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Common solution: topic models



Topic Models as a Black Box
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Word Intrusion

1. Take the highest probability words from a topic

Original Topic

dog, cat, horse, pig, cow

2. Take a high-probability word from another topic and add it

Topic with Intruder

dog, cat, apple, horse, pig, cow

3. We ask users to find the word that doesn’t belong

Hypothesis

If the topics are interpretable, users will consistently choose true
intruder
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Word Intrusion: Which Topics are Interpretable?

New York Times, 50 Topics
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Interpretability and Likelihood

Model Precision on New York Times
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Interactive Topic Modeling

Yuening Hu, Jordan Boyd-Graber,
Brianna Satinoff, and Alison
Smith. Interactive Topic Modeling.
Machine Learning, 2014.
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Example: Negative Constraint

Topic Words

318
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motor, recovery, reflex, cervical,
urothelium, functional recovery
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Example: Negative Constraint

Topic Words

318

bladder, sci, spinal cord,
spinal cord injury, spinal, uri-
nary, urinary tract, urothelial,injury,
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sci, spinal cord, spinal cord injury,
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urothelial, injured, functional recovery,
plasticity, locomotor, cervical, locomo-
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Negative Constraint

spinal cord, bladder



Multilingual Anchoring:
Interactive Topic Modeling and
Alignment Across Languages

Michelle Yuan, Benjamin Van
Durme, and Jordan Boyd-Graber.
Neural Information Processing
Systems, 2018.



(Source: National Geographic)

� Large text collections often
require topic triage quickly in
low-resource settings (e.g.
natural disaster, political
instability).

� Analysts need to examine
multilingual text collections,
but are scarce in one or more
languages.



Generative Approaches

� Polylingual Topic Model [Mimno et al. 2009]

� Jointlda [Jagarlamudi and Daumé 2010]

� Polylingual Tree-based Topic model [Hu et al. 2014b]

� mcta [Shi et al. 2016]

These methods are slow, assume extensive knowledge about
languages, and preclude human refinement.
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Coral reefs have been damaged by 

sources of pollution, such as coastal 

development, deforestation, and 

agriculture.  Destruction of coral reefs 

could impact food supply, protection, 

and income …  

 

獊純ࢿ瑿者懯磪ӣ獤ԏӞአෝኞ叨ᙂ蕣
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ᇍᗭ牧祜຋Ꮅպ膏ࢿ瑿蝐玕ጱ匍虡疥஑

犥娓薹牐ইຎ聅㾴疥訅ᇍጱࢿ瑿扗圵य़

ᨗ牧Ꮈ绗Ո㹓咳匍牧蝡Ӟ膐ഷ疥℄夹
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硩౮��VKƝXFK¬QJ�

environment,
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UHF\FOLQJ��WUDVK�
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Anchor words

Definition

An anchor word is a word that appears with high probability in one
topic but with low probability in all other topics.



From Co-occurrence to Topics

� Normally, we want to find p(word | topic) [Blei et al. 2003b].

� Instead, what if we can easily find p(word | topic) through using
anchor words and conditional word co-occurrence
p(word 2 |word 1)?
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Anchoring

� If an anchor word appears in a document, then its corresponding
topic is among the set of topics used to generate
document [Arora et al. 2012].

� Anchoring algorithm uses word co-occurrence to find anchors and
gradient-based inference to recover topic-word
distribution [Arora et al. 2013].

� Runtime is fast because algorithm scales with number of unique
word types, rather than number of documents or tokens.



Anchoring

1. Construct co-occurrence matrix from documents with vocabulary
of size V :

Q̄i ,j = p(w2 = j |w1 = i).

2. Given anchor words s1, ..., sK , approximate co-occurrence
distributions:

Q̄i ≈
K∑

k=1

Ci ,kQ̄sk subject to
K∑

k=1

Ci ,k = 1 and Ci ,k ≥ 0.

3. Find topic-word matrix:

Ai ,k = p(w = i | z = k) ∝ p(z = k |w = i)p(w = i)

= Ci ,k

V∑

j=1

Q̄i ,j .
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Finding Anchor Words

� So far, we assume that anchor words are given.

� How do we find anchor words from documents?
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Interactive Anchoring

� Incorporating interactivity in topic modeling has shown to improve
quality of model [Hu et al. 2014a].

� Anchoring algorithm offers speed for interactive work, but single
anchors are unintuitive to users.

� Ankura is an interactive topic modeling system that allows users
to choose multiple anchors for each topic [Lund et al. 2017].

� After receiving human feedback, Ankura only takes a few seconds
to update topic model.

These methods only work for monolingual document collections.
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Linking Words

Definition

Language L is a set of word types w .

Definition

Bilingual dictionary B is a subset of the Cartesian
product L(1) × L(2), where L(1),L(2) are two, different languages.

Idea: If dictionary B contains entry (w , v), create a link between w
and v .
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Multilingual Anchoring

1. Given a dictionary, create links between words that are translations
of each other.

2. Select an anchor word for each language such that the words are
linked and span of anchor words is maximized.

3. Once anchor words are found, separately find topic-word
distributions for each language.



� What if dictionary entries are scarce or inaccurate?

� What if topics aren’t aligned properly across languages?

Incorporate human-in-the-loop topic modeling tools.
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MTAnchor



Experiments

Datasets:

1. Wikipedia articles (en, zh)

2. Amazon reviews (en, zh)

3. lorelei documents (en, si)



Experiments

Metrics:

1. Classification accuracy
� Intra-lingual: train topic model on documents in one language and

test on other documents in the same languages
� Cross-lingual: train topic model on documents in one language and

test on other documents in a different language.

2. Topic coherence [Lau et al. 2014].
� Intrinsic: use the trained documents as the reference corpus to

measure local interpretability.
� Extrinsic: use a large dataset (i.e. entire Wikipedia) as the reference

corpus to measure global interpretability.



Comparing Models

Classification accuracy

Dataset Method en-i
zh-i
si-i

en-c
zh-c
si-c

Wikipedia
Multilingual
anchoring

69.5% 71.2% 50.4% 47.8%

MTAnchor
(maximum)

80.7% 75.3% 57.6% 54.5%

MTAnchor
(median)

69.5% 71.4% 50.3% 47.2%

mcta 51.6% 33.4% 23.2% 39.8%

Amazon
Multilingual
anchoring

59.8% 61.1% 51.7% 53.2%

mcta 49.5% 50.6% 50.3% 49.5%

lorelei
Multilingual
anchoring

20.8% 32.7% 24.5% 24.7%

mcta 13.0% 26.5% 4.1% 15.6%



Comparing Models

Topic coherence

Dataset Method en-i
zh-i
si-i

en-e
zh-e
si-e

Wikipedia
Multilingual
anchoring

0.14 0.18 0.08 0.13

MTAnchor
(maximum)

0.20 0.20 0.10 0.15

MTAnchor
(median)

0.14 0.18 0.08 0.13

mcta 0.13 0.09 0.00 0.04

Amazon
Multilingual
anchoring

0.07 0.06 0.03 0.05

mcta -0.03 0.02 0.02 0.01

lorelei
Multilingual
anchoring

0.08 0.00 0.03 n/a

mcta 0.13 0.00 0.04 n/a



Multilingual Anchoring Is Much Faster
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Comparing Topics

Dataset Method Topic

Wikipedia mcta dog san movie mexican fighter novel california
主演 改編 本 小說 拍攝 角色 戰士

Multilingual anchoring adventure daughter bob kong hong robert movie
主演 改編 本片 飾演 冒冒冒險險險 講述 編劇

MTAnchor kong hong movie office martial box reception
主演 改編 飾演 本片 演演演員員員 編編編劇劇劇 講述

Amazon mcta woman food eat person baby god chapter
來貨 頂頂 水 耳機 貨物 張傑 傑 同樣

Multilingual anchoring eat diet food recipe healthy lose weight
健健健康康康 幫 吃 身體 全面 同事 中醫

lorelei mcta help need floodrelief please families needed victim
Multilingual anchoring aranayake warning landslide site missing nbro areas



Why Not Use Deep Learning?

� Neural networks are data-hungry and unsuitable for low-resource
languages

� Deep learning models take long amounts of time to train

� Pathologies of neural models make interpretation
difficult [Feng et al. 2018]



Summary

� Anchoring algorithm can be applied in multilingual settings.

� People can provide helpful linguistic or cultural knowledge to
construct better multilingual topic models.



Future Work

� Apply human-in-the-loop algorithms to other tasks in NLP.

� Better understand the effect of human feedback on cross-lingual
representation learning.



ALTO: Active Learning with
Topic Overviews for Speeding
Label Induction and Document
Labeling

Forough Poursabzi-Sangdeh,
Jordan Boyd-Graber, Leah
Findlater, and Kevin Seppi.
Association for Computational
Linguistics, 2016.



Many Documents



Sort into Categories
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� 40 minutes

� Sort documents into categories
� What information / interface helps best
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� Compare classifier labels to expert judgements
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Evaluation

� User study

� 40 minutes

� Sort documents into categories
� What information / interface helps best

� Train a classifier on human examples (don’t tell them how many
labels)

� Compare classifier labels to expert judgements (purity)

purity(U,G) =
1

N

∑

l

max
j
|Ul ∩ Gj |, (1)



Which is more Useful?

Who should drive?



Which is more Useful?

Active Learning Topic Models





Direct users to document
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Moral: machines and humans together (if you let them)



Ongoing and Future Work

� Embedding interactivity in applications
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� Using morphology in infinite representations

� Multilingual analysis



Ongoing and Future Work

� Embedding interactivity in applications

� Visualizations to measure machine learning explainability

� Using morphology in infinite representations

� Multilingual analysis



Thanks

Collaborators

Yuening Hu (UMD), Ke Zhai (UMD), Viet-An Nguyen (UMD), Dave
Blei (Princeton), Jonathan Chang (Facebook), Philip Resnik (UMD),
Christiane Fellbaum (Princeton), Jerry Zhu (Wisconsin), Sean Gerrish
(Sift), Chong Wang (CMU), Dan Osherson (Princeton), Sinead
Williamson (CMU)

Funders
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Latent Dirichlet Allocation: A Generative Model

� Focus in this talk: statistical methods
� Model: story of how your data came to be
� Latent variables: missing pieces of your story
� Statistical inference: filling in those missing pieces

� We use latent Dirichlet allocation (LDA) [Blei et al. 2003a], a fully
Bayesian version of pLSI [Hofmann 1999], probabilistic version of
LSA [Landauer and Dumais 1997]



Latent Dirichlet Allocation: A Generative Model

MN
θd zn wn

K
βk

α

λ

� For each topic k ∈ {1, . . . ,K}, draw a multinomial distribution βk
from a Dirichlet distribution with parameter λ

� For each document d ∈ {1, . . . ,M}, draw a multinomial
distribution θd from a Dirichlet distribution with parameter α

� For each word position n ∈ {1, . . . ,N}, select a hidden topic zn
from the multinomial distribution parameterized by θ.

� Choose the observed word wn from the distribution βzn .
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We use statistical inference to uncover the most likely unobserved
variables given observed data.
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Inference

� We are interested in posterior distribution

p(Z |X ,Θ) (2)

� Here, latent variables are topic assignments z and topics θ. X is
the words (divided into documents), and Θ are hyperparameters to
Dirichlet distributions: α for topic proportion, λ for topics.

p(z ,β,θ|w , α, λ) (3)

p(w , z ,θ,β|α, λ) =
∏

k

p(βk |λ)
∏

d

p(θd |α)
∏

n

p(zd ,n|θd)p(wd ,n|βzd,n)
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Gibbs Sampling

� A form of Markov Chain Monte Carlo

� Chain is a sequence of random variable states

� Given a state {z1, . . . zN} given certain technical conditions,
drawing zk ∼ p(z1, . . . zk−1, zk+1, . . . zN |X ,Θ) for all k
(repeatedly) results in a Markov Chain whose stationary
distribution is the posterior.

� For notational convenience, call z with zd ,n removed z−d ,n
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Gibbs Sampling

� For LDA, we will sample the topic assignments

� Thus, we want:

p(zd ,n = k |z−d ,n,w , α, λ) =
p(zd ,n = k, z−d ,n|w , α, λ)

p(z−d ,n|w , α, λ)

� The topics and per-document topic proportions are integrated out
/ marginalized / collapsed

� Let nd ,i be the number of words taking topic i in document d . Let
vk,w be the number of times word w is used in topic k .

=

∫
θd

(∏
i 6=k θ

αi+nd,i−1
d

)
θ
αk+nd,i
d dθd

∫
βk

(∏
i 6=wd,n

β
λi+vk,i−1
k,i

)
β
λi+vk,i
k,wd,n

dβk
∫
θd

(∏
i θ
αi+nd,i−1
d

)
dθd

∫
βk

(∏
i β

λi+vk,i−1
k,i

)
dβk
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Gibbs Sampling

� For LDA, we will sample the topic assignments

� The topics and per-document topic proportions are integrated out
/ marginalized / Rao-Blackwellized

� Thus, we want:

p(zd ,n = k |z−d ,n,w , α, λ) =
nd ,k + αk∑K
i nd ,i + αi

vk,wd,n
+ λwd,n∑

i vk,i + λi



Gibbs Sampling

� Integral is normalizer of Dirichlet distribution

∫

βk

(∏

i

β
λi+vk,i−1
k,i

)
dβk =

∏V
i |βi + vk,i

|
∑V

i βi + vk,i

� So we can simplify
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Gamma Function Identity

z =
Γ(z + 1)

Γ(z)
(4)

|αk+nd,k+1

|
∑K

i αi+nd,i+1

∏K
i 6=k |αk + nd,k∏K

i |αi+nd,i

|
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i αi+nd,i
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+vk,wd,n
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|
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i λi+vk,i+1

∏V
i 6=wd,n

|λk + vk,wd,n∏V
i |λi+vk,i

|
∑V

i λi+vk,i

=
nd,k + αk∑K
i nd,i + αi

vk,wd,n + λwd,n∑
i vk,i + λi



Gibbs Sampling Equation
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� Number of times topic k uses word type wd ,n

� Dirichlet parameter for document to topic distribution

� Dirichlet parameter for topic to word distribution

� How much this document likes topic k

� How much this topic likes word wd ,n
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Decrement its count



What is the conditional distribution for this topic?



Part 1: How much does this document like each topic?
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Details: how to sample from a distribution

Topic 1

Topic 2

Topic 3

Topic 4

Topic 5

QK
i 6=k � (↵i + nd ,i )

�(↵k+nd,k+1)
�(

PK
i ↵i+nd,i+1)

QK
i �(↵i+nd,i)

�(
PK

i ↵i+nd,i)

QV
i 6=wd,n

� (�i + vk,i )
�
⇣
�k+vk,wd,n

+1
⌘

�(
PV

i �i+vk,i+1)
QV

i �(�i+vk,i)
�(

PV
i �i+vk,i)

=
nd ,k + ↵kPK
i nd ,i + ↵i

vk,wd,n
+ �wd,nP

i vk,i + �i

Gamma Function Identity

z =
�(z + 1)

�(z)
(6)

N
orm

alize

0.0

1.0

0.112



Algorithm

1. For each iteration i :
1.1 For each document d and word n currently assigned to zold :

1.1.1 Decrement nd,zold and vzold ,wd,n

1.1.2 Sample znew = k with probability proportional to
nd,k+αk∑K
i nd,i+αi

vk,wd,n
+λwd,n∑

i vk,i+λi

1.1.3 Increment nd,znew and vznew ,wd,n



Näıve Implementation

Algorithm

1. For each iteration i :
1.1 For each document d and word n currently assigned to zold :

1.1.1 Decrement nd,zold and vzold ,wd,n

1.1.2 Sample znew = k with probability proportional to
nd,k+αk∑K
i nd,i+αi

vk,wd,n
+λwd,n∑

i vk,i+λi

1.1.3 Increment nd,znew and vznew ,wd,n



Desiderata

� Hyperparameters: Sample them too (slice sampling)

� Initialization: Random

� Sampling: Until likelihood converges

� Lag / burn-in: Difference of opinion on this

� Number of chains: Should do more than one



Available implementations

� Mallet (http://mallet.cs.umass.edu)

� LDAC (http://www.cs.princeton.edu/ blei/lda-c)

� Topicmod (http://code.google.com/p/topicmod)



SHLDA Model
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Infvoc Classification Accuracy

S
=

15
5

τ 0
=

64
κ

=
0.

6

infvoc αβ = 3k T = 40k U = 10 52.683

fixvoc vb-dict 45.514

fixvoc vb-null 49.390
fixvoc hybrid-dict 46.720
fixvoc hybrid-null 50.474

fixvoc-hash vb-dict 52.525
fixvoc-hash vb-full T = 30k 51.653
fixvoc-hash hybrid-dict 50.948
fixvoc-hash hybrid-full T = 30k 50.948

dtm-dict tcv = 0.001 62.845

Table: Classification accuracy based on 50 topic features extracted from 20
newsgroups data.
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Unassign (d , n,wd,n, zd,n = k)

1: T : Td ,k ← Td ,k − 1
2: If wd ,n /∈ Ωold ,

P : Pk,wd,n
← Pk,wd,n

− 1

3: Else: suppose wd ,n ∈ Ωold
m ,

P : Pk,m ← Pk,m − 1
W : Wk,m,wd,n

←Wk,m,wd,n
− 1



SparseLDA

p(z = k |Z−,w) ∝ (αk + nk|d)
β + nw |k
βV + n·|k

(6)

∝ αkβ

βV + n·|k︸ ︷︷ ︸
sLDA

+
nk|dβ

βV + n·|k︸ ︷︷ ︸
rLDA

+
(αk + nk|d)nw |k
βV + n·|k︸ ︷︷ ︸

qLDA



Tree-based sampling

p(zd ,n = k , ld ,n = λ|Z−, L−,wd ,n) (7)

∝ (αk + nk|d)
∏

(i→j)∈λ

βi→j + ni→j |k∑
j ′ (βi→j ′ + ni→j ′|k)



Factorizing Tree-Based Prior

p(z = k |Z−,w) ∝ (αk + nk|d)
β + nw |k
βV + n·|k

(8)
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rLDA

+
(αk + nk|d)nw |k
βV + n·|k︸ ︷︷ ︸
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∏
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(i→j)∈λ

∑
j ′ βi→j ′

= s ′. (9)
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= s ′. (9)



1: for word w in this document do
2: sample = rand() ∗(s ′ + r + q)
3: if sample < s ′ then
4: compute s
5: sample = sample ∗(s + r + q)/(s ′ + r + q)
6: if sample < s then
7: return topic k and path λ sampled from s
8: end if
9: sample − = s

10: else
11: sample − = s ′

12: end if
13: if sample < r then
14: return topic k and path λ sampled from r
15: end if
16: sample − = r
17: return topic k and path λ sampled from q
18: end for



Number of Topics
T50 T100 T200 T500

Naive 5.700 12.655 29.200 71.223
Fast 4.935 9.222 17.559 40.691

Fast-RB 2.937 4.037 5.880 8.551
Fast-RB-sD 2.675 3.795 5.400 8.363
Fast-RB-sW 2.449 3.363 4.894 7.404

Fast-RB-sDW 2.225 3.241 4.672 7.424

Number of Correlations
C50 C100 C200 C500

Näıve 11.166 12.586 13.000 15.377
Fast 8.889 9.165 9.177 8.079

Fast-RB 3.995 4.078 3.858 3.156
Fast-RB-sD 3.660 3.795 3.593 3.065
Fast-RB-sW 3.272 3.363 3.308 2.787

Fast-RB-sDW 3.026 3.241 3.091 2.627




