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Abstract. Generating confidence calibrated outputs is of utmost im-
portance for the applications of deep neural networks in safety-critical
decision-making systems. The output of a neural network is a probability
distribution where the scores are estimated confidences of the input be-
longing to the corresponding classes, and hence they represent a complete
estimate of the output likelihood relative to all classes. In this paper, we
propose a novel form of label smoothing to improve confidence calibra-
tion. Since different classes are of different intrinsic similarities, more
similar classes should result in closer probability values in the final out-
put. This motivates the development of a new smooth label where the
label values are based on similarities with the reference class. We adopt
different similarity measurements, including those that capture feature-
based similarities or semantic similarity. We demonstrate through exten-
sive experiments, on various datasets and network architectures, that our
approach consistently outperforms state-of-the-art calibration techniques
including uniform label smoothing.

Keywords: Confidence calibration · Uncertainty estimation · Similarity
measure

1 Introduction

Machine learning algorithms have progressed rapidly in recent years and are
becoming the critical component in a wide variety of technologies [6]. In most
of these applications, making wrong decisions could lead to very high costs, in-
cluding significant business losses or even severe human injuries [2]. As a result,
in real-world decision-making systems, machine learning models should not only
try to be as accurate as possible, but should also indicate when they are likely
to be incorrect, which allows the decision-making to be stopped or passed to hu-
man experts when the models are not sufficiently confident to produce a correct
prediction. It is therefore strongly desirable that a network provides a calibrated
confidence measure in addition to its prediction; that is, the probability associ-
ated with the predicted class label should reflect its ground truth likelihood of
correctness [19].

However, recent works [7] have shown through extensive empirical studies
that even though impressively accurate, modern deep neural networks are poorly
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calibrated. It turns out that modern DNNs are overconfident - the prediction ac-
curacy is likely to be lower than what is indicated by the associated confidence.
Since the discovery of this challenging problem, several methods [31,18,27,25]
have been explored and empirically shown to improve confidence calibration per-
formance on the predictions, which we refer to as prediction calibration, for which
only the model’s prediction (the winning class) and its associated confidence (the
maximum softmax score) are considered.

In the output of a neural network, each score represents the model’s esti-
mated probability of the current input belonging to that corresponding class.
Therefore, for a well-calibrated model, each probability should be indicative of
the actual likelihood of the input belonging to each class, not just the one with
the maximum score [12,10]. This is significant in safety-critical applications. For
example, an autonomous driving system predicts an object to be 60% a pedes-
trian, 30% an obstacle, and 10% a traffic sign. Clearly these probabilities should
be calibrated. We refer to this as output calibration where the entire output
probabilities are considered.

The output scores define a probability distribution over all classes, and we call
the perfectly calibrated distribution as the optimal output distribution. Under
the optimization scheme with cross-entropy loss that most modern DNNs adopt,
a model would achieve perfect confidence calibration if directly trained using the
optimal distribution as training label. Unfortunately, as one would expect, it is
unclear how to directly compute the optimal distribution in general. However,
under certain reasonable assumptions, we can develop good approximations.
Different classes are not equally distinct, and a class can be inherently more
similar to some classes than others. For example, in the CIFAR-100 dataset, we
could generally agree that the class dolphin is much more similar to the class
seal than to the class rose, and the probability of a seal should be higher than
a rose in the output distribution of a dolphin input. Therefore, we make the
following two assumptions:

1. The distribution of other (i.e. non ground-truth) classes is non-uniform in
general.

2. The probability value should correlate positively with the similarity between
the true class and any other class, i.e. the more similar they are the higher
the value.

In this paper, we propose a novel form of the smooth labeling, called class-
similarity based label smoothing, which uses class similarities to approximate the
optimal output distribution. In the proposed smooth label of a reference class,
the label for another class is based on its similarity with the reference class, and
hence more similar classes result in higher values.

From the label smoothing perspective, our proposed smooth label is more in-
tuitive than the traditional uniform smooth label. One-hot labels have all proba-
bility mass in one class, which are zero-entropy signals that admit no uncertainty
about the input. When a network is trained using such labels, it inevitably be-
comes overconfident. With uniform smooth labels, the output of a network is
trained to be a mixture of a Dirac distribution and a uniform distribution. This
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implies that the predicted probabilities for other classes are encouraged to be
equal. As we discussed above, the label value should be based on the similarity
between classes, which is not accounted for in either the one-hot or the uniform
smooth labels. Relational information can be crucial and provides high-order
properties that can improve performance of a model in various tasks [20].

In our proposed method, we first measure the similarity between classes which
is then mixed with the one-hot labels to serve as the final smooth label. Since
measuring similarity is in general an open problem [26,32], we adopt different
metrics, including a new notion of semantic similarity, and evaluate their effec-
tiveness in confidence calibration on various data benchmarks and architectures.

2 Related Work

Since the pioneering work [7], confidence calibration has raised a great interest in
the machine learning community resulting in a great deal of recent work trying
to address this issue. Existing calibration techniques can be broadly categorized
based on whether or not they are post-hoc methods.

Post-hoc calibration methods use parametric or non-parametric models to
transform the network’s predictions based on a held-out validation set to im-
prove calibration. Traditional techniques include Platt scaling [22], Isotonic Re-
gression [30], Bayesian binning [19,30], Histogram binning [30], matrix and vec-
tor scaling [7], Beta calibration [11], and temperature scaling [7]. Among these
methods, temperature scaling consistently outperforms the other methods [7].
More recent advances include Dirichlet calibration [10], ensemble temperature
scaling [31], mutual information based binning [21], and spline recalibration [8].
Non-post-hoc methods are mostly based on adapting the training procedure,
including modifying the training loss [17,27], label smoothing [24,18], and data
augmentation [25,29].

Another line of related work is Bayesian Neural Networks [5,14,23]. Bayesian
methods provide a natural probabilistic representation of uncertainty in deep
learning and are well-suited for providing calibrated uncertainty estimation.
However, these methods are resource-demanding and hard to scale to modern
datasets and architectures [14].

3 Confidence Calibration

In this section, we formally introduce the definition of confidence calibration. We
denote the input as X ∈ X and label as Y ∈ Y = {1, 2, ...,K}. Let h be a neural
network and h(k|x) is the confidence estimate of the sample x belonging to class
k. The prediction is the winning class Ŷ = arg maxh(Y |X) and its associated
confidence is the maximum P̂ = maxh(Y |X). The number of samples is n.

3.1 Prediction and Output Calibration

In prediction calibration, only the winning class and its associated confidence
are considered. With perfect prediction calibration, the confidence estimate P̂
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represents a true probability that indicates the likelihood of correctness

P(Y = Ŷ | P̂ = p) = p, ∀p ∈ [0, 1] (1)

The output of a neural network h(Y |X) is the confidence estimate for all
classes. For a calibrated model, we would like not only the maximum but all
confidences to be calibrated, which means that h(k|X) represents the actual
likelihood of Y = k for all classes k. Perfect output calibration is defined as

P (Y = k |h(k|X) = p) = p, ∀p ∈ [0, 1] and ∀k ∈ {1, 2, ...,K} (2)

Note that output calibration infers prediction calibration but not vice versa.

3.2 Histogram-Based ECE

Since the probabilities in (1) and (2) cannot be computed using finitely many
samples, empirical approximations are developed. The most widely adopted es-
timator is histogram-based expected calibration error (ECE) [19,7].

The model’s output probabilities pki = h(k|xi) are grouped into M interval
bins, where pki is the model’s output confidence for sample i belonging to class
k. Let Bm be the set of indices of which the confidence falls into bin m, i.e.
pki ∈ (m−1

M , m
M ]. The likelihood and confidence of Bm are defined as

lik(Bm) =
1

|Bm|
∑

(i,k)∈Bm

1(yi = k) and conf(Bm) =
1

|Bm|
∑

(i,k)∈Bm

pki (3)

where yi is true class label for sample i. The histogram-based ECE is defined as

Histogram ECE =

M∑
m=1

|Bm|
nK
|lik(Bm)− conf(Bm)| (4)

3.3 KDE-Based ECE

While a histogram-based estimator is easy to implement, it inevitably inherits
drawbacks from histograms, for example being sensitive to the binning schemes
and data-inefficient [12]. KDE-based estimator is proposed in [31] by replacing
histograms with density estimation using a continuous kernel.

Let φ : R→ R≥0 denote a kernel function and h denote the bandwidth. The
density function and canonical calibration function are given by

f(p) =
h−K

n

n∑
i=1

K∏
k=1

φ(
p− pki
h

) and c(p) =

∑n
i=1 yi

∏K
k=1 φ(

p−pk
i

h )∑n
i=1

∏K
k=1 φ(

p−pk
i

h )
(5)

and the KDE-based ECE is computed as

KDE ECE =

∫
‖p− c(p)‖f(p)dp (6)

While KDE alleviates the dependence on histogram binning, it heavily depends
on the kernel choice and may induce error from the integral approximation pro-
cedure. Therefore, we use both ECE metrics in our evaluation.
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4 Learning with Different Labels

In this section, we discuss the learning objective with respect to different labels
and present the intuition behind our method. The output of a neural network is
a probability distribution over all classes h(k|x) = exp(zk)/

∑K
i=1 exp(zi), where

zk is the activation in the last layer. Let π(k|x) be the label corresponding to
input x. The model is trained by minimizing the cross-entropy loss

l(x) = −
∑K

i=1 π(k|x) log(h(k|x)) (7)

With one-hot label, the cross entropy loss can be simplified to

l(x) = − log(h(y|x)) (8)

Under this loss, the model is not only trained to make a correct prediction but
also with the highest confidence zy possible to reduce the loss, which causes the
model to become overconfident. Uniform smooth labels are defined by

π(k|x) = (1− α)ey + αu(k)/K (9)

where ey is the coordinate vector and u is a uniform distribution. The cross-
entropy loss with uniform smooth label can be written as

l(x) = −(1− α) log(h(y|x)) + αH(u, h) (10)

The second part of this loss encourages the model to match its output with a
uniform distribution, which implies that the example is regarded to be equally
probable in any other class. This is clearly not the case in general as some classes
are inherently more similar than others. The intuition behind our method is
that we assume there is an unknown optimal distribution for perfect calibration
q∗(k|x) that satisfies the two assumptions made in Section 1 and can be ap-
proximated by estimating the class similarities. Let q̂ ≈ q∗ be the approximated
optimal distribution, then our proposed smooth label is defined as

π(k|x) = (1− α)ey + αq̂(k|x) (11)

With this label, the cross entropy loss can be written as

l(x) = −(1− α) log(h(y|x)) + αH(q̂, h) (12)

and the model is trained to make a correct classification while matching it out-
put with the approximated optimal probability distribution. Hence, minimizing
H(q̂, h) is a direct optimization for both prediction and output calibration.

5 Approach

In this section, we describe our approach to capture class similarities in order to
compute the approximation distribution q̂ and generate our proposed smooth la-
bels. Capturing semantic similarity has been a longstanding and still a wide-open
problem [26,32]. Different metrics quantify the similarity from different perspec-
tives, therefore we propose to use several distance metrics, including a novel one
based on word2vec mapping of label words, and evaluate the performance under
varying notions of the captured similarities.
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5.1 Image Space

For directly computing the distance in the image space, we use Lp norms and
choose p = 1 and p = 2. For two inputs x in class k and x′ in class k′, the
pairwise distances are given by

Lp Distance
d(x, x′) = ‖x− x′‖p (13)

5.2 Representation Space

Studies have shown that features learned by neural networks are often surpris-
ingly useful as a representational space for a much wider variety of tasks and
match with human perception [4,32]. The latent representations of autoencoders
have been shown to be useful for various downstream tasks [1]. Therefore, we
also propose to use an autoencoder to map the data to the representation space
and compute distances between their encodings.

Autoencoder Distance

d(x, x′) = ‖r(x)− r(x′)‖2 (14)

where r(x) is the autoencoder latent encoding of input x.
The inter-class distance between classes k and k′ is determined by averaging

the distances between all pairs of inputs that belong to them

dk(k′) =
1

|C(k)||C(k′)|
∑

x∈C(k),x′∈C(k′)

d(x, x′) (15)

where C(k) is the set of data points in class k, and dk is a vector that contains
the distances between class k and all other classes.

5.3 Semantic Space

The previous distance metrics use either the original features of the objects or
those generated by a neural network. In general, samples in the same class are
expected to share a common semantic meaning, which may not be captured in
either feature space. It was observed for example that image visual similarity
is not necessarily the same as semantic similarity [3]. The problem of defining
semantic similarity has been studied extensively in the NLP literature as well as
in various disciplines for which knowledge can be captured through an ontology
or a hierarchy of classes [13]. For most datasets, the words used to label each class
capture significant semantics of the class [16]. We make use of the advances in
NLP based on the labels to define the semantic similarity. Vector representation
of words has been shown to successfully capture semantic similarities such that
words with similar meaning are mapped to similar points in the vector space [15].
Therefore, we propose to use a word2vec model to map the label words into
Euclidean space, and then compute the distances between the vectors.



Class-Similarity Based Label Smoothing for Confidence Calibration 7

Word Embedding Distance

dk(k′) = ‖V(w(k))− V(w(k′))‖2 (16)

where V is a word2vec model and w(k) be the natural language word associated
with class k. This notion can be generalized to the case in which each class is
defined by a set of words or a sentence.

5.4 Class-Similarity Based Smooth Label

Class distances are converted into class similarities using the softmax function

sk(k′) =
exp(−βdk(k′))∑K
i=1 exp(−βdk(i))

(17)

where β ≥ 0 is a hyperparameter that controls how “uniform” the similarity
distribution is. In order to ensure the consistency of β for different metrics, we
normalize the distances dk to zero mean and standard deviation of one before
applying the softmax function. Note that this normalization is equivalent to
scaling β and does not affect the relative relationship between classes.

Finally, the class-similarity based smooth label is defined as follows. Let ek
be the one-hot label vector, the smooth label for class k is

yk = (1− α)ek + αsk (18)

where α is the label smoothing factor. Note that in practice we set sk(k) = 0
and scale

∑
k′ 6=k sk(k′) = 1 to make sure that α consistently represents the total

mass in the label over the other (non ground-truth) classes. Otherwise the total
mass will be different because of different values of sk(k).

6 Experiments

6.1 Setup

We compare the four variants of our proposed method with L1 distance, L2

distance, Autoencoder distance (AE) and Word Embedding distance (WE) to
the vanilla training using one-hot labels, as well as various techniques that im-
prove confidence calibration: temperature scaling (TS) [7], uniform label smooth-
ing [24,18], mixup training [25], Dirichlet calibration with off-diagonal regular-
ization (Dir-ODIR) [10], and ensemble temperature scaling (ETS) [31].

We perform experiments on CIFAR-100 and Tiny-ImageNet using DenseNet
(DN), ResNet (RN), and WideResNet(WRN). For all experiments, the network
architectures and all parameters are identical for all methods. For CIFAR-100, we
use DenseNet-161, ResNet-18, and WRN with {16, 16, 32, 64} filters respectively.
For Tiny-ImageNet, we use DenseNet-161, ResNet-34, and WRN-50-2. The di-
mensionality of the latent space of the autoencoder is set to 256 for CIFAR-100
and 1024 for Tiny-ImageNet. We use a pretrained Wikipedia2Vec [28] as our
word2vec model V with a vector of length 100. For histogram-based ECE, we set
the number of interval bins M = 15 following [7,18]. For KDE-based ECE, we use
the Triweight Kernel K(u) = 35

32 (1− u2)3 and bandwidth h = 1.06σn−1/5 [31].
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Table 1: Histogram and KDE-based ECE (%) results of prediction (P) and out-
put (O) on CIFAR-100.

Model ECE One-hot TS Uniform Mixup DirODIR ETS L1(Ours) L2(Ours) AE(Ours) WE(Ours)

DN Hist P 16.40 2.08 2.41 4.58 2.10 2.04 2.39 2.65 1.96 1.68
DN Hist O 35.52 3.55 8.11 8.81 3.54 3.48 4.15 4.74 3.32 2.98
DN KDE P 15.28 1.90 2.68 4.52 1.95 1.88 2.61 2.72 2.08 1.75
DN KDE O 28.65 7.01 15.08 13.40 7.09 7.00 12.85 12.92 12.44 11.32

RN Hist P 22.96 1.98 2.35 2.70 1.85 1.71 2.84 2.76 2.02 1.74
RN Hist O 50.07 3.13 3.80 5.03 2.98 2.90 5.06 5.10 3.34 2.47
RN KDE P 21.13 2.16 2.60 2.83 1.84 1.65 2.91 2.76 2.19 1.76
RN KDE O 39.23 9.49 15.17 12.03 10.42 9.14 11.89 11.15 10.13 9.02

WRN Hist P 12.17 2.34 2.77 2.29 2.07 1.79 1.68 1.56 0.77 0.72
WRN Hist O 25.71 5.11 5.41 5.02 4.54 3.91 2.91 2.60 1.64 1.55
WRN KDE P 11.57 2.35 2.83 2.49 1.99 1.83 1.57 1.48 1.15 1.11
WRN KDE O 21.13 9.08 9.27 9.47 6.87 6.92 7.59 7.01 4.53 3.73

Table 2: Histogram and KDE-based ECE (%) results of prediction (P) and out-
put (O) on Tiny-ImageNet.
Model ECE One-hot TS Uniform Mixup DirODIR ETS L1(Ours) L2(Ours) AE(Ours) WE(Ours)

DN Hist P 13.98 3.45 3.77 3.70 3.23 2.16 2.93 3.07 2.54 1.19
DN Hist O 29.76 11.64 13.27 12.13 10.57 8.80 9.94 10.40 7.74 3.00
DN KDE P 13.38 3.46 3.72 3.76 3.21 2.21 2.95 3.13 2.60 1.23
DN KDE O 27.64 18.36 21.01 19.06 17.87 17.48 17.51 18.18 17.56 15.67

RN Hist P 24.95 4.83 5.24 5.87 5.15 3.12 2.95 2.86 2.49 1.23
RN Hist O 58.01 9.94 10.92 11.76 10.07 6.52 5.78 5.59 5.05 2.12
RN KDE P 23.55 4.93 5.21 5.80 5.17 3.01 3.02 2.82 2.57 1.26
RN KDE O 46.51 22.33 27.57 24.99 23.14 13.15 27.21 28.60 29.97 11.84

WRN Hist P 22.39 10.15 12.92 8.73 9.79 6.71 8.55 8.03 7.41 4.21
WRN Hist O 52.14 22.19 25.10 17.00 19.17 14.36 16.87 16.59 13.82 7.93
WRN KDE P 21.37 10.75 12.90 8.74 9.78 6.55 8.50 7.97 7.45 4.13
WRN KDE O 43.78 28.14 37.64 26.76 27.34 19.44 25.81 24.80 24.33 11.30

6.2 Confidence Calibration Results

We show confidence calibration results on CIFAR-100 in Table 1 and Tiny-
ImageNet in Table 2. We set α = 0.1 and β ∈ [0.5, 6]. Parameter effects are
discussed in detail in Section 6.3.

The models trained with our proposed method generally outperforms other
methods. Among the four distance measures, WE performs the best in all sce-
narios which is expected considering that the distance in the vector space more
faithfully reflects class semantic relationships than pixel-wise distances and the
latent encoding distance. WE delivers better confidence calibration than all com-
parison methods in most cases. By comparing AE with WE, we can see the
performance gap is more significant on Tiny-ImageNet than on CIFAR-100. As
the complexity of a dataset and the number of classes increase, it becomes more
difficult for an autoencoder to learn good representations, which leads to the per-
formance difference. The large output ECE difference between WE and Uniform
shows that the uniform distribution is not an optimal objective. We note that
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Fig. 1: Reliability diagrams on CIFAR-100 and Tiny-ImageNet dataset.

for output ECE, the KDE estimate is significantly distinct from the histogram
estimate. The output probabilities of a model contain a majority of near-zero
values, thus in this case the density estimation is not very accurate.

In Figure 1 we show the reliability diagrams for WRN on CIFAR-100 and
ResNet-34 on Tiny-ImageNet. The plots confirm our findings of the ECE re-
sults. For better readability, we divide the diagrams of the ten techniques into
two figures. In all the plots, the dashed black diagonal line represents perfect
calibration for which the confidence matches the accuracy. The model trained
using one-hot labels is clearly overconfident since the accuracy is always below
the confidence. While all other methods have a better performance, diagrams
from our proposed smooth labels almost identically match the diagonal line.

6.3 Effects of Parameters

In this section, we perform a series of experiments on Tiny-ImageNet to explore
the effects of two important hyper-parameters α and β.

First, we test different α values that determine the strength of label smooth-
ing. We compare WE to uniform LS and set β = 2. The results are presented
in Figure 2a and 2b. We observe that our proposed smooth label generally out-
performs uniform smooth label for all α values, and the best results for both
methods are achieved at α = 0.1 which is the commonly value used in practice.
When α is very small, the labels are only weakly smoothed and the model is still
over-confident. When α becomes large, the labels are too noisy and the model
is not well-calibrated because of the excessive smoothing.

Next, we perform experiments on different β which determines how uniform
the similarity distribution is. We choose the WE model and set α = 0.1. The
results are shown in Figure 2c. When β is too small, the similarity distribution
is close to uniform and the class relation is not well represented, therefore the
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Fig. 2: Effects of parameters.

model is not well calibrated. As β keeps increasing when it becomes too large, the
softmax function will produce extreme similarity values that are concentrated
in only a few classes that do not represent the optimal distribution either.

6.4 Evaluation on Out-of-Distribution Data

DNNs are not only overconfident on the data they are trained on but also on
unseen out-of-distribution data [9,25]. In this section, we evaluate the methods
on two types of out-of-distribution data: another unseen dataset and random
noise. We test the WRN models trained on CIFAR-100 in Section 6.2. We use
the validation set of Tiny-ImageNet as the unseen dataset and generate uniformly
distributed random samples as the second type of out-of-distribution data. We
show the distributions of the prediction confidence values in Figure 3.

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

one_hot
uniform
mixup
WE

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

one_hot
uniform
mixup
WE

Fig. 3: Distribution of the prediction confidences on the validation set of Tiny-
ImageNet (left) and uniform random noise (right).

From the left plot, we can see that our method and mixup perform the best
at refraining to produce high confidence on unseen out-of-distribution data. On
the random noise samples, all three methods significantly outperform the one-hot
training. Note that our method is based on class similarities which is not well-
suited for random noise samples where the notion of similarity does not exist.
Although this application is not the main focus of our method, we note that it
still significantly outperforms the uniform label smoothing in both scenarios.
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7 Conclusion

In this paper, we address the confidence calibration problem in a more holistic
framework. Motivated by directly optimizing the objective of confidence calibra-
tion, we propose class-similarity based label smoothing. We adopt several simi-
larity metrics, including those that capture feature based similarities or semantic
similarity. We demonstrate through extensive experiments that our method sig-
nificantly outperforms state-of-the-art techniques.
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