hidden by the processing
stage. The Remote-Buffer and Remote-Lists algorithm in
[5] is tailored for distributed systems. In the first run, the
global dictionary is computed and distributed to each
processor and in the following runs, once a <term, docu-
ment ID> tuple is generated, it is sent to a pre-assigned
processor where it is inserted into the destination sorted
postings list. Today, MapReduce based algorithms are
prevalent. First proposed in [6], the MapReduce para-
digm provides a simplified programming model for dis-
tributed computing involving internet scale datasets on
large clusters. The Map workers emit <key, value> pairs
to Reduce workers defined by Master node, and the
runtime would automatically group incoming <key, val-
ue> pairs received by a Reduce worker according to key
field and pass <key, list of values associated with this
key> to the Reduce function. A straightforward
MapReduce algorithm for indexing is to use term as key
and document ID as value, in which case the Reduce
workers can directly receive unsorted postings lists. Since
there is no mechanism for different Map workers to
communicate with each other, creating a global dictionary
is not possible. McCreadie et.al let Map worker emit
<term, partial postings list> instead to reduce the number
of emits and the resultant total transfer size between Map
and Reduce since duplicate term fields are less frequently
sent. Their strategy has achieved a good speedup relative
to the number of nodes and cores [7, 8]. Around the same
time, Lin et.al [9, 10] developed a scalable MapReduce
Indexing algorithm by switching <term, post-
ing{document ID, term frequency}> to <tuple{term, doc-
ument ID}, term frequency>. By doing so, there is at most
one value for each unique key, and moreover it is guaran-

Z.WEI ET AL.: CONSTRUCTING INVERTED FILES: MAPREDUCE PERFORMANCE TRADEOFF 3

teed by the MapReduce framework that postings arrive at
Reduce worker in order. As a result, a posting can be im-
mediately appended to the postings list without any post
processing. Their algorithm seems to achieve the best
known throughput rate for full text indexing.

We note that almost all the above strategies perform
compression on the postings lists for otherwise the output
file would be quite large. Because document IDs are
stored in sorted order in each postings list, a basic idea
used is to encode the gap between two neighbor docu-
ment IDs instead of their absolute values combined with
a compression strategy such as variable byte encoding, γ
encoding and Golomb compression.

3 ALGORITHM ON A SINGLE MULTICORE NODE

The starting point of our cluster algorithm is the pipe-
lined strategy on a single node with multicore processors
presented in our earlier paper [1]. This section is devoted
to an overview of this strategy.

3.1 Overall Approach

Briefly, a number of parsers run in parallel on the multi-
core CPU, where each parser reads a fixed size (typically,
1GB) block from the disk containing the documents, exe-
cutes the parsing algorithm, and then writes the parsed
results onto a buffer. A number of indexers pull parsed
results from the buffer as soon as they are available and
jointly construct the postings lists, which are written into
a disk as soon as they are generated. The dictionary re-
mains in main memory until the whole process is com-
pleted. Such a pipelined data flow avoids writing inter-
mediate results onto disks unlike the Map workers used
in the MapReduce framework, which typically transfer
data to Reduce workers via disks [6-10].

There are many details that need to be carefully
worked out for this approach to achieve optimal
throughput. Here we summarize the key aspects used in
the rest of the paper, starting with the dictionary data
structure.

In [1], we introduce a hybrid data structure consisting
of a trie at the top level and a B-Tree attached to each of
the leaves of the trie as shown in Fig. 2. Essentially, terms
are mapped into different groups, called trie-collections,
each of which is then represented by a B-tree.

In our case, we fix the height of the trie to three, which
implies that the first three letters in a term are used to
determine the corresponding the index of the trie collec-
tion. We observe that there are still a significant number
of terms with less than four letters or have at least one
letter outside range [a-z] in the first three letters. To ac-
commodate such terms, we create additional 1024 trie
collections indexed 0-1023 and use a hash function for a
balanced distribution.

In addition to allowing a high degree of parallelism
through the independent B-trees, our hybrid data struc-
ture achieves two additional benefits. Since we replace a
big B-tree by many small B-trees, the heights of the B-
trees are smaller, implying that the time to search or in-
sert a new term is reduced as well. Another advantage of
the trie lies in the fact that terms belonging to the same
trie index share the same prefix (except trie indices 0-
1023) and hence we can eliminate such common prefix
and save memory space for term strings and reduce
string comparison time in B-tree operations. The average
length of a stemmed token is 6.6 in the ClueWeb09 da-
taset and hence removing the first three letters results in
almost doubling the string comparison speed. An alterna-

TABLE 1
TRIE-COLLECTION INDEX DEFINITION

Index Term Category Example

Terms not Falling in to

the Next Categories

(1024 entries)

0

Terms with less than four letters or contain

one or more symbol outside [a-z] in the first

three letters

“-80”, “3d”, “Česky”

“01”,“0195”

“9”, “954”

“a”, “at”, “act”, “añonuevo”

“z”, “zoo”, “zoé”

1

…

1023

Terms with >3 letters and

no special letter in the

first 3 letters

(26*26*26=17576 entries)

1024 Terms with >3 letters and starting with ‘aaa’ “aaat”, “aaaé”

1025 Terms with >3 letters and starting with ‘aab’ “aabomycin”

… … …

18599 Terms with >3 letters and starting with ‘zzz’ “zzzy”

Fig. 1. Pipelined and Parallel Parsing and Indexing on a Single Node

Fig. 2. Hybrid of Trie and B-Tree Structure of Dictionary

4

tive option to the trie is to simply use a hash function for
all the terms, but this will still require comparisons and
searches to be performed on whole strings and hence
won’t be as effective as the trie.

The structure of a B-tree node is illustrated in Table 2.
The degree of B-tree is 16, that is, each node can hold up
to 31 terms. Since the length of a term string is not fixed
but varies over a wide range, it is impossible to store the
strings within a fixed B-Tree node; instead, pointers are
used to indicate the memory location of the actual strings.
During a search or insert operation into one of the B-trees,
strings are accessed through these pointers, and such op-
erations can be quite expensive. To get around this prob-
lem, we include 31 four-byte caches in each node. These
caches are used to store the first four bytes of the corre-
sponding term strings.

3.2 Structure of Parallel Parsers

As shown in Fig. 1, we will have M parsers running in
parallel on a single node. Each parser processes a segment
of documents independently after reading the segment
from disk as illustrated in Fig. 8. The number M of
parsers depends on the number of CPU cores and overall
resources available, to be discussed later.

Here we describe the sequence of operations executed
by each parser, illustrated in Fig. 3. Each such sequence
will be executed by a single CPU thread. The correspond-
ing steps are briefly described next.

 Step1 reads files from disk, decompresses them if

necessary, assigns local document ID to each

document, and builds a table containing <document

ID, document location on disk> mapping.

 Step2 performs tokenization, that is, parses each

document into tokens and determines the trie index

of each resulting term.

 Step3 performs Porter stemmer.

 Step4 removes stop words using a stop word list.

 Step5 rearranges terms with the same trie index so

that they are located contiguously. In addition, the

prefix of each term captured by the trie index is

removed.

The first four steps are standard in most indexing sys-

tems. Step5 is special to our algorithm. Essentially, this
step regroups the terms into a number of groups, a group
for each trie collection index as defined by our dictionary
data structure. We note that the overhead of this regroup-
ing step is relatively small, about 5% of the total running
time of the whole parsing process. This is due to the fact
that tokenization scans input document character by
character and hence a trie collection index can be calculat-
ed as a by-product using a minimal additional effort.

This regrouping is needed for our parallel indexing al-
gorithm. More specifically, when indexing is carried out
by a serial CPU thread, regrouping results in approxi-
mately 15-fold speedup based on our tests. The improved
performance is due to improved cache performance
caused by the additional temporal locality. Now we are
processing a group of terms falling under the same trie
collection index, which are inserted into the same small B-
tree whose content stays in cache for a long time.

Therefore, after processing a number of documents
(contained in a 1GB file in our case), the parsed results
organized according to trie index values will be passed to
the indexers. For each trie collection, the parsed results
will look like:

Trie Collection: (Doc_ID1, term1, term2, …), (Doc_ID2,
term1, term2, …), …

Doc_IDs on the lists are local IDs within each parser. A
global document ID offset will be calculated by the index-
er and then the global document ID can be obtained by
adding Doc_ID and the global offset.

3.3 Structure of Parallel Indexers

The purpose of an indexer is to construct all the B-trees
and the postings lists corresponding to each input term as
shown in Fig. 4. To ensure load balancing, a CPU thread
will take care of the B-trees of several trie collections as
we explain later.

An indexer is executed by a single CPU thread, which
follows the commonly used procedures for building the
B-tree and the corresponding postings lists. The only dif-
ference is to make use of the fact that a cache is included
within each B-tree node. Hence, when a new term is in-
serted into a B-tree, the first 4-bytes of the string are
stored in the string cache field in the appropriate B-tree
node. The remaining bytes, if any, are stored in another
memory location, which can be reached via the string
pointer for this term.

We observe that two tokens, appearing close to each
other in a single document and belonging to the same trie

TABLE 2
DATA STRUCTURE OF ONE B-TREE NODE

Field Number Data Size (Byte)

Valid term number 1 4

Pointer to term string 31 124

Leaf indicator 1 4

Pointer to postings lists 31 124

Pointer to children 32 128

4-Byte cache for term string 31 124

Padding 1 4

Total Size 512

Fig. 3. Data Flow of One Parser Thread

Z.WEI ET AL.: CONSTRUCTING INVERTED FILES: MAPREDUCE PERFORMANCE TRADEOFF 5

collection, are likely to be the same term. For example,
“that” is a commonly used term and hence the next term
with prefix “tha-” is also likely to be “that”; on the other
hand, an unusual term such as “zooblast” has the same
implications since there are few terms with prefix “zoo-”.
We can mine such linguistic facts here because of the trie
structure that groups terms with common prefix together.
Therefore, we use a special cache to store the last term
inserted into B-Tree and the location of its postings list.
Then we compare the next term with the term stored in
the cache and if they match we skip the B-tree operations
and immediately update the corresponding postings list.
We enable such cache only within a single document be-
cause different documents will behave differently in
which case caching is ineffective in general.

We now address the issue of assigning the 18,600 trie
collections among the parallel indexer threads so that the
load will be distributed almost equally among the
threads.

In [1], we argue that a sampling strategy is the most ef-
fective to allocate parsed streams to indexers. Sampling
refers to extracting a sample from the document collec-
tion at the very beginning, for example a random 1MB
out of every 1GB, and run several tests on the sample to
determine the best partitioning strategy of the trie collec-
tions. In this case, once a trie collection is assigned to a
certain indexer, it will always be processed by the same
indexer throughout the lifetime of the algorithm, that is,
there is a persistent binding between a trie collection and
the indexer ID.

In addition to the main indexing step, pre-processing
delivers input from buffer to multiple indexers and post-
processing combines postings lists from all indexers,
compresses them with variable byte encoding and then

writes the compact results to disk. These two steps are
serialized. Each iteration, beginning with the data in a
parser buffer and ending in postings lists is referred to as
a run illustrated in Fig. 6.

3.4 Overall Pipelined Data Flow

In our setting, the input document data collection is
stored on a disk and is processed through our multicore
CPU platform to generate the postings lists and store
them on a disk. The dictionary is kept in main memory
until the last batch of documents is processed, after which
it is moved to the disk. The number of parsers and the
number of indexers are determined depending on the
physical resources available. In Section 5, we determine
the best values of these parameters for our platform.

To avoid several parsers from trying to read from the
same disk at the same time, a scheduler is used to organ-
ize the reads of the different parsers, one at a time. On the
other hand, an output buffer is allocated to each parser to
store the corresponding parsed results. The indexers in
the next stage will read from these buffers in order, that
is, (buffer of Parser 0, buffer of Parser 1, …, buffer of Par-
ser M-1, buffer of Parser 0, …). Such read sequence is en-
forced to ensure that document first read from disk will
also be indexed first so the postings lists are intrinsically
in sorted order of assigned document IDs. A parser has to
also wait until buffer is cleared to start the parsing of the
next block of documents to ensure that it has the space to
write the parsed results. When these constraints are ap-

Fig. 4. A B-tree Corresponding to a Single Trie-Collection Index

Fig. 5. Work Assignments among Multiple Indexer Threads

Fig. 6. Data Flow of One Single Run on Parallel Indexers

Fig. 7. Pipelined and Parallel Parsing and Indexing on a Single Node

Fig. 8. Timing Sequence of Parallel Parsers

6

plied, the timing sequence of parallel parsers looks like
the example shown in Fig. 8.

We note that a separate output file is created for the
postings lists generated during a single run, whose head-
er contains a mapping table indicating the location and
length of each postings list. This mapping table is indexed
by the pointers to postings lists stored in the dictionary as
shown in Table 1. To retrieve a postings list for a certain
term string, we look it up in the dictionary and use the
corresponding pointer to determine the location of the
partial postings list in each of the output files. Additional
benefits of this output format are described in [1]. If nec-
essary, we can combine the partial postings lists of each
term into a single list in a post-processing step, with an
additional cost of less than 10% of the total running time.

4 ALGORITHM ON A CLUSTER

We now extend our single node strategy to a cluster of
multicore processors. Our goal is to build a global dic-
tionary and generate the postings lists stored on external
storage with the maximum possible throughput. There
are two possible strategies to extend the algorithm.

 Divide-and-Merge. Each node processes an equal

portion of the document collection following the single

node algorithm, after which the local dictionaries and

postings lists from all the nodes are merged. This method

follows the standard divide-and-conquer strategy and

hence its effectiveness depends on the merging phase.

 Partition-and-Index. At the end of each parsing stage,

parsed streams are distributed among the cluster nodes in

such a way that parallel indexers complete the indexing

process with no need to communicate. This strategy

includes a sampling preprocessing step that creates a

persistent mapping between the trie collection indexes and

the IDs of the indexers, which is used to distribute the

parsed streams to the nodes.

It is clear that the divide-and-merge strategy will
achieve excellent performance during the first stage of
parsing and indexing because every node will work in-
dependently on its portion of the document collections
with no communication required between the nodes.
However the merge stage is quite complex since all the
different tries and their trie collections have to be com-
bined into a single global indexing structure, a task that
seems to require a substantial communication and coor-
dination overhead.

On the other hand, the partition-and-index approach
requires a careful fixed (regardless of the block of docu-
ments being processed) assignment of trie collections to
indexer thread IDs so that the generated output (trie, B-
trees, and postings listings) will always be distributed
almost equally among the nodes. This strategy incurs
some communication overhead up front immediately
after a block of documents are parsed. However, at any
time, our approach ensures that the dictionary is a coher-
ent, global dictionary, stored on multiple nodes, and the
postings lists will contain global document IDs. To handle

the interprocessor communication between the parsing
and indexing phases of the pipelined algorithm, we insert
a separate communication phase into the original pipe-
line. The latency of the pipeline increases but we will in-
troduce techniques to ensure that the throughput will
stay more or less the same.

The data flow of the partition-and-index approach is il-
lustrated in Fig. 9. Unlike the case of a single node where
all parsing or indexing threads share the same main
memory, the parsers and indexers are now spread across
the cluster and communicate through the interconnect
fabric (10Gb/s InfiniBand or 1GB/s Ethernet in our case).
This will be described in more details shortly.

4.1 Storage Model: Centralized Storage Pool
Versus Distributed Storage

Every node of our cluster has two disks attached to it; in
addition, the cluster also has a 4Gb/s link to a remote file
server managing hundreds of terabytes of storage. There-
fore two storage models for handling the input and out-
put files are possible: (i) all files reside on the remote stor-
age pool; or (ii) the files will be distributed to the disks
attached to the nodes. The remote storage pool model
seems more appealing for realistic scenarios since docu-
ments are usually deposited in a centralized storage pool,
processed on a cluster, and then the inverted files are
transferred to another cluster for search and retrieval. In
our case, our storage pool model has a serious drawback,
namely the 4Gb/s bandwidth that cannot keep up with
the necessary throughput when we use more than 8
nodes on our cluster. The distributed storage model is
similar to the storage model used in MapReduce since a
distributed file system is used on the nodes of the cluster.
Moreover, this model can provide scalable I/O band-
width as a function of the nodes available. The output,
including dictionary and postings lists, is stored on local
disks. We will test our algorithm using both models.

4.2 Partitioning the Work among the Nodes

As in the case of the single node algorithm, the document
collection is divided into fixed-sized segments (typically
1GB WARC files) which are assigned to parallel parsers.
In both centralized and distributed storage models, read
requests of parallel parsers from the same node are serial-
ized to avoid contention on network interface or local
disks. Note that, under the centralized storage model,
read requests from different nodes have to compete for
the 4Gb/s connection to the storage pool. In both cases,
parallel parsers work independent of each other except
when reading the data from external storage.

We now address the critical issue on how to assign the

Fig. 9. Data Flow of Partition-and-Index Strategy

Z.WEI ET AL.: CONSTRUCTING INVERTED FILES: MAPREDUCE PERFORMANCE TRADEOFF 7

workloads to the indexers. Prior to parsing, we collect a
document sample (specifically, a random 1MB from each
1GB file) from the collection, parse it, and use the parsed
stream to determine an almost equal-size partition of the
trie collections into k=N*P partitions, where N is the
number of indexers per node and P is the number of
nodes. We then use the k partitions to create a mapping
between trie collections and indexers, which will create a
binding that will persist throughput the processing of the
document collection. As a result, the postings lists associ-
ated with a certain trie collection will all be written to the
same local disk of the node where the corresponding in-
dexer is running.

Another more elaborate strategy consists of a combina-
tion of sampling and dynamic round robin scheduling,
where trie collections are first assigned to the nodes ra-
ther than indexers using the sampling method, followed
by a dynamic round robin scheduling to allocate the work
among the indexers on each node. This strategy achieves
a better load balance than just sampling but the overall
throughput is not as good, due to cache locality that is
clearly enhanced when there is a persistent binding be-
tween trie collections and indexers.

Once the parsers on a node process their documents,
the trie collections (each consisting of a document ID, fol-
lowed by the corresponding bag of words, another doc-
ument ID followed by its bag of words, and so on in sort-
ed order by document IDs) will be distributed to the
nodes according to the assignment determined by the
sampling method. Indexers on a node will start indexing
at the same time once the previous load is consumed and
the next message load arrives. Note that indexers from
different nodes will not necessarily start indexing at the
same time because messages may reach their destinations
at different times. Our main goal is to ensure that all
parsers and indexers are kept busy so as to achieve the
maximum possible throughput.

4.3 Communication Strategy between Parsers and
Indexers

A straightforward way to manage the communication
between parsers and indexers is to let each parser thread
construct and send P MPI messages after each segment is
parsed. This strategy does not work well when the num-
ber of nodes is large due to the presence of many very
small messages as P increases. For example, consider the
ClueWeb09 collection, for which a segment is of size 1GB
and the corresponding parsed stream is of size 130MB. In
this case, the size of a message is about 4MB when P=32,

which only takes about 8 ms time to send it from one
node to another using the 10Gb/s InfiniBand and about
60ms using the 1Gb/s Ethernet while the overhead to
initialize such message is comparable to the transmission
time. We can increase the collection segment size but we
are limited by the memory size of each node as we have
to be able to accommodate the segments for all the M
parsers at the same time.

To address this problem, we introduce the notion of a
distributor to manage communication in the pipeline. The
job of a distributor on each node is to collect parsed re-
sults from the parsers running on the node over several
segments, and then build the corresponding messages to
the P nodes. The size of each parsed stream is much
smaller than the original collection segment, and hence
the memory can accommodate the parsed results of tens
of segments. No changes are required for the parsers, ex-
cept that the parsed results are now consumed by the
distributor.

Another task of the distributor is to update the docu-
ment IDs before the messages are constructed. Document
IDs appearing in the parsed streams are local to each col-
lection segment; therefore these need to be modified into
DOC_IDs relative to the corresponding batch of parsed

Fig. 12. Overall Data Flow in the Cluster

Fig. 11. Message Construction by Distributor

Fig. 10. Data Flow of Parallel Indexers on One Node in the Cluster

8

results. The total number of documents is also included in
the messages distributed to indexers so that indexers can
calculate global offsets for DOC_IDs from the history of
document numbers.

4.4 Overall Data Flow on the Cluster

Putting all the pieces together, we get the overall data
flow shown in Fig. 12 for a cluster of multicore proces-
sors. Similar to the single node case, we use synchronous
communication to enforce the sequence of messages pro-
cessed by indexers, that is, each node sequentially re-
ceives messages from node 1 through node P.

The data sizes or segment numbers processed by dif-
ferent parsers in the cluster are not necessarily the same.
For example, in the distributed storage model data are not
split evenly among local disks on all nodes. In this scenar-
io, some parsers exit earlier than others (i.e., when all as-
signed segments are processed), but all indexers stop
when the last batch is completed.

5 EXPERIMENTAL RESULTS

We test the performance of our algorithm on a cluster
with 32 nodes, each node holding two Intel Xeon X5560
Quad-core CPUs and 210 GB disk. We use three signifi-
cant collections that exhibit different characteristics. We
start with ClueWeb09 English collection, which has been
heavily utilized as a benchmark by the information re-
trieval community. Crawled between January and Febru-
ary 2009 by Language Technologies Institute at Carnegie
Mellon University, this data set includes 503,903,810 web
pages packed into 13,217 files of total size 1.89TB com-
pressed and 12.16 TB uncompressed. A subset of this col-
lection, the first English segment, is used to tune parame-
ters and compare results with previously published re-
sults. The second data set is the Wikipedia01-07 data,
which is derived from a publicly available XML dump of
Wikipedia articles created on January 3th 2008 with 83
monthly snapshots between February 2001 and December
2007. The third collection is the Congressional data set
from the Library of Congress, which includes weekly
snapshots of selected news and government websites
crawled between May 2004 and September 2005 by Inter-
net Archive. The overall characteristics of the four
benchmarks are given in Table 3. The number of terms
and tokens may vary in different implementations due to
the choice of tokenization and stemming procedures.

The generated output, postings lists and dictionary, are

written to local disks. We report results that are averaged
over three trials but we note that, in all our tests, the dif-
ferences between the fastest and slowest execution times
have been less than 5%. We first report the results on the
cluster using the 10Gb/s InfiniBand interconnect, and
later report the results for the case for the 1Gb/s Ethernet
interconnect. Disk cache in memory is carefully cleared
prior to every experiment. The throughput numbers cor-
respond to the uncompressed collection size divided by
the corresponding total running time.

Before proceeding, we examine the format of the input
data to be processed by the parsers. A typical file of the
ClueWeb09 data set is about 160MB compressed and 1GB
uncompressed. On average, it takes about 1.6 seconds to
read such a compressed file from either a local disk or the
storage pool, and 3.2 seconds to decompress it. On the
other hand, it takes about 10 seconds to read the uncom-
pressed file. Therefore we load the compressed files and
then decompress them in memory before parsing. There
are two possible options to proceed: decompression can
be folded into either the file read stage or can be per-
formed as a separate step after reading. The advantage of
the former is that decompression can be partially hidden
by file reading time if decompression starts whenever
partial data becomes available in memory, so the overall
time for reading and decompressing a file takes 3.8 se-
conds on average, which translates into 263MB/s intake
bandwidth. The disadvantage of this method is that the
file access right cannot be released to another parser until
reading and decompression are both completed. This
causes a mismatch between the data generated by the
parsers and the data consumed by the indexers. Hence we
choose the second scheme in which decompression starts
after the file is fully transferred to memory. In this case,
the average time to read a compressed file is (1.6+3.2/M)
seconds where M is the number of parallel parsers. When
M=6, the intake bandwidth reaches as high as 467MB/s.

In what follows, we start by determining the best val-
ues of the numbers of parsers and indexers for the single
node algorithm (described in Section 3), which will be
used as the basis for our scalability results. This will be
followed by summarizing the performance of our single
node algorithm on the three document collections. We
then show that our cluster algorithm is scalable, relative
to the optimized single node algorithm, up to the largest
number of available nodes, using several scalability met-
rics. We end by comparing the performance of our algo-
rithm to the best known results in the literature.

TABLE 3
STATISTICS OF DOCUMENT COLLECTIONS

 ClueWeb09 English ClueWeb09 1st Eng Seg Wikipedia 01-07 Library of Congress

Compressed Size 1,936GB 230GB 29GB 96GB

Uncompressed Size 12,453GB 1,422GB 79GB 507GB

Crawl Time 01/09 to 02/09 01/09 to 02/09 02/01 to 12/07 05/04 to 09/05

Document Number 503,903,810 50,220,423 16,618,497 29,177,074

Number of Terms 447,373,242 84,799,475 9,404,723 7,457,742

Number of Tokens 281,794,398,151 32,644,508,255 9,375,229,726 16,865,180,093

Z.WEI ET AL.: CONSTRUCTING INVERTED FILES: MAPREDUCE PERFORMANCE TRADEOFF 9

5.1 Optimal Numbers of Parallel Parsers and
Indexers on a Single Node

The performance of our single node algorithm on the
ClueWeb09 first English segment as a function of the
number M of parsers is shown in Fig. 13 under two sce-
narios: (1) M parsers and 8-M indexers; and (2) M parsers
without any indexers. The value of M varies from 1 to 7
since there are only eight cores on each node. The second
scenario illustrates the best possible throughput achieved
by just parsing the document collection.

When the number of parsers is within the range 1
through 6, we observe similar performance in both sce-
narios, including an almost linear scalability as a function
of the number of parsers. This indicates that the indexers
are keeping up with the data generated by the parsers
and hence, within this range, the parsers constitute the
slow stage of the pipeline. The major limitations to speed-
ing up the parsers include the sequential access to the
single disk and the contention on cache and memory re-
sources. Beyond 6 parsers, when the number of indexers
decreases, the indexing pipeline stage is not able to catch
up with the parsing stage, indicating that a ratio of 6:2
between parsers and indexers is the best possible on our
single 8-core CPU.

5.2 Indexing Throughput and Dictionary Growth

Given that we have already determined that the best
overall performance on a single node is achieved by using
six parsers, we now take a closer look at the indexing
throughput of parallel indexers, not including the pre-
processing and the post-processing steps. We track the
time of the parallel indexers spent on each file in the
ClueWeb09 first English segment and compute the
throughput for each file as shown in Fig. 14. Note that
starting with file index 1,201, we can see a significant
drop in performance. This can be explained by the fact
that the files with indices from 1,201 to 1,492 all belong to
Wikipedia.org, and hence they exhibit a totally different
behavior than the earlier documents. This portion of the
Wikipedia files is relatively small within the ClueWeb09
first English segment, and hence the parameters deter-
mined by the sampling process do not effectively reflect
the characteristics of this small subset.

The overall slope consists of a sharp decrease near the
beginning followed by a trend that approaches a horizon-
tal line. This pattern correlates well with the inverse of the
depth of B-tree because as the B-trees grow deeper, it
takes more time to perform insert or search operations.

5.3 Performance of our Algorithm on Different
Document Collections

We show in Table 4 the overall throughput of our algo-
rithm on our three document collections. For all tests, six
parsers and two indexers are used to achieve the best per-
formance. The throughput achieved on the ClueWeb09
and Library of Congress datasets is within the same ball-
park. For the Wikipedia01-07 collection, the HTML tags
were removed, and the remainder is just pure text. As we
can see from Table 3, the uncompressed size is only
1/18th of ClueWeb09 first English segment, yet the num-
bers of documents and tokens are about a third compared
to those of the ClueWeb09 first English segment. Hence
the slower than 100MB/s throughput achieved on Wik-
ipedia01-07 actually amounts to a very high processing
speed given the large numbers of documents and tokens.

5.4 Scalability of the Cluster Algorithm Relative to
the Optimized Single Node Algorithm

We use three metrics to evaluate the scalability of our
cluster algorithm on a cluster with 32 nodes with multi-
core processors—we measure throughput scalability by
(1) increasing the number of nodes with the same overall
input data; (2) increasing the number of nodes while
keeping the data size fixed per node; and (3) increasing
the size of the data on 32 nodes.

5.4.1 Scalability Relative to the Number of Nodes over
the same Document Collection

Due to the limited size of local disks on each node, we
can’t store the first English segment of ClueWeb09 locally
on less than four nodes for the distributed storage model
and hence we measure performance on four or more
nodes. In this case, Table 5 shows the overall throughput
and speedup calculated relative to the best performance
of the single node algorithm, with six parsers and two
indexers on each node. Notice that the cluster implemen-
tation of our algorithm running on a single node has al-
most the same performance as the version tailored for a

TABLE 4
PERFORMANCE COMPARISON ON DIFFERENT DOCUMENT

COLLECTIONS

ClueWeb09

1st Eng Seg

Wikipedia

01-07

Library of

Congress

Throughput (MB/s) 280.12 78.29 223.76

Fig. 13. Optimal Number of Parallel Parsers and Indexers on A Single
Node

Fig. 14. Detailed Throughput of Parallel Indexers

10

single node on the storage pool model. When the number
of nodes is less than or equal to eight, we achieve almost
linear scalability in both storage models. With more than
eight nodes, there is limited improvement under the stor-
age pool model since a large number of nodes have to
compete for the 4Gb/s external link to data server; how-
ever, the throughput of the distributed storage model
continues to improve up to the maximum number of
nodes available to us. In particular, the throughput on 32
nodes increases by a factor over 22 relative to the
throughput of the best single node algorithm; this trans-
lates into 6.12GB/s throughput over 32 nodes.

We now take a closer look at the performance of our
algorithm when the centralized storage model is used.
We conduct tests that simulate the I/O behaviors of the
storage using 1 to 32 nodes, and compare the execution
times with those obtained by running our algorithm on
the same document collection (first English segment of
ClueWeb09). Two concurrent threads, one for input and
the other for output, are used. Since there is a scheduler in
our case to ensure that at any time at most one parser
thread is reading from the disk, only a single input thread
is included in the tests to just read the same document
collection. After this thread reads a segment (the same
1GB as in our algorithm), the output thread will write to
disk certain data of the same size as that of the postings
lists produced by our algorithm. Reading and writing
may occur at the same time, and hence such tests reflect
the I/O pattern of our algorithm and as a result they are
able to capture the peak I/O throughput of the underly-
ing file system.

The numbers in Table 6 show that in the centralized
storage model our algorithm is processing the input at
almost the same rate at which the input can be read when
using 8, 16 and 32 nodes. This confirms the fact that the

throughput of our algorithm on the storage pool model is
limited by the link bandwidth when using more than 8
nodes. Note that the peak reading throughput is 350MB/s
(or 2.8 GB/s), which achieves near 70% of peak perfor-
mance of the 4Gb/s pipe.

On the other hand, the throughput for reading from
the local disks scales linearly under the distributed stor-
age model. However, the throughput of our algorithm is
able to catch up with at least 43% of the reading through-
put. Note that in our algorithm the pipeline may stall as
illustrated in Fig. 8, and there exist additional costs such
as sampling time, and therefore it would be difficult to
achieve better ratios.

In some cases, web crawling and indexing processes
may run concurrently in a streamed fashion, where a
crawled document collection is expected to be immediate-
ly processed by parsers and indexers. In this streamed
model, our algorithm has a clear advantage over
MapReduce because in both centralized and distributed
storage models, the throughput of our algorithm is close
to the peak I/O bandwidth and hence document collec-
tions can be processed as fast as they are streamed.

We next examine the best combination of the number
of parsers and the number of indexers for our cluster al-
gorithm. Note that we have earlier found that 6 parsers
and 2 indexers achieve the best performance on a single
multi-core node. Fig. 16 shows the overall throughput of
seven potential combinations of (Number of Parsers,
Number of Indexers) using 4, 8, 16 and 32 nodes in dis-
tributed storage model. It is clear that the combination 6:2
achieves the best performance in all cases, and the
streams are consumed at the same rate as they are pro-
duced in this case.

TABLE 6
RATIO OF THE THROUGHPUT OF OUR ALGORITHM AND PEAK

I/O THROUGHPUT

Number of

Nodes

Distributed Storage

Model

Centralized Storage

Model

1 — 0.46

2 — 0.43

4 0.56 0.74

8 0.60 0.96

16 0.52 0.97

32 0.43 0.95

Fig. 16. Optimal Number of Parsers and Indexers on Cluster in Dis-
tributed Model

TABLE 5
SCALABILITY OVER THE NUMBER OF NODES WITH SAME

INPUT DATA

Number

of Nodes

Distributed Storage

Model

Centralized Storage

Model

Throughput

(GB/s)
Speedup

Throughput

(GB/s)
Speedup

1 N/A N/A 0.27 0.97

2 N/A N/A 0.53 1.92

4 1.06 3.87 0.98 3.56

8 2.10 7.66 1.69 6.17

16 3.69 13.49 1.70 6.22

32 6.12 22.38 1.82 6.64

Fig. 15. Scalability over the Number of Nodes with Same Input Data

Z.WEI ET AL.: CONSTRUCTING INVERTED FILES: MAPREDUCE PERFORMANCE TRADEOFF 11

We now shed additional light on the extent of load
balancing by comparing the relative numbers of inverted
files generated on each of the 32 nodes of our cluster. On
the first English segment of ClueWeb09 processed by 32
nodes, we set the average size of inverted files on a node
to 1. Then the maximum size of inverted files on any node
is 1.128 and the minimum is 0.834 with a standard devia-
tion of 0.0678. This indicates a very good load balance
between the 32 nodes.

5.4.2 Scalability Relative to the Number of Nodes with
Fixed Data Size per Node

After placing 45GB of uncompressed document collection
(part of the first English segment of ClueWeb09) on each
node, we examine the scalability of our algorithm as the
number of nodes increases from 1 to 32. The performance
results are listed in Table 7. The execution time degrades
slightly as the number of nodes increases. This degrada-
tion is to be expected since the size of document collection
grows linearly with the number of nodes, and hence the
dictionary becomes much larger when P=32 compared to
the case when P=1.

5.4.3 Scalability over Data Size

Fig. 17 shows the scalability as a function of the input size
with the algorithm running on 32 nodes. We start with
the first English segment of ClueWeb09, then add the se-
cond English segment, and continue until all the ten Eng-
lish segments are there. The running time is a linear func-
tion of the input size with a variance of R2=0.9985. This
implies that our algorithm has stable throughput regard-
less of the collection size. Since we transfer postings lists
to disks after each single run and the buffer size required
by parsers is fixed, the only growing part of our pipelined
algorithm is the dictionary size. As long as each local part
of the dictionary can fit in the node’s main memory, our
algorithm is linear as a function of the input size since the

dictionary size grows very slowly after the first few runs.

5.5 Performance Results under the 1Gb/s Ethernet
Interconnect

So far we have determined how to achieve balanced per-
formance between parsers and indexers using the 10Gb/s
InfiniBand as the interconnection fabric. However, such
expensive network interface is not used on MapReduce
clusters. To conduct a fair comparison, we perform exper-
iments using the 1Gb/s Ethernet interconnect on our clus-
ter.

Let’s first take a look at the impact of network speed in
an ideal parsing pipeline where each pipeline stage takes
constant time with no idle time for each parsing thread. In
our implementation we enforce that the buffer containing
the parsed result must be cleared by the distributor before
the parsing thread could start processing the next seg-
ment. After collecting all the parsed results from parser 1
to parser M, the distributor will send the parsed data to
the appropriate destination nodes. Before this type of
communication is executed, the distributor cannot collect
any parsed results and hence if at this time a parser fin-
ishes the next parsing round, it has to wait until the dis-
tributor has completed its data exchange task. An exam-
ple is shown in Fig. 18, where parser 1 becomes idle since
it finishes its second parsing round before the end of the
data exchange of the previous round.

To prevent such stalls in the pipeline, the following
equation must be satisfied:

TP - (M - 2)TD ≥ TN

where TP is the parsing time, M is the number of parsers
on one node, TD is the time to read the compressed seg-
ment from disk, and TN is the time to distribute the
parsed results over the network. On average, the pro-
cessing of 1GB uncompressed ClueWeb09 data, we have
TD = 1.6 seconds, TP = 16 seconds, and TN = 1.9 seconds
when the Ethernet interconnect is used, or TN = 0.26 se-

Fig. 17. Scalability over the Size of Input Documents

Fig. 18. Impact of Distribute Time in the Ideal Pipeline

TABLE 7
SCALABILITY OVER THE NUMBER OF NODES WITH FIXED

DATA SIZE PER NODE

Number of Nodes Time (second)

1 177.40

2 183.22

4 186.19

 8 195.95

16 203.90

32 232.2

Fig. 19. Performance on 32 nodes using the 1Gb/s Ethernet

12

cond when the InfiniBand is used. As a result, we obtain
that the number of parsers on each node has the follow-
ing upper bound: M ≤ 5 with Ethernet and M ≤ 10 with
InfiniBand. This argument presents an analysis of the
impact of the network characteristics assuming that we
have to achieve an ideal pipeline.

From the experimental results with 32 nodes shown in
Fig. 19, we have the following results:

 The optimal combination when using Ethernet is

four parsers and three indexers, which is very close

to the bound M ≤ 5 limit we calculated above;

 When the number of parsers varies from four to six,

better throughput is obtained from fewer parsers

when the number of indexers is fixed to either two

or three;

 With four or five parsers, increasing the number of

indexers from two to three leads to higher

throughput because more indexers can consume

data streams faster and therefore the indexing stage

is less likely to impede the speed of the pipeline;

 There is no benefit from using more than three

indexers and in fact it is better to let the remaining

CPU cores serve the operating system and network

processes rather than trying to consume non-

existent parsed data.

 The optimal throughput with Ethernet is about 89%

of that achieved with InfiniBand assuming the same

parameter configuration and 82% of the best

throughput possible with InfiniBand.

5.6 Comparison with Fastest Known MapReduce
Indexers

In this section, we compare the performance of our algo-
rithm with the best known MapReduce algorithms that
appeared in the literature, namely Ivory MapReduce [9,

10] and Terrier MapReduce [8] on exactly same
ClueWeb09 1st English segment data set. Both of these
algorithms are implemented using the MapReduce
framework, and hence the comparison is somewhat un-
reasonable since these are high level algorithms that do
not exploit the underlying architectures. The Ivory
MapReduce tests are conducted on exactly the same
ClueWeb09 collection as ours using a cluster of either 99
or 280 nodes, each node having two cores. Positional
postings lists are generated by the Ivory MapReduce al-
gorithm, which will add an extra overhead. For a better
comparison, we also modified our software to include
positional information. In our experiments, our algorithm
on single node is 7% slower and about 10% slower on the
cluster, while the resulting postings lists are about 1.6
times larger. The slowdown is slightly higher on the clus-
ter because we have to transfer more intermediate results
over the cluster interconnect. According to [11], their Ivo-
ry MapReduce implementation with positional indexes is
about 1.2 times slower compared to non-positional index-
es, which is very close to the 1.6 times increase in postings
lists size. We believe that this result is due to the fact that
under the MapReduce framework, intermediate results
are written to disks and shuffled in between Map and
Reduce, a process that is more sensitive to the increase in
data size. In our algorithm, dictionary lookup or B-tree
search operation consumes the majority of CPU cycles
and as a result structural changes in postings lists should
not introduce a significant overhead. Parsing and index-
ing times are reported separately in [10], 54.3 minutes for
parsing and 29.6 minutes for indexing with 280 nodes,
and the throughput is calculated by dividing uncom-
pressed size by the sum of the these two numbers. On the
other hand, the Terrier MapReduce algorithm uses a clus-
ter of 30 nodes with a total of 240 cores on the same
ClueWeb09 collection. Originally while computing the
throughput they used compressed data size and we’ve
translated that into our metric using uncompressed data
size. The main features of the platforms are captured in

TABLE 8
PLATFORM CONFIGURATION AND PERFORMANCE COMPARISON

 This Paper Ivory MapReduce Terrier MapReduce

System

Details

Processors per Node

Two Intel Xeon

2.8GHz Quad-core
CPUs

Two Intel Single-

core 2.8GHz CPUs

Two AMD Quad-

core Opteron CPUs

Memory per Node 24GB 4GB 16GB

File System
 File System via 4Gb/s
Ethernet or local disks

Hadoop Distributed
File System

Hadoop Distributed
File System

Throughput

(MB/s)

1 Node (3 cores) — — —

1 Node (8 cores) 280 — 33

8 Nodes (24 cores) — — —

8 nodes (64 cores)
2148 (InfiniBand)

1616 (Ethernet)
— —

30 nodes (240 cores) — — 460

32 nodes (256 cores)
6271 (InfiniBand)
5145 (Ethernet)

— —

99 Nodes (198 cores) — 167 —

280 Nodes (560 cores) — 289 —

Z.WEI ET AL.: CONSTRUCTING INVERTED FILES: MAPREDUCE PERFORMANCE TRADEOFF 13

Table 8.
It is clear that the throughput of our pipelined and

parallel indexing algorithm using the 1Gb/s Ethernet is
substantially higher even when compared to the two al-
gorithms running on larger clusters. We note that this
comparison has its significant shortcomings, but it still
provides a clear indication of the effectiveness of the ap-
proach described in this paper.

The scalability of Ivory MapReduce does not seem to
be linear since the throughput only increases by 73%
when the number of nodes is tripled, but the improve-
ment is still significant given the fact that hundreds of
nodes are involved. On the other hand, Terrier
MapReduce scales almost linearly within the range of 30
nodes.

6 CONCLUSION

We introduced a new pipelined strategy for constructing
inverted files on a cluster of multicore processors, which
can process documents near the peak I/O rate of the clus-
ter. Several key elements were developed to achieve the
optimized throughput, including:

 Combined pipelining and parallelism that match

maximum possible parsing throughput with

parallel indexing on available resources;

 A hybrid trie and B-tree dictionary data structure,

in which the logical trie is implemented as a table

for fast look-up and each B-Tree includes character

caches to expedite term string comparisons;

 Assignment of parsed sub-streams to indexers

using a random sampling preprocessing step;

 Development of a fully parallelized scheme that

makes efficient use of available cores on a single

node as well as across the cluster;

 Careful management of communication resulting in

hiding the inter-processor communication

overhead.

Our strategy significantly outperforms the best known
MapReduce algorithms in the literature and achieves a
throughput that is close to the peak I/O of the underlying
system. This work sheds some light on the potential per-
formance cost incurred in using the higher-level
MapReduce programming model.

ACKNOWLEDGMENT

We would like to thank Jimmy Lin for providing us ac-
cess to the ClueWeb09 dataset and for many discussions
we have had with him regarding the MapReduce imple-
mentation. We would also like to thank the Library of
Congress and the internet Archive for making the con-
gressional dataset available to us. We would also like to
thank Sangchul Song who developed the version of Wik-
ipedia04-09 dataset which was used in our experimental
tests. This research was partially supported by the NVID-
IA Research Excellence Center at the University of Mary-

land and the NSF Research Infrastructure award, grant
number CNS 0403313.

REFERENCES

[1] Z. Wei and J. JaJa, “A Fast Algorithm for Constructing Inverted
Files on Heterogeneous Platforms”, International Parallel and
Distributed Processing Symposium (IPDPS2011), Anchorage,
AK, May 2011.

[2] A. Moffat and T. A. H. Bell, “In situ generation of compressed
inverted files”, Journal of the American Society of Information
Science 46(7), pp. 537-550, Aug. 1995.

[3] S. Heinz and J. Zobel, “Efficient single-pass index construction
for text databases”, Journal of the American Society for
Information Science and Technology, vol. 54(8), pp. 713-729,
June 2003.

[4] S. Melink, S. Raghavan, B. Yang, and H. Garcia-Molina,
“Building a distributed full-text index for the Web”, ACM
Transactions on Information Systems, Vol. 19(3), pp. 217-241,
July 2001.

[5] B. Ribeiro-Neto, E. S. Moura, M. S. Neubert, and N. Ziviani,
“Efficient distributed algorithms to build inverted files”, SIGIR
'99: Proceedings of the 22nd annual international ACM SIGIR
conference on Research and development in information
retrieval, pp. 105-112, 1999.

[6] J. Dean and S. Ghemawat. “Mapreduce: Simplified data
processing on large clusters”. In OSDI’04: Proceedings of the
6th conference on Symposium on Opearting Systems Design &
Implementation, Dec. 2004.

[7] R. McCreadie, C. Mcdonald, and I. Ounis, “Comparing
Distributed Indexing: To MapReduce or Not?”, 7th Workshop
on Large-Scale Distributed Systems for Information Retrieval,
2009.

[8] R. McCreadie, C. Mcdonald, and I. Ounis, “MapReduce
indexing strategies: Studying scalability and efficiency”,
Information Processing and Management, 2011.

[9] J. Lin, D. Metzler, T. Elsayed, and L. Wang. “Of Ivory and
Smurfs: Loxodontan MapReduce Experiments for Web Search”.
Proceedings of the Eighteenth Text REtrieval Conference (TREC
2009), November 2009, Gaithersburg, Maryland.

[10] T. Elsayed, F. Ture, and J. Lin, “Brute-Force Approaches to
Batch Retrieval: Scalable Indexing with MapReduce, or Why
Bother?”, Technical Report HCIL-2010-23, University of
Maryland, College Park, October 2010.

[11] J. Lin, personal communication, April 2011.

