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Clustering

Questions:

= how do we fit clusters?

= how many clusters should we use?
= how should we evaluate model fit?
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K-Means

How do we fit the clusters?
= simplest method: K-means

= requires: real-valued data

= idea:

pick K initial cluster means

associate all points closest to mean k with cluster k

use points in cluster k to update mean for that cluster
re-associate points closest to new mean for k with cluster k
use new points in cluster k to update mean for that cluster

O 0o o o o o o

stop when no change between updates

e: Jordan Boyd-Graber | UMD Clustering | 3/1



K-Means

Animation at:
http://shabal.in/visuals/kmeans/1.html

Data Science: Jordan Boyd-Graber | UMD Clustering | 4/1


http://shabal.in/visuals/kmeans/1.html

K-Means: Example

Data:

X4 Xo
04 | -1.0
-1.0 | -2.2
24 | 22
-1.0 | 1.9
-05 | 0.6
-0.1 1.7
1.2 3.3
3.1 1.6
1.3 1.6
2.0 0.8
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Why topic models?

Suppose you have a huge number of
documents

Want to know what'’s going on

Can’t read them all (e.g. every New
York Times article from the 90’s)

Topic models offer a way to get a
corpus-level view of major themes
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Why topic models?

= Suppose you have a huge number of
documents

= Want to know what’s going on

= Can't read them all (e.g. every New
York Times article from the 90’s)

= Topic models offer a way to get a
corpus-level view of major themes

= Unsupervised
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Roadmap

= What are topic models
= How to know if you have good topic model
= How to go from raw data to topics
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Conceptual Approach

From an input corpus and number of topics K — words to topics

Corpus

Forget the Bootleg, Just

Red Light, Green Light: A
2-Tone L.E.D. to
Simplify Screens
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Conceptual Approach

From an input corpus and number of topics K — words to topics

TOPIC 1 TOPIC2  TOPIC 3

computer,
technology,
system,
service, site,
phone,
internet,
machine
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Conceptual Approach

= For each document, what topics are expressed by that document?

e

Download the Movie Legally

Red Light, Green Light: A
2-Tone L.E.D.to
Simplify Screens

TOPIC 1

TOPIC 3
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Topics from Science

human evolution
genome evolutionary
dna species
genetic organisms
genes life
sequence origin
gene biology
molecular groups
sequencing  phylogenetic
map living
information diversity
genetics group
mapping new
project two
common

sequernces

Material adapted from David Min

disease
host
bacteria
diseases
resistance
bacterial
new
strains
control
infectious
malaria
parasite
parasites
united
tuberculosis

computer
models
information
data
computers
system
network
systems
model
parallel
methods
networks
software
new

simulations

pic Models



Why should you care?

Neat way to explore / understand corpus collections
o E-discovery

o Social media

o Scientific data

NLP Applications

o Word Sense Disambiguation

o Discourse Segmentation

o Machine Translation

Psychology: word meaning, polysemy

Inference is (relatively) simple
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Matrix Factorization Approach

M x K x[ KxV MxV

Topics

L
n

Topic Assignment Dataset

K Number of topics
M Number of documents
V Size of vocabulary
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Matrix Factorization Approach

M x K x[ KxV :|z MxV

Topics
Topic Assignment Dataset
= [f you use singular value
K Number of topics decorppos!tlon (SVD), this .
technique is called latent semantic
M Number of documents .
analysis.
V Size of vocabulary o . .
= Popular in information retrieval.
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Alternative: Generative Model

= How your data came to be
= Sequence of Probabilistic Steps

= Posterior Inference
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Alternative: Generative Model

How your data came to be

= Sequence of Probabilistic Steps

Posterior Inference

Blei, Ng, Jordan. Latent Dirichlet Allocation. JMLR, 2003.
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Multinomial Distribution

= Distribution over discrete outcomes
= Represented by non-negative vector that sums to one

= Picture representation

(1,0,0) 0,0,1) (0,1,0

(13,1/3,1/3)  (1/4,1/4,1/2)  (1/2,1/2,0)
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Multinomial Distribution

= Distribution over discrete outcomes
= Represented by non-negative vector that sums to one

= Picture representation

(1,0,0) 0,0,1) (0,1,0

)

(13,1/3,1/3)  (1/4,1/4,1/2)  (1/2,1/2,0)

= Come from a Dirichlet distribution
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Dirichlet Distribution

F(Zk amg) l—[ amg—1

PR P rame 1
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Dirichlet Distribution
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Dirichlet Distribution

M2 ami) l—[ amg-1

PRI = T, rami 1P
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Dirichlet Distribution

alpha=(0.2,0.1,0.1)
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Dirichlet Distribution

= If ¢ ~Dir(()a), w~Mult(()¢), and n, = |{w; : w; = k}| then

p(¢la,w) o< p(i|¢)p(pla) (1)
oc[ [o™] [o« @
k k
oc [ Jotn @)
k

= Conjugacy: this posterior has the same form as the prior



Dirichlet Distribution

= If ¢ ~Dir(()a), w~Mult(()¢), and n, = |{w; : w; = k}| then

p(pla, w) o< p(wlg)p(¢la) (1)
oc[ Jo™] o (2)
k k
o< [ [oorn @)
k

= Conjugacy: this posterior has the same form as the prior
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Generative Model

TOPIC 1 computer,

technology,
system,

service, site,
phone,
internet,
machine

TOPIC 2

TOPIC 3
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Generative Model

Red Light, Green Light: A
2-Tone L.E.D. to
Simplify Screens

TOPIC 1 TOPIC 2

TOPIC 3
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Generative Model

computer,
technology,
system,
service, site,
phone,
internet,
machine

Hollywood studios are preparing to let people
download and buy electronic copies of movies over
the Internet, much as record labels now sell songs for

99 cents through Apple Computer's iTunes music store

and other online services ...
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Generative Model

computer,
technology,
system,
service, site,
phone,
internet,
machine

Hol./mreparing to let people

download and buy electronic copies of movies over

the Internet, much as record labels now sell songs for

99 cents through Apple Computer's iTunes music store

and other online services ...
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Generative Model

computer,
technology,
system,
service, site,
phone,
internet,
machine

/

Hol./ od stu. are preparing to let people

dov&@ad and @ electronic copies of movies over
the Internet, much as record labels now sell songs for

99 cents through Apple Computer's iTunes music store

and other online services ...
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Generative Model

computer,
technology,
system,
service, site,
phone,
internet,
machine

Hol./ood stu.s are preparing to let people

dov&@ad and @ eleic c@s of m‘es over
the In@'let, much as re.d la. now S(.S for
99 @s through A@Ble Con@er‘s iTl@?S m.'c s@
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Generative Model Approach

(e,

= For each topic k € {1,..., K}, draw a multinomial distribution B« from a
Dirichlet distribution with parameter A
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Generative Model Approach

O
(e M

= For each topic k € {1,..., K}, draw a multinomial distribution B« from a
Dirichlet distribution with parameter A

= For each document d € {1, ..., M}, draw a multinomial distribution 8,
from a Dirichlet distribution with parameter «
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Generative Model Approach

0l0)
OECIORN

= For each topic k € {1,..., K}, draw a multinomial distribution 3, from a
Dirichlet distribution with parameter A

= For each document d € {1, ..., M}, draw a multinomial distribution 8,
from a Dirichlet distribution with parameter a

= For each word position n€ {1,..., N}, select a hidden topic z, from the
multinomial distribution parameterized by 6.
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Generative Model Approach

OLOLOX R}

= For each topic k € {1,..., K}, draw a multinomial distribution 3, from a
Dirichlet distribution with parameter A

= For each document d € {1, ..., M}, draw a multinomial distribution 8,
from a Dirichlet distribution with parameter a

= For each word position n€ {1,..., N}, select a hidden topic z, from the
multinomial distribution parameterized by 6.

= Choose the observed word w,, from the distribution 3, .
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Generative Model Approach

(@Oren=)-@.,

= For each topic k € {1,..., K}, draw a multinomial distribution 3, from a
Dirichlet distribution with parameter A

= For each document d € {1,..., M}, draw a multinomial distribution 8,
from a Dirichlet distribution with parameter a

= For each word position n€ {1,..., N}, select a hidden topic z, from the
multinomial distribution parameterized by 8.

= Choose the observed word w,, from the distribution 3, .
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Topic Models: What’s Important

= Topic models
o Topics to word types
o Documents to topics
o Topics to word types—multinomial distribution
o Documents to topics—multinomial distribution
= Focus in this talk: statistical methods
o Model: story of how your data came to be
o Latent variables: missing pieces of your story
o Statistical inference: filling in those missing pieces
= We use latent Dirichlet allocation (LDA), a fully Bayesian version of
pLSI, probabilistic version of LSA
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Topic Models: What’s Important

= Topic models (latent variables)
o Topics to word types
o Documents to topics
o Topics to word types—multinomial distribution
o Documents to topics—multinomial distribution
= Focus in this talk: statistical methods
o Model: story of how your data came to be
o Latent variables: missing pieces of your story
o Statistical inference: filling in those missing pieces
= We use latent Dirichlet allocation (LDA), a fully Bayesian version of
pLSI, probabilistic version of LSA
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Evaluation

Model A Held-out Data
Sony Ericsson's Infinite
Model B I

Price War Brews Between
Model C

Red Light, Green Light: A
2-Tone L.E.D. to
Simplify Screens

Amazon and Wal-Mart

P(w|w’,2’,am, fu) =
Z P(w,z|w’,z’,am, Bu)
V4

How you compute it is important too (Wallach et al. 2009)
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Evaluation

Held-out Log
Likelihood

Forget the Bootleg, Just
r e Model A — -4.8 Held-out Data
PSOH Ericsson's Infinite
MOdel B - -1 51 6 For Search, Murdoch Looks
Price War Brews Between

Model CH _2342 Amazon and Wal-Mart

Red Light, Green Light: A
2-Tone L.E.D. to
Simplify Screens

Measures predictive power, not what the topics are

P(w|w’,2’,am, fu) =
Z P(w,z|w', 2, am, Bu)
V4

How you compute it is important too (Wallach et al. 2009)
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Word Intrusion

TOPIC 1 TOPIC2  TOPIC 3

computer,
technology,
system,
service, site,
phone,
internet,
machine
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Word Intrusion

1. Take the highest probability words from a topic
Original Topic

dog, cat, horse, pig, cow
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Word Intrusion

1. Take the highest probability words from a topic

Original Topic

dog, cat, horse, pig, cow

2. Take a high-probability word from another topic and add it
Topic with Intruder

dog, cat, apple, horse, pig, cow
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Word Intrusion

1. Take the highest probability words from a topic

Original Topic

dog, cat, horse, pig, cow

2. Take a high-probability word from another topic and add it
Topic with Intruder

dog, cat, apple, horse, pig, cow

3. We ask users to find the word that doesn’t belong

Hypothesis

If the topics are interpretable, users will consistently choose true intruder
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Word Intrusion

1/10

crash accident board agency tibetan safety
710

commercial network  television advertising  viewer layoff
3/10

arrest crime inmate pitcher prison death
4/10

hospital doctor health care medical tradition
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Word Intrusion

1/10 Reveal additional response
crash accident board agency _____ t:lbetan _____ safety
710
commercial network television advertising  viewer layoff
3/10
arrest crime inmate pitcher prison death
4/10
hospital doctor health care medical tradition

= Order of words was shuffled
= Which intruder was selected varied
= Model precision: percentage of users who clicked on intruder
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Word Intrusion: Which Topics are Interpretable?

New York Times, 50 LDA Topics

15

Number of Topics
10

Material adapted from David Mimno

artist
americans exhibition
fireplace jalpar?ese gallery
garage jewish mulse'um
. states painting
committee r_louse terrorist \
legislation kitchen
proposal list >y
republican
taxis ¢
T T T T T T T T 1
0.000 0.125 0.250 0.375 0.500 0.625 0.750 0.875

Model Precision

1.000

ic Models |
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Interpretability and Likelihood

Model Precision on New York Times

Model
0.80 A
A © cm™

S e ® LA
(%2}
2 0.75 © pLsi
<
E | Number of topics
§ 0.70 N ® 50
= t\ A 100

0.65 ™ W 150

T T T T T
-7.32 -7 -7.28 -7.26 -7.24

.30
Held-out Likelihood

within a model, higher likelihood # higher interpretability
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Interpretability and Likelihood

Topic Log Odds on Wikipedia

A
-1.04 .P/lrj Model
[ 4 | @ Cc™

o © pLsi
g
| Number of topics
% -2.0 ® 50
i) A 100

o5 W 150

T T T T T T T
-752 -7.50 -7.48 -7.46 -7.44 -7.42 -7.40
Held-out Likelihood

across models, higher likelihood # higher interpretability
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Evaluation Takeaway

= Measure what you care about
= [f you care about prediction, likelihood is good
= |f you care about a particular task, measure that
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Inference

= We are interested in posterior distribution

p(Z|X,0) (4)
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Inference

= We are interested in posterior distribution

p(Z|X,0) (4)

= Here, latent variables are topic assignments z and topics 6. X is the
words (divided into documents), and ® are hyperparameters to Dirichlet
distributions: «a for topic proportion, A for topics.

p(2,B,61#,a,7) (5)
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Inference

= We are interested in posterior distribution

p(Z|X,0) (4)

= Here, latent variables are topic assignments z and topics 6. X is the
words (divided into documents), and ® are hyperparameters to Dirichlet
distributions: «a for topic proportion, A for topics.

p(2,B,61#,a,2) (5)

p(#,2,0,Bla,A) =
[ [p(BD)] [p(0ala) | [p(2anl0a)p(wWanlBz,,)
k d n
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Gibbs Sampling

A form of Markov Chain Monte Carlo

Chain is a sequence of random variable states

Given a state {z;,...zy} given certain technical conditions, drawing
zg~p(24,...2k—1, Zk 11, - - - 28| X, ©) for all k (repeatedly) results in a
Markov Chain whose stationary distribution is the posterior.

For notational convenience, call Z with zy , removed Z_g ,
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Inference

computer,
technology,
system,
service, site,
phone,
internet,
machine

Hol.food stu.s are preparing to let people

dov&@ad and @ elec@ic c@s of m.es over
the Iet, much as re.d la. now S(.S for

99 @s through @le Con@er‘s iT@ m.'c s@
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Inference

computer,
technology,
system,
service, site,
phone,
internet,
machine

Hol@ood stud®s are preparing to let people
dowTyad and () eleq@Dpic co(s of m@es over
the In@et, much as re@d la's now s.s for
99 q@ys through AT)le Com@yer's iTyTys m@jc sy
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Inference

computer,
technology,
system,
service, site,
phone,
internet,
machine

J)s are preparing to let people
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Inference

computer,
technology,
system,
service, site,
phone,
internet,
machine

)s are preparing to let people
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Inference

computer,
technology,
system,
service, site,
phone,
internet,
machine

Hol@Vood stu@s are preparing to let people
dowTyad and ) elec@pic ca(Ds of m@jes over
the Iet, much as re.d la's now S(.s for
99 q@ys through ATle Comadyer's iITymys m@ic sigy
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Gibbs Sampling

= For LDA, we will sample the topic assignments
= Thus, we want:

p(zd,n = k’ }—d,nl W! ay Af)

Z, = k 2_ y VV) a! A’ = 3 7
P(2d,n = KlZ—a,n ) p(Z_g,nlW,a, 1)
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Gibbs Sampling

= For LDA, we will sample the topic assignments
= Thus, we want:

p(zd,n =K, _Z)—d,nl W, a, )L)

Z = k }_ y |7Vy a; A’ = =1 ¥/
p( d,n I d,n ) p(z_d'nl w,a, A')

= The topics and per-document topic proportions are integrated out /
marginalized

= Let ny; be the number of words taking topic / in document d. Let vy , be
the number of times word w is used in topic k.

fgd( ok a+nd,—1)eak+nd:d9dfﬂ (H#de 7L+Vk, )ﬂlftvz:k: dpy
o, (TT,65 ™) 6 f,, (IT, ﬂ“vk’ )b
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Gibbs Sampling

= For LDA, we will sample the topic assignments

= The topics and per-document topic proportions are integrated out /
marginalized / Rao-Blackwellized

= Thus, we want:

Ng k + A Vk:Wd,n+A‘Wd,n
K
S g+ a; 2iViitAi

p(zd,n = klz—d,n» w,a, A) =
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Gibbs Sampling

= Integral is normalizer of Dirichlet distribution

P CTL T8+ i)
Jo (Mo Jon= e
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Gibbs Sampling

= Integral is normalizer of Dirichlet distribution

Aitvi— l_[ r /3/+Vk1)
J (“" )ﬁk rS7 Bt )

= So we can simplify

R A I e T

f o, (11,0,777) 004 [, (T, ﬁ“”k"1)dﬁk )

r(ag+ ngx+1) (g, + Viwy, T 1)
= | Lz T (ax+n a . (A + Vi,
r(Z,Ka,+nd,,+1)H’#k ) S ] [, Ot )
H:Kr’((ai +ng;) 1 FSA;' + Vi)
r(zi a,-—i—nd,,-) F(Z, Ai+ Vk,l)
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Gamma Function Identity

I'(z+1
,-Lz+1) )
I'(z)
r(a+ng.+1) K T(Awg, + Vigng, +1) v
Ak Tk U ) 118 T ! : ; (A
T(Zf( a;+ng;+ 1) H,#k (ak " ndYk) T(Z,V Ait v+ 1) HI#W#VH ( a VkYden)
[1Fr(a; + ng,) 1Y r( A+ Vi)

l"(z,K a;+ nd,i) f(Z,V Ai+ Vk,i)
Nyt Ve, + )LWd,n
Z,K Ng;+ a; Zi Vi,i Ai
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Gibbs Sampling Equation

nd,k + ak vk;Wd,n + A'Wd,n
K
D> ngita; DiVkit+Ai

= Number of times document d uses topic k

= Number of times topic k uses word type wy ,

= Dirichlet parameter for document to topic distribution
= Dirichlet parameter for topic to word distribution

= How much this document likes topic k

= How much this topic likes word wy
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Gibbs Sampling Equation
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Gibbs Sampling Equation

Ngk+ 0k Vigwg, T Awg,
K
S ngi+a; 2ivki T A

= Number of times document d uses topic k

= Number of times topic k uses word type wy ,

= Dirichlet parameter for document to topic distribution
= Dirichlet parameter for topic to word distribution

= How much this document likes topic k

= How much this topic likes word wy
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Gibbs Sampling Equation

nd,k + ak VkrWd,n + A'Wd,n
K
S g+ 2 Vit A

= Number of times document d uses topic k

= Number of times topic k uses word type wy ,

= Dirichlet parameter for document to topic distribution
= Dirichlet parameter for topic to word distribution

= How much this document likes topic k

= How much this topic likes word wy ,
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Sample Document

Etruscan

trade

price

temple

market
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Sample Document

Etruscan

trade

price

temple

market
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Randomly Assign Topics

3 2 1 3 1

Etruscan | trade price temple | market
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Randomly Assign Topics

3 2 1 3 1

Etruscan | trade price temple | market

temple ship trade market
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Total Topic Counts

3 2 1 3 1
Etruscan | trade price temple | market
1 2 3

Etruscan 1 0 35

Total market 50 0 1

counts —> -

from all price 42 1 0

docs temple 0 0 20
trade 10 8 1
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Total Topic Counts

3 2 1 3 1
Etruscan | trade price temple | market
1 2 3
Etruscan 1 0 35
Total U cn n 1

Sampling Equation

nd,k + ak Vkad,n + A'Wd,n
K
D Nait+a; Diviit A
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Total Topic Counts

3 2 1 3 1
Etruscan | trade price temple | market
1 2 3
Etruscan 1 0 35
Total U cn n 1

Sampling Equation

nd,k + ak Vk)Wd,n + A'Wd,n
K
D Nait+a; Diviit A
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We want to sample this word ...

3 2 1 3 1
Etruscan }éde price temple | market
1 2 3
Etruscan 1 0 35
market 50 0 1
price 42 1 0
temple 0 0 20
trade 10 8 1
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We want to sample this word ...

3 ) 2 1 3 1
Etruscan//trade price temple | market
/ 1 2 3
Etruscan 1 0 35
market 50 0 1
price 42 1 0
temple 0 0 20
trade 10 8 1

\
\
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Decrement its count

3 ? 1 3 1
Etruscan | trade price temple | market
1 2 3
Etruscan 1 0 35
market 50 0 1
price 42 1 0
temple 0 0 20
trade 10 7 1
\
\
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What is the conditional distribution for this topic?

3 ? 1 3 1

Etruscan | trade price temple | market

Material adapted from David Mimno | UMD Topic Models | 39/1



Part 1: How much does this document like each topic?

3 ? 1 3 1

Etruscan | trade price temple | market

Material adapted from David Mimno | UMD Topic Models | 40/1



Part 1: How much does this document like each topic?

3 ? 1 3 1
Etruscan | trade price temple | market
Topic 1 Topic 2 Topic 3
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Part 1: How much does this document like each topic?

3 ? 1 3 1
Etruscan | trade price temple | market
Tonic 1 Tonic 2 Tonic R

Sampling Equation

nd,k + ak vkad,n + A'Wd,n
K
D Nait+a; Diviit A

Material adapted from David Mimno | UMD Topic Models | 41/1




Part 1: How much does this document like each topic?

3 ? 1 3 1
Etruscan | trade price temple | market
Tonic 1 Tonic 2 Tonic R

Sampling Equation

Ng+ 0k Vigwg, T Awg,
K
Z,- Ny i+ a; Zivk,i‘k)ti
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Part 2: How much does each topic like the word?

3 ? 1 3 1
Etruscan | trade price temple | market
Topic 1 Topic 2 Topic 3

1 2 3
trade 10 1

Material adapted from David Mimno | UMD Topic Models | 42/1




Part 2: How much does each topic like the word?

3 ? 1 3 1
Etruscan | trade price temple | market
Tonic 1 Tonic 2 Tonic R

Sampling Equation

nd,k + ak vkad,n + A'Wd,n
K
D Nait+a; Diviit A
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Part 2: How much does each topic like the word?

3 ? 1 3 1
Etruscan | trade price temple | market
Tonic 1 Tonic 2 Tonic R

Sampling Equation

nd,k + ak Vk)Wd,n +AWd,n
K
D Nait+a; Diviit A
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Geometric interpretation

3 ? 1 3 1
Etruscan | trade price temple | market
Topic 1 Topic 2 Topic 3
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Geometric interpretation

3 ? 1 3 1
Etruscan | trade price temple | market
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Geometric interpretation

3 ? 1 3 1
Etruscan | trade price temple | market
Topic 1 Topic 2 Topic 3

*
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Update counts

3 ? 1 3 1
Etruscan | trade price temple | market
1 2 3
Etruscan 1 0 35
market 50 0 1
price 42 1 0
temple 0 0 20
trade 10 7 1
\
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Update counts

3 1 1 3 1
Etruscan /t/rade price temple | market

/ 1 2 3
Etruscan 1 0 35
market 50 0 1
price 42 1 0
temple 0 0 20
trade 11 7 1
\\
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Update counts

3 1 1 3 1
Etruscan | trade price temple | market
Topic 1 Topic 2 Topic 3

Material adapted from David Mimno | UMD

Topic Models | 44/1



Details: how to sample from a distribution

__ 00
Topic 1
/V
Ng g+ K Vigwg, T Awg, .
Z,K ng,i + o DoV + A > Topic 2
Topic 3
Topic 4 -
9
3
=N
=
@
Topic 5

ic Models | 45/1
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Algorithm

1. For each iteration i:
1.1 For each document d and word n currently assigned to z,,:
1.1.1 Decrement n,, ., and v,

ZoldsWa,n
okt ViwgntAwgn

1.1.2 Sample z,,, = k with probability proportional to gt S e tAi

1.1.3 Incrementn,, —andv, .,

Material adapted from David Mimno | UMD Topic Models | 46/1



Implementation

Algorithm

1. For each iteration i:
1.1 For each document d and word n currently assigned to z,:
1.1.1 Decrement ng,  and v, .,

q AR q + Vi,w, n+Aw n
1.1.2 Sample Z,, = k with probability proportional to % T

1.1.3 Incrementn,, and v,

Znew»Wd,n
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Desiderata

Hyperparameters: Sample them too (slice sampling)

Initialization: Random

Sampling: Until likelihood converges

Lag / burn-in: Difference of opinion on this
Number of chains: Should do more than one

Material adapted from David Mimno | UMD Topic Models | 48/1



Available implementations

= Mallet (http://mallet.cs.umass.edu)
= LDAC (http://www.cs.princeton.edu/ blei/lda-c)
= Topicmod (http://code.google.com/p/topicmod)

Material adapted from David Mimno | UMD Topic Models | 49/1



Wrapup

= Topic Models: Tools to uncover themes in large document collections
= Another example of Gibbs Sampling
= n class: Gibbs sampling example

Material adapted from David Mimno | UMD Topic Models | 50/1



K-Means: Example
Pick K centers (randomly):

(—1,—1) and (0,0)

o
o -
~
° ° °
°
153 o
°© 4 +
T4 a o
a4 o
o °
T T T T T T
-2 -1 0 1 2 3

X1
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K-Means: Example

Calculate distance between points and those centers:

x| X || (=1,=1) | (0,0)
0.4 | 1.0 1.4 1.1
-1.0 | -2.2 1.2 2.4
24 | -2.2 1.9 3.3
-1.0 | -1.9 0.9 2.2
05| 0.6 1.6 0.8
-0.1 | 1.7 2.9 1.7
1.2 | 3.3 4.8 3.5
3.1 1.6 4.8 3.4
1.3 | 1.6 3.5 2.1
20 | 0.8 3.5 2.2

Data Science: Jordan Boyd-Graber | UMD Clustering | 7/1



K-Means: Example

Choose mean with smaller distance:

x| x [ (=1,—1)](0,0)
04 | -1.0 1.4 1.1
-1.0 | -2.2 1.2 2.4
24 | 2.2 1.9 3.3
-1.0 | -1.9 0.9 2.2
-05 | 0.6 1.6 0.8
-0.1 1.7 2.9 1.7
1.2 | 3.3 4.8 3.5
3.1 1.6 4.8 3.4
1.3 1.6 3.5 21
20 | 0.8 3.5 2.2

Data Science: Jordan Boyd-Graber | UMD Clustering | 8/1



K-Means: Example
New clusters:

°
o -
o~ 4
°
° [
o
N o
o +
T a o
t\IA, o
° o
T T T T T T
2 —1 0 1 2 3
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K-Means: Example

Refit means for each cluster:
= cluster 1: (—1.0,—2.2),
(—2.4,—2.2), (—1.0,—1.9) o
= new mean: (—1.5,—2.1) | *
= cluster 2: (0.4,—1.0), (—0.5,0.6),
(—0.1,1.7), (1.2,3.3), (3.1,1.6),
(1.3,1.6), (2.0,0.8) T .
= new mean: (1.0,1.2) v °

Data Science: Jordan Boyd-Graber | UMD Clustering | 10/1



K-Means: Example

Recalculate distances for each cluster:

Xy Xo (—1.5,—2.1) | (1.0,1.2)
04 | 1.0 2.2 2.3
-1.0 | -2.2 0.5 4.0
24 | 2.2 1.0 4.9
-1.0 | -1.9 0.5 3.8
-0.5 | 0.6 2.8 1.7
-0.1 1.7 4.1 1.2
1.2 | 3.3 6.0 2.1
3.1 1.6 5.8 2.0
1.3 1.6 4.6 0.5
20 | 0.8 4.6 1.1

Data Science: Jordan Boyd-Graber

| umD
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K-Means: Example

Choose mean with smaller distance:

x| x || (—1.5—-21)] (1.0,1.2)
04 | -1.0 2.2 23
1.0 | 2.2 0.5 4.0
24 | 2.2 1.0 4.9
1.0 | -1.9 0.5 3.8
05| 06 2.8 1.7
0.1 | 17 4.4 1.2
12 | 33 6.0 2.1
31 | 16 5.8 2.0
13| 16 4.6 0.5
20 | 08 4.6 1.1

Data Science: Jordan Boyd-Graber

| umD

Clustering | 12/1



K-Means: Example
New clusters:

X2

-1




K-Means: Example

Refit means for each cluster:

= cluster 1: (0.4,—1.0), "
(—1.0,—2.2), (—2.4,—2.2), o
(—1.0,—1.9) © e .
= new mean: (—1.0,—1.8) s | . °
= cluster 2: (—0.5,0.6), (—0.1,1.7), .
(1.2,3.3), (3.1,1.6), (1.3,1.6), . .
(2.0,0.8) \
= new mean: (1.2,1.6) e

Data Science: Jordan Boyd-Graber | UMD Clustering | 14/1



K-Means: Example

Recalculate distances for each cluster:

xi | X2 || (—1.0,—1.8) | (1.2,1.6)
04 | -1.0 1.6 2.7
-1.0 | -2.2 0.4 4.4
24 | 2.2 1.5 5.2
-1.0 | -1.9 0.1 4.1
-0.5 | 0.6 2.4 2.0
-0.1 | 1.7 3.6 1.2
1.2 | 3.3 5.6 1.7
3.1 1.6 5.3 1.9
1.3 | 1.6 4.1 0.1
20 | 0.8 4.0 1.2

Data Science: Jordan Boyd-Graber

| umD
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K-Means: Example

Select smallest distance and compare these clusters with previous:

Table: New Clusters Table: Old Clusters
X Xo (—1.0,—1.8) | (1.2,1.6) (—1.5,—2.1) | (1.0,1.2)
0.4 -1.0 1.6 2.7 2.2 2.3
-1.0 | 2.2 0.4 4.4 0.5 4.0
24 | 22 1.5 52 1.0 4.9
-1.0 | -1.9 0.1 41 0.5 3.8
-0.5 0.6 2.4 2.0 2.8 1.7
0.1 | 1.7 3.6 1.2 4.1 1.2
1.2 3.3 5.6 1.7 6.0 21
3.1 1.6 5.3 1.9 5.8 2.0
13 | 1.6 4.1 0.1 4.6 0.5
2.0 0.8 4.0 1.2 4.6 1.1

Data Science: Jordan Boyd-Graber | UMD Clustering | 16/1



K-Means in Practice

K-means can be used for image
segmentation

= partition image into multiple
segments

= find boundaries of objects

= make art

Data Science: Jordan Boyd-Graber | UMD Clustering | 17/1



K-Means Clustering
What if our data look like this?

S
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K-Means Clustering

True clustering:

x2
0
|

-2
|

) o

Data Science: Jordan Boyd:




K-Means Clustering
K-means clustering (K = 2):

x2
0
I
o
o
o8
®
o

o o

-2

Clustering




Why topic models?

Suppose you have a huge number of
documents

Want to know what'’s going on

Can’t read them all (e.g. every New
York Times article from the 90’s)

Topic models offer a way to get a
corpus-level view of major themes

Computational Linguistics: Jordan Boyd-Graber | UMD Topic Models | 2/1



Why topic models?

= Suppose you have a huge number of
documents

= Want to know what’s going on

= Can't read them all (e.g. every New
York Times article from the 90’s)

= Topic models offer a way to get a
corpus-level view of major themes

= Unsupervised
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Roadmap

= What are topic models
= How to know if you have good topic model
= How to go from raw data to topics

Computational Linguisti rdan Boyd-Graber |



Conceptual Approach

From an input corpus and number of topics K — words to topics

Corpus

Forget the Bootleg, Just

Red Light, Green Light: A
2-Tone L.E.D. to
Simplify Screens

Computational Linguistics: Jordan Boyd-Graber | UMD Topic Models | 4/1



Conceptual Approach

From an input corpus and number of topics K — words to topics

TOPIC 1 TOPIC2  TOPIC 3

computer,
technology,
system,
service, site,
phone,
internet,
machine

Computational Linguistics: Jordan Boyd-Graber | UMD Topic Models | 4/1



Conceptual Approach

= For each document, what topics are expressed by that document?

e

Download the Movie Legally

Red Light, Green Light: A
2-Tone L.E.D.to
Simplify Screens

TOPIC 1

TOPIC 3

Computational Lingui: : Jordan Boyd-Graber | Topic Models |



Topics from Science

human evolution
genome evolutionary
dna species
genetic organisms
genes life
sequence origin
gene biology
molecular groups
sequencing  phylogenetic
map living
information diversity
genetics group
mapping new
project two
common

sequernces

Computational Li

disease
host
bacteria
diseases
resistance
bacterial
new
strains
control
infectious
malaria
parasite
parasites
united
tuberculosis

computer
models
information
data
computers
system
network
systems
model
parallel
methods
networks
software
new

simulations

pic Models




Why should you care?

Neat way to explore / understand corpus collections
o E-discovery

o Social media

o Scientific data

NLP Applications

o Word Sense Disambiguation

o Discourse Segmentation

o Machine Translation

Psychology: word meaning, polysemy

Inference is (relatively) simple

Computational Linguistics: Jordan Boyd-Graber | UMD Topic Models |  7/1



Matrix Factorization Approach

M x K x[ KxV :|z MxV

Topics

Topic Assignment Dataset

K Number of topics
M Number of documents
V Size of vocabulary

Computational Linguistics: Jordan Boyd-Graber | UMD Topic Models | 8/1



Matrix Factorization Approach

M x K x[ KxV :|z MxV

Topics
Topic Assignment Dataset
= [f you use singular value
K Number of topics deiomposmon I(|S(\j/I|3), this
technique is called latent semantic
M Number of documents q
analysis.
V Size of vocabulary o . .
= Popular in information retrieval.

Computational Linguistics: Jordan Boyd-Graber | UMD Topic Models | 8/1



Alternative: Generative Model

= How your data came to be
= Sequence of Probabilistic Steps

= Posterior Inference

Computational Linguisti rdan Boyd-Graber |



Alternative: Generative Model

How your data came to be

= Sequence of Probabilistic Steps

Posterior Inference

Blei, Ng, Jordan. Latent Dirichlet Allocation. JMLR, 2003.

Computational Linguistics: Jordan Boyd-Graber | UMD Topic Models | 9/1



Multinomial Distribution

= Distribution over discrete outcomes
= Represented by non-negative vector that sums to one

= Picture representation

(1,0,0) 0,0,1) (0,1,0

(13,1/3,1/3)  (1/4,1/4,1/2)  (1/2,1/2,0)

Computational Linguistics: Jordan Boyd-Graber | Topic Models | 10/1



Multinomial Distribution

= Distribution over discrete outcomes
= Represented by non-negative vector that sums to one

= Picture representation

(1,0,0) 0,0,1) (0,1,0

)

(13,1/3,1/3)  (1/4,1/4,1/2)  (1/2,1/2,0)

= Come from a Dirichlet distribution

Computational Linguisti rdan Boyd-Graber |

Topic Models |
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Dirichlet Distribution

F(Zk amy) l—[ amg—-1

PIPTOm) = 5 Tami L 1Px

Computational Linguistics: Jordan Boyd-Gr:



Dirichlet Distribution

F(Zk amg) amg—1
[T Flamg) l:[pk

P(p|lam) =

w|
w|
—
Q
Il
w
o
Il
—~
[V
[V
W=
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Dirichlet Distribution

r'(Z:k amy) l_[ amg-1

PIPTOm) = 5 Tami L 1Px
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Dirichlet Distribution

alpha=(0.2,0.1,0.1)

Computational Lir



Dirichlet Distribution

= If ¢ ~Dir(()a), w~Mult(()¢), and n, = |{w; : w; = k}| then

p(¢la,w) o< p(i|¢)p(pla) (1)
oc[ [o™] [o« @
k k
oc [ Jotn @)
k

= Conjugacy: this posterior has the same form as the prior



Dirichlet Distribution

= If ¢ ~Dir(()a), w~Mult(()¢), and n, = |{w; : w; = k}| then

p(pla, w) o< p(wlg)p(¢la) (1)
oc[ Jo™] o (2)
k k
o< [ [oorn @)
k

= Conjugacy: this posterior has the same form as the prior
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Generative Model

TOPIC 1 computer,

technology,
system,

service, site,
phone,
internet,
machine

TOPIC 2

TOPIC 3

Computational Li tics: Jordan Boyd-Graber |



Generative Model

Red Light, Green Light: A
2-Tone L.E.D. to
Simplify Screens

TOPIC 1

TOPIC 2

Forget the Bootleg, Just
Download the Movie Legally

TOPIC 3

Computational Linguistics: Jordan Bo;



Generative Model

computer,
technology,
system,
service, site,
phone,
internet,
machine

Hollywood studios are preparing to let people
download and buy electronic copies of movies over
the Internet, much as record labels now sell songs for

99 cents through Apple Computer's iTunes music store

and other online services ...

Computational Linguistics dan Boyd-Graber | cModels | 14/1



Generative Model

computer,
technology,
system,
service, site,
phone,
internet,
machine

Hol./mreparing to let people

download and buy electronic copies of movies over

the Internet, much as record labels now sell songs for

99 cents through Apple Computer's iTunes music store

and other online services ...
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Generative Model

computer,
technology,
system,
service, site,
phone,
internet,
machine

/

Hol./ od stu. are preparing to let people

dov&@ad and @ electronic copies of movies over
the Internet, much as record labels now sell songs for

99 cents through Apple Computer's iTunes music store

and other online services ...
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Generative Model

computer,
technology,
system,
service, site,
phone,
internet,
machine

Hol./ood stu.s are preparing to let people

dov&@ad and @ eleic c@s of m‘es over
the In@'let, much as re.d la. now S(.S for
99 @s through A@Ble Con@er‘s iTl@?S m.'c s@
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Generative Model Approach

(e,

= For each topic k € {1,..., K}, draw a multinomial distribution B« from a
Dirichlet distribution with parameter A

Computational Linguistics: Jordan Boyd-Graber | UMD Topic Models | 15/1



Generative Model Approach

O
(e M

= For each topic k € {1,..., K}, draw a multinomial distribution B« from a
Dirichlet distribution with parameter A

= For each document d € {1, ..., M}, draw a multinomial distribution 8,
from a Dirichlet distribution with parameter «
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Generative Model Approach

0l0)
OECIORN

= For each topic k € {1,..., K}, draw a multinomial distribution 3, from a
Dirichlet distribution with parameter A

= For each document d € {1, ..., M}, draw a multinomial distribution 8,
from a Dirichlet distribution with parameter a

= For each word position n€ {1,..., N}, select a hidden topic z, from the
multinomial distribution parameterized by 6.

Computational Linguistics: Jordan Boyd-Graber | UMD Topic Models | 15/1



Generative Model Approach

OLOLOX R}

= For each topic k € {1,..., K}, draw a multinomial distribution 3, from a
Dirichlet distribution with parameter A

= For each document d € {1, ..., M}, draw a multinomial distribution 8,
from a Dirichlet distribution with parameter a

= For each word position n€ {1,..., N}, select a hidden topic z, from the
multinomial distribution parameterized by 6.

= Choose the observed word w,, from the distribution 3, .

Computational Linguistics: Jordan Boyd-Graber | UMD Topic Models | 15/1



Generative Model Approach

(@Oren=)-@.,

= For each topic k € {1,..., K}, draw a multinomial distribution 3, from a
Dirichlet distribution with parameter A

= For each document d € {1,..., M}, draw a multinomial distribution 8,
from a Dirichlet distribution with parameter a

= For each word position n€ {1,..., N}, select a hidden topic z, from the
multinomial distribution parameterized by 8.

= Choose the observed word w,, from the distribution 3, .
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Topic Models: What’s Important

= Topic models
o Topics to word types
o Documents to topics
o Topics to word types—multinomial distribution
o Documents to topics—multinomial distribution
= Focus in this talk: statistical methods
o Model: story of how your data came to be
o Latent variables: missing pieces of your story
o Statistical inference: filling in those missing pieces
= We use latent Dirichlet allocation (LDA), a fully Bayesian version of
pLSI, probabilistic version of LSA

Computational Linguistics: Jordan Boyd-Graber | UMD Topic Models | 16/1



Topic Models: What’s Important

= Topic models (latent variables)
o Topics to word types
o Documents to topics
o Topics to word types—multinomial distribution
o Documents to topics—multinomial distribution
= Focus in this talk: statistical methods
o Model: story of how your data came to be
o Latent variables: missing pieces of your story
o Statistical inference: filling in those missing pieces
= We use latent Dirichlet allocation (LDA), a fully Bayesian version of
pLSI, probabilistic version of LSA
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Evaluation

Model A Held-out Data
Sony Ericsson's Infinite
Model B I

Price War Brews Between
Model C

Red Light, Green Light: A
2-Tone L.E.D. to
Simplify Screens

Amazon and Wal-Mart

P(w|w’,2’,am, fu) =
Z P(w,z|w’,z’,am, Bu)
V4

How you compute it is important too (Wallach et al. 2009)

Computational Linguistics: Jordan Boyd-Graber | Topic Models |



Evaluation

Held-out Log
Likelihood

Forget the Bootleg, Just
r e Model A — -4.8 Held-out Data
PSOH Ericsson's Infinite
MOdel B - -1 51 6 For Search, Murdoch Looks
Price War Brews Between

Model CH _2342 Amazon and Wal-Mart

Red Light, Green Light: A
2-Tone L.E.D. to
Simplify Screens

Measures predictive power, not what the topics are

P(w|w’,2’,am, fu) =
Z P(w,z|w', 2, am, Bu)
V4

How you compute it is important too (Wallach et al. 2009)

Computational Linguistics: Jordan Boyd-Graber | UMD Topic Models | 17/1



Word Intrusion

TOPIC 1 TOPIC2  TOPIC 3

computer,
technology,
system,
service, site,
phone,
internet,
machine
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Word Intrusion

1. Take the highest probability words from a topic
Original Topic

dog, cat, horse, pig, cow

Computational Linguistics: Jordan Boyd-Graber | UMD Topic Models | 19/1



Word Intrusion

1. Take the highest probability words from a topic

Original Topic

dog, cat, horse, pig, cow

2. Take a high-probability word from another topic and add it
Topic with Intruder

dog, cat, apple, horse, pig, cow
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Word Intrusion

1. Take the highest probability words from a topic

Original Topic

dog, cat, horse, pig, cow

2. Take a high-probability word from another topic and add it
Topic with Intruder

dog, cat, apple, horse, pig, cow

3. We ask users to find the word that doesn’t belong

Hypothesis

If the topics are interpretable, users will consistently choose true intruder

Computational Linguistics: Jordan Boyd-Graber | UMD Topic Models | 19/1



Word Intrusion

1/10

crash accident board agency tibetan safety
710

commercial network  television advertising  viewer layoff
3/10

arrest crime inmate pitcher prison death
4/10

hospital doctor health care medical tradition

Computational Linguistics: Jordan Boyd-Graber | UMD Topic Models | 20/1



Word Intrusion

1/10 Reveal additional response
crash accident board agency _____ t:lbetan _____ safety
710
commercial network television advertising  viewer layoff
3/10
arrest crime inmate pitcher prison death
4/10
hospital doctor health care medical tradition

= Order of words was shuffled
= Which intruder was selected varied
= Model precision: percentage of users who clicked on intruder

Computational Linguistics: Jordan Boyd-Graber | UMD Topic Models | 20/1



Word Intrusion: Which Topics are Interpretable?

New York Times, 50 LDA Topics

Number of Topics

15

10

artist
americans exhibition
fireplace jalpar?ese gallery
garage jewish mulse'um
. states painting
committee r_louse terrorist \
legislation kitchen
proposal list >y
republican
taxis ¢
T T T T T T T T 1
0.000 0.125 0.250 0.375 0.500 0.625 0.750 0.875

Model Precision

1.000

ic Models |
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Interpretability and Likelihood

Model Precision on New York Times

Model
0.80 A
A © cm™

S e ® LA
(%2}
2 0.75 © pLsi
<
E | Number of topics
§ 0.70 N ® 50
= t\ A 100

0.65 ™ W 150

T T T T T
-7.32 -7 -7.28 -7.26 -7.24

.30
Held-out Likelihood

within a model, higher likelihood # higher interpretability
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Interpretability and Likelihood

Topic Log Odds on Wikipedia

A
-1.04 .P/lrj Model
[ 4 | @ Cc™

o © pLsi
g
| Number of topics
% -2.0 ® 50
i) A 100

o5 W 150

T T T T T T T
-752 -7.50 -7.48 -7.46 -7.44 -7.42 -7.40
Held-out Likelihood

across models, higher likelihood # higher interpretability
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Evaluation Takeaway

= Measure what you care about
= [f you care about prediction, likelihood is good
= |f you care about a particular task, measure that
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Sampling Token A

Topics

HESETIEE Topic 1 :hamburger dog iron

DOC1:ZA:1,ZB:2,ZC:3,ZD:1 plg
Doc, : zp =2,z =3,z =1 Topic 2 :pig hamburger iron
DOCS H—1Z/ SZJ—ZZK—2 cat

Topic 3 :dog iron cat

p(za=1)=(F50) * (5T£503) = 0.333 x 0.125 = 0.042 = 0.042

Computational Linguistics: Jordan Boyd-Graber | UMD Topic Models | 3/13



Sampling Token A

Topics

HESETIEE Topic 1 :hamburger dog iron

DOC1:ZA:1,ZB:2,ZC:3,ZD:1 plg
Doc, : zp =2,z =3,z =1 Topic 2 :pig hamburger iron
DOCSZZH:1,Z/:3,ZJ:2,ZK:2 cat

Topic 3 :dog iron cat

» p(za=1) =(§F5500) x (3250 ) = 0.333 x 0.125 = 0.042 = 0.042

n p(zs=2) = (355350 x ($43%0) = 0.333 x 0.111 = 0.037 = 0.037
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Sampling Token A

Topics

HESETIEE Topic 1 :hamburger dog iron

DOC1:ZA:1,ZB:2,ZC:3,ZD:1 plg
Doc, : zp =2,z =3,z =1 Topic 2 :pig hamburger iron
DOCSZZH:1,Z/:3,ZJ:2,ZK:2 cat

Topic 3 :dog iron cat

» p(za=1) =(§F5500) x (3250 ) = 0.333 x 0.125 = 0.042 = 0.042
= p(za=2) =(5F500)

= p(za=3) = (35500 ) x (F£552) = 0.333 x 0.250 = 0.083 = 0.083

X

(94-1090) = 0.333 x 0.111 = 0.037 = 0.037
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Sampling Token A

Topics

HESETIEE Topic 1 :hamburger dog iron

DOC1:ZA:1,ZB:2,ZC:3,ZD:1 plg
Doc, : zp =2,z =3,z =1 Topic 2 :pig hamburger iron
DOCSZZH:1,Z/:3,ZJ:2,ZK:2 cat

Topic 3 :dog iron cat

» p(za=1) =(§F5500) x (3250 ) = 0.333 x 0.125 = 0.042 = 0.042
= p(za=2) =(5F500)

= p(za=3) = (35500 ) x (F£552) = 0.333 x 0.250 = 0.083 = 0.083

X

(94-1090) = 0.333 x 0.111 = 0.037 = 0.037
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Sampling Token A

Assignments

DOC1 :ZA:1,ZB:2,ZC:3,ZD:1
Doc, : zp =2,z =3,z =1

DOC3 H—1Z/ 32J—2ZK—2

p(za=1) = (F000) * (55550)

3+-5.000

3+-3.000 44-5.000

= p(za=3) =(5500) X

3-+5.000

New assignment for (0, 0): 3

1+1.ooo) —0.333 x 0.250 = 0.083 = 0.083

Topics

Topic 1 :hamburger dog iron
pig

Topic 2 :pig hamburger iron
cat

Topic 3 :dog iron cat

( =0.333 x 0.125 = 0.042 = 0.042
- P(ZA:2 (1+1OOO)X(O+1.OOO):
x(

0.333x0.111 =0.037 = 0.037
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Sampling Token B

Assignments LieFtes

Topic 1 :hamburger iron pig
Topic 2 :pig hamburger iron
cat

Topic 3 :dog dog iron cat

Docy:2z4=8,z3=2,zc=3,zp =1
DOCQ:ZE:2,2F23,ZG:1
Docy:zy=1,2=38,2;=2,zxk =2
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Sampling Token B

Assignments LieFtes

Topic 1 :hamburger iron pig
Topic 2 :pig hamburger iron
cat

Topic 3 :dog dog iron cat

Docy:2z4=8,z3=2,zc=3,zp =1
DOCZ:ZE:2!ZF:3yZG:1
Docy:zy=1,2=38,2;=2,zxk =2

= p(zg=1)=(3500) x (FEE50e) = 0.333 x 0.125 = 0.042 = 0.042
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Sampling Token B

Assignments LieFtes

Topic 1 :hamburger iron pig
Topic 2 :pig hamburger iron
cat

Topic 3 :dog dog iron cat

Docy:2z4=8,z3=2,zc=3,zp =1
DOCZ:ZE:2JZF:3yZG:1
Docy:zy=1,2=38,2;=2,zxk =2

= p(zg=1)=(3500) x (FEE50e) = 0.333 x 0.125 = 0.042 = 0.042

= p(z5=2) = (3H5000) x (3£353) = 0.167 x 0.125 = 0.021 = 0.021
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Sampling Token B

Assignments LieFtes

Topic 1 :hamburger iron pig
Topic 2 :pig hamburger iron
cat

Topic 3 :dog dog iron cat

Docy:2z4=8,z3=2,zc=3,zp =1
DOCZ:ZE:2JZF:3yZG:1
Docy:zy=1,2=38,2;=2,zxk =2

= p(zg=1)=(3500) x (FEE50e) = 0.333 x 0.125 = 0.042 = 0.042
= p(zs=2)=(555500)

= p(z5=3) = (55500) x (£353) = 0.500 x 0.222 = 0.111 = 0.111

X

(LEL990) — 0,167 x 0.125 = 0.021 = 0.021
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Sampling Token B

Assignments LieFtes

Topic 1 :hamburger iron pig
Topic 2 :pig hamburger iron
cat

Topic 3 :dog dog iron cat

Docy:2z4=8,z3=2,zc=3,zp =1
DOCZ:ZE:2JZF:3yZG:1
Docy:zy=1,2=38,2;=2,zxk =2

= p(zg=1)=(3500) x (FEE50e) = 0.333 x 0.125 = 0.042 = 0.042
= p(zs=2)=(555500)

= p(z5=3) = (55500) x (£353) = 0.500 x 0.222 = 0.111 = 0.111

X

(LEL990) — 0,167 x 0.125 = 0.021 = 0.021
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Sampling Token B

Assignments LieFtes

Topic 1 :hamburger iron pig
Topic 2 :pig hamburger iron
cat

Topic 3 :dog dog iron cat

Docy:2z4=8,z3=2,zc=3,zp =1
D0C2'ZE:2 ZF:3 ZG:1
Docy:zy=1,2=38,2;=2,zxk =2

= p(zs=1)=(500) X
n p(zp=2) = (355002 ) x (FEL0%2) = 0.167 x 0.125 = 0.021 = 0.021
(

)= (550

X

0+-1.008) = 0.333 x 0.125 = 0.042 = 0.042

HELO0) 0,500 0222 0111 — 041

New assignment for (0, 1): 3
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Sampling Token C

Assignments Topics
Docy:24=8,z5=38,2c=3,zp =1 Topic 1 :hamburger iron pig
Docs : zg =2,z =3,z =1 Topic 2 :pig hamburger iron

Docs:zy=1,2,=8,z,;=2,z4 =2 Topic 3 :dog dog iron cat cat
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Sampling Token C

Assignments Topics
Docy:24=8,z5=38,2c=3,zp =1 Topic 1 :hamburger iron pig
Docs : zg =2,z =3,z =1 Topic 2 :pig hamburger iron

Docs:zy=1,2,=8,z,;=2,z4 =2 Topic 3 :dog dog iron cat cat

m p(ze=1) = (375350 ) x (FHa30) = 0.333 x 0.125 = 0.042 = 0.042

Computational Linguistics: Jordan Boyd-Graber | UMD

Topic Models | 5/13



Sampling Token C

Assignments Topics
Docy:24=8,z5=38,2c=3,zp =1 Topic 1 :hamburger iron pig
Docs : zg =2,z =3,z =1 Topic 2 :pig hamburger iron
Docs:zy=1,2,=8,z,;=2,z4 =2 Topic 3 :dog dog iron cat cat

m p(ze=1) = (375350 ) x (FHa30) = 0.333 x 0.125 = 0.042 = 0.042

» p(z0=2) = (HE30) x (535 ) = 0.167 x 0.125 = 0.021 = 0.021
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Sampling Token C

Assignments Topics

Docy:24=8,z5=38,2c=3,zp =1 Topic 1 :hamburger iron pig

Docs : zg =2,z =3,z =1 Topic 2 :pig hamburger iron

Docs:zy=1,2,=8,z,;=2,z4 =2 Topic 3 :dog dog iron cat cat
m p(ze=1) = (375350 ) x (FHa30) = 0.333 x 0.125 = 0.042 = 0.042

= p(ze =2) =(55%50)

n p(zp=3) = (E3%0) x (1H£358) = 0.500 x 0.222 = 0.111 =0.111

X

($-1000) = 0.167 x 0.125 = 0.021 = 0.021
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Sampling Token C

Assignments Topics

Docy:24=8,z5=38,2c=3,zp =1 Topic 1 :hamburger iron pig

Docs : zg =2,z =3,z =1 Topic 2 :pig hamburger iron

Docs:zy=1,2,=8,z,;=2,z4 =2 Topic 3 :dog dog iron cat cat
m p(ze=1) = (375350 ) x (FHa30) = 0.333 x 0.125 = 0.042 = 0.042

= p(ze =2) =(55%50)

n p(zp=3) = (E3%0) x (1H£358) = 0.500 x 0.222 = 0.111 =0.111

X

($-1000) = 0.167 x 0.125 = 0.021 = 0.021
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Sampling Token C

Assignments

D0C1 :ZA:3,ZB:3,ZC:3,ZD:1
Docs : zg =2,z =3,z =1
DOCSZZH:1,ZI:3,ZJ:2,ZK:2

= plze=1)=(5H00) * (5550)
= plzc=2)=(55000) * (S5.000) =
= p(zc=3) = (55000) * (+75000)

New assignment for (0, 2): 3
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Topics

Topic 1 :hamburger iron pig
Topic 2 :pig hamburger iron
Topic 3 :dog dog iron cat cat

=0.333x0.125 =0.042 = 0.042
=0.167x0.125=0.021 = 0.021

=0.500x%x0.222=0.111 =0.111



Sampling Token D

Assignments Topics
Docy:24=8,z5=38,2c=3,zp =1 Topic 1 :hamburger iron pig
Docs : zg =2,z =3,z =1 Topic 2 :pig hamburger iron

Docs:zy=1,2,=8,z,;=2,z4 =2 Topic 3 :dog dog iron cat cat
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Sampling Token D

Assignments Topics
Docy:24=8,z5=38,2c=3,zp =1 Topic 1 :hamburger iron pig
Docs : zg =2,z =3,z =1 Topic 2 :pig hamburger iron

Docs:zy=1,2,=8,z,;=2,z4 =2 Topic 3 :dog dog iron cat cat

m p(zp=1) = (35350) x (Fra35) = 0.167 x 0.143 = 0.024 = 0.024
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Sampling Token D

Assignments Topics
Docy:24=8,z5=38,2c=3,zp =1 Topic 1 :hamburger iron pig
Docs : zg =2,z =3,z =1 Topic 2 :pig hamburger iron
Docs:zy=1,2,=8,z,;=2,z4 =2 Topic 3 :dog dog iron cat cat

m p(zp=1) = (35350) x (Fra35) = 0.167 x 0.143 = 0.024 = 0.024

» p(zp=2)=(FE38) x (335 ) = 0.167 x 0.250 = 0.042 = 0.042
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Sampling Token D

Assignments Topics
Docy:24=8,z5=38,2c=3,zp =1 Topic 1 :hamburger iron pig
Docs : zg =2,z =3,z =1 Topic 2 :pig hamburger iron
Docs:zy=1,2,=8,z,;=2,z4 =2 Topic 3 :dog dog iron cat cat

m p(zp=1) = (35350) x (Fra35) = 0.167 x 0.143 = 0.024 = 0.024

= p(z0=2) =(550m0)

= p(zp=3) = (3£:358) x (F235) = 0.667 x 0.100 = 0.067 = 0.067

X

(L1990) = 0.167 x 0.250 = 0.042 = 0.042
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Sampling Token D

Assignments Topics
Docy:24=8,z5=38,2c=3,zp =1 Topic 1 :hamburger iron pig
Docs : zg =2,z =3,z =1 Topic 2 :pig hamburger iron
Docs:zy=1,2,=8,z,;=2,z4 =2 Topic 3 :dog dog iron cat cat

m p(zp=1) = (35350) x (Fra35) = 0.167 x 0.143 = 0.024 = 0.024

= p(z0=2) =(550m0)

= p(zp=3) = (3£:358) x (F235) = 0.667 x 0.100 = 0.067 = 0.067

X

(L1990) = 0.167 x 0.250 = 0.042 = 0.042
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Sampling Token D

Assignments

D0C1 :ZA:3,ZB:3,ZC:3,ZD:1
Docs : zg =2,z =3,z =1
DOCSZZH:1,ZI:3,ZJ:2,ZK:2

= p(zp=1) = (5550)

= p(zp =2) = (LW

X

2+5.000

X

3+3.000) * | 375.000
_ 341.000) o (0-1.000
» p(zp=3) (3+3 000) x 5+5.000)

New assignment for (0, 3): 3
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041 .000)

(
(1+1.000)
(

Topics

Topic 1 :hamburger iron pig
Topic 2 :pig hamburger iron
Topic 3 :dog dog iron cat cat

=0.167 x0.143 = 0.024 = 0.024
=0.167 x 0.250 = 0.042 = 0.042

=0.667x0.100 =0.067 = 0.067



Sampling Token E

Assignments lejele

Topic 1 :hamburger iron
Topic 2 :pig hamburger iron
Topic 3 :pig dog dog iron cat
cat

Docy:2z4=8,z3=8,z20=3,zp =3
Docy:ze =2,z =8,z5=1
Docy:zy=1,2=38,z;=2,zx =2
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Sampling Token E

Assignments lejele

Topic 1 :hamburger iron
Topic 2 :pig hamburger iron
Topic 3 :pig dog dog iron cat
cat

Docy:2z4=8,z3=8,z20=3,zp =3
DOCz'ZEZZ ZF:3 ZG:1
Docy:zy=1,2=38,z;=2,zx =2

p(ze =1) = (FE508) % (372355 ) = 0.400 x 0.286 = 0.114 = 0.114
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Sampling Token E

Assignments lejele

Topic 1 :hamburger iron
Topic 2 :pig hamburger iron
Topic 3 :pig dog dog iron cat
cat

Docy:2z4=8,z3=8,z20=3,zp =3
Docy:ze =2,z =8,z5=1
Docy:zy=1,2=38,z;=2,zx =2

» p(ze=1)=(35355) x (3535 ) = 0.400 x 0.286 =0.114 =0.114

» p(ze =2) = (2530 ) x (3303 ) = 0.200 x 0.143 = 0.029 = 0.029
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Sampling Token E

Assignments lejele

Topic 1 :hamburger iron
Topic 2 :pig hamburger iron
Topic 3 :pig dog dog iron cat
cat

Docy:2z4=8,z3=8,z20=3,zp =3
Docy:ze =2,z =8,z5=1
Docy:zy=1,2=38,z;=2,zx =2

» p(ze=1)=(35355) x (3535 ) = 0.400 x 0.286 =0.114 =0.114

» p(ze =2) = (2530 ) x (3303 ) = 0.200 x 0.143 = 0.029 = 0.029

= p(ze =3) = (35509) % (F£3%5) = 0.400 x 0.091 = 0.036 = 0.036
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Sampling Token E

Assignments lejele

Topic 1 :hamburger iron
Topic 2 :pig hamburger iron
Topic 3 :pig dog dog iron cat
cat

Docy:2z4=8,z3=8,z20=3,zp =3
Docy:ze =2,z =8,z5=1
Docy:zy=1,2=38,z;=2,zx =2

» p(ze=1)=(35355) x (3535 ) = 0.400 x 0.286 =0.114 =0.114

» p(ze =2) = (2530 ) x (3303 ) = 0.200 x 0.143 = 0.029 = 0.029

= p(ze =3) = (35509) % (F£3%5) = 0.400 x 0.091 = 0.036 = 0.036
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Sampling Token E

Assignments
Docy:2z4=8,z3=8,z20=3,zp =3
DOCz'ZEZZ ZF:3 ZG:‘]
Docy:zy=1,2=38,z;=2,zx =2

p(ze=1)=(z1550) * (zF5500)
= p(ze =2) = (Z5500) * (5000)
= p(ze =3) = (Fi5000) * (755%6)

New assignment for (1, 0): 1

Topics

Topic 1 :hamburger iron
Topic 2 :pig hamburger iron
Topic 3 :pig dog dog iron cat
cat

=0.400%x0.286=0.114=0.114
—=0.200 x 0.143 = 0.029 = 0.029

=0.400 x 0.091 = 0.036 = 0.036
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Sampling Token F

Topics
Assignments
g Topic 1 :hamburger

Docy:24=38,z5=3,20=3,zp =3 hamburger iron
Docy:ze =1,z =3,zg =1 Topic 2 :pig iron
Docy:zy=1,2,=3,z;=2,z4 =2 Topic 3 :pig dog dog iron cat

cat
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Sampling Token F

Topics
Assignments Topic 1 :hamburger

Docy:24=38,z5=3,20=3,zp =3 hamburger iron

Docy:ze =1,z =3,zg =1 Topic 2 :pig iron

Docy:zy=1,2,=3,z;=2,z4 =2 Topic 3 :pig dog dog iron cat
cat

= p(ze=1)=(55503) * (3£553 ) = 0.600 x 0.125 = 0.075 = 0.075
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Sampling Token F

Topics
Assignments
g Topic 1 :hamburger

Docy:24=38,z5=3,20=3,zp =3 hamburger iron

Docy:ze =1,z =3,zg =1 Topic 2 :pig iron

Docy:zy=1,2,=3,z;=2,z4 =2 Topic 3 :pig dog dog iron cat
cat

= p(ze=1)=(55503) * (3£553 ) = 0.600 x 0.125 = 0.075 = 0.075

» p(zr=2) = (35000 ) x (3£55e) = 0.200 x 0.143 = 0.029 = 0.029
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Sampling Token F

Topics
Assignments
g Topic 1 :hamburger

Docy:24=38,z5=3,20=3,zp =3 hamburger iron
Docy:ze =1,z =3,zg =1 Topic 2 :pig iron
Docy:zy=1,2,=3,z;=2,z4 =2 Topic 3 :pig dog dog iron cat
cat
= p(ze=1)=(55503) * (3£553 ) = 0.600 x 0.125 = 0.075 = 0.075

= p(ze =2) =(555000)

(5E5099) x ($££3%2) = 0.200 x 0.200 = 0.040 = 0.040

X

(5£552) = 0.200 x 0.143 = 0.029 = 0.029
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Sampling Token F

Topics
Assignments
g Topic 1 :hamburger

Docy:24=38,z5=3,20=3,zp =3 hamburger iron
Docy:ze =1,z =3,zg =1 Topic 2 :pig iron
Docy:zy=1,2,=3,z;=2,z4 =2 Topic 3 :pig dog dog iron cat
cat
= p(ze=1)=(55503) * (3£553 ) = 0.600 x 0.125 = 0.075 = 0.075

= p(ze =2) =(555000)

(5E5099) x ($££3%2) = 0.200 x 0.200 = 0.040 = 0.040

X

(5£552) = 0.200 x 0.143 = 0.029 = 0.029
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Sampling Token F

Assignments
Docy:24=8,23=38,2c=3,zp=3
Docy:ze =1,z =3,zg =1
Docy:zy=1,2=38,2;=2,zx =2

= p(zr =1) = (E5000) % (55000
" p(zr=2)= (gié 838) X\ 255.000

0+1. 000)

" p(zr=3) :(2+3ooo x

5+-5.000

New assignment for (1, 1): 1
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Topics

Topic 1 :hamburger
hamburger iron

Topic 2 :pig iron

Topic 3 :pig dog dog iron cat
cat

=0.600x0.125=0.075=0.075

(
(0+1 .000) _
(

=0.200 x0.143 = 0.029 = 0.029

11.000) — 0,200 x 0.200 = 0.040 = 0.040



Sampling Token G

Assignments LieFtes

Topic 1 :hamburger
hamburger dog iron

Topic 2 :pig iron

Topic 3 :pig dog iron cat cat

Docy:2z4=8,z3=38,z20=3,zp =3
DOCZ:ZE:1JZF:1yZG:1
Docy:zy=1,2=38,2;=2,zxk =2
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Sampling Token G

Assignments LieFtes

Topic 1 :hamburger
hamburger dog iron

Topic 2 :pig iron

Topic 3 :pig dog iron cat cat

Docy:2z4=8,z3=38,z20=3,zp =3
DOC2'ZE:1 ZF:1 ZG:1
Docy:zy=1,2=38,2;=2,zxk =2

p(ze=1) =(55000) x (3E25%%) = 0.600 x 0.250 = 0.150 = 0.150
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Sampling Token G

Assignments LieFtes

Topic 1 :hamburger
hamburger dog iron

Topic 2 :pig iron

Topic 3 :pig dog iron cat cat

Docy:2z4=8,z3=38,z20=3,zp =3
DOCZ:ZE:1JZF:1yZG:1
Docy:zy=1,2=38,2;=2,zxk =2

» p(zg=1)=(5553%8) x (35355 ) = 0.600 x 0.250 = 0.150 = 0.150

n p(zg=2) = (L33%0) x (HE9%8) = 0.200 x 0.143 = 0.029 = 0.029
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Sampling Token G

Assignments LieFtes

Topic 1 :hamburger
hamburger dog iron

Topic 2 :pig iron

Topic 3 :pig dog iron cat cat

Docy:2z4=8,z3=38,z20=3,zp =3
DOCZ:ZE:1JZF:1yZG:1
Docy:zy=1,2=38,2;=2,zxk =2

» p(zg=1)=(5553%8) x (35355 ) = 0.600 x 0.250 = 0.150 = 0.150
= p(zs=2) = (355%0)

m p(z6=3) = (35305 ) x (FEL3%) = 0.200 x 0.100 = 0.020 = 0.020

X

(5E£032) = 0.200 x 0.143 = 0.029 = 0.029
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Sampling Token G

Assignments LieFtes

Topic 1 :hamburger
hamburger dog iron

Topic 2 :pig iron

Topic 3 :pig dog iron cat cat

Docy:2z4=8,z3=38,z20=3,zp =3
DOCZ:ZE:1JZF:1yZG:1
Docy:zy=1,2=38,2;=2,zxk =2

» p(zg=1)=(5553%8) x (35355 ) = 0.600 x 0.250 = 0.150 = 0.150
= p(zs=2) = (355%0)

m p(z6=3) = (35305 ) x (FEL3%) = 0.200 x 0.100 = 0.020 = 0.020

X

(5E£032) = 0.200 x 0.143 = 0.029 = 0.029
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Sampling Token G

Assignments LieFtes

Topic 1 :hamburger
hamburger dog iron

Topic 2 :pig iron

Topic 3 :pig dog iron cat cat

Docy:2z4=8,z3=38,z20=3,zp =3
DOC2'ZE:1 ZF:1 ZG:1
Docy:zy=1,2=38,2;=2,zxk =2

p(ze=1) = (553%5) x (375355 ) = 0.600 x 0.250 = 0.150 = 0.150
n p(zg=2) = (L33%0) x (HE9%8) = 0.200 x 0.143 = 0.029 = 0.029
m p(z6=3) = (35305 ) x (FEL3%) = 0.200 x 0.100 = 0.020 = 0.020

New assignment for (1, 2): 1

Computational Linguistics: Jordan Boyd-Graber | UMD Topic Models | 9/13



Sampling Token H

Assignments LieFtes

Topic 1 :hamburger
hamburger dog iron

Topic 2 :pig iron

Topic 3 :pig dog iron cat cat

Docy:2z4=8,z3=38,z20=3,zp =3
DOCZ:ZE:1JZF:1yZG:1
Docy:zy=1,2=38,2;=2,zxk =2
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Sampling Token H

Assignments LieFtes

Topic 1 :hamburger
hamburger dog iron

Topic 2 :pig iron

Topic 3 :pig dog iron cat cat

Docy:2z4=8,z3=38,z20=3,zp =3
DOC2'ZE:1 ZF:1 ZG:1
Docy:zy=1,2=38,2;=2,zxk =2

p(zn=1) = (F55000) x (FEa50y) = 0.167 x 0.125 = 0.021 = 0.021
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Sampling Token H

Assignments LieFtes

Topic 1 :hamburger
hamburger dog iron

Topic 2 :pig iron

Topic 3 :pig dog iron cat cat

Docy:2z4=8,z3=38,z20=3,zp =3
DOCZ:ZE:1JZF:1yZG:1
Docy:zy=1,2=38,2;=2,zxk =2

m p(zy=1) = (F530) x ($E355) = 0.167 x 0.125 = 0.021 = 0.021

= p(z,=2) = (533%0) x (3HE3%8) = 0.500 % 0.286 = 0.143 = 0.143
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Sampling Token H

Assignments LieFtes

Topic 1 :hamburger
hamburger dog iron

Topic 2 :pig iron

Topic 3 :pig dog iron cat cat

Docy:2z4=8,z3=38,z20=3,zp =3
DOCZ:ZE:1JZF:1yZG:1
Docy:zy=1,2=38,2;=2,zxk =2

m p(zy=1) = (F530) x ($E355) = 0.167 x 0.125 = 0.021 = 0.021
" p(zy=2) = (55%0)

= p(zy=3) = (575350 ) x (FE23% ) = 0.333 x 0.200 = 0.067 = 0.067

X

(F5L000) = 0.500 x 0.286 = 0.143 = 0.143
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Sampling Token H

Assignments LieFtes

Topic 1 :hamburger
hamburger dog iron

Topic 2 :pig iron

Topic 3 :pig dog iron cat cat

Docy:2z4=8,z3=38,z20=3,zp =3
DOCZ:ZE:1JZF:1yZG:1
Docy:zy=1,2=38,2;=2,zxk =2

m p(zy=1) = (F530) x ($E355) = 0.167 x 0.125 = 0.021 = 0.021
" p(zy=2) = (55%0)

= p(zy=3) = (575350 ) x (FE23% ) = 0.333 x 0.200 = 0.067 = 0.067

X

(F5L000) = 0.500 x 0.286 = 0.143 = 0.143
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Sampling Token H

Assignments LieFtes

Topic 1 :hamburger
hamburger dog iron

Topic 2 :pig iron

Topic 3 :pig dog iron cat cat

Docy:2z4=8,z3=38,z20=3,zp =3
DOC2'ZE:1 ZF:1 ZG:1
Docy:zy=1,2=38,2;=2,zxk =2

Pz =1) = (F3%8) x (3E3%8) = 0.167 x 0.125 = 0.021 = 0.021
= p(z,=2) = (533%0) x (3HE3%8) = 0.500 % 0.286 = 0.143 = 0.143
= p(zy=3) = (575350 ) x (FE23% ) = 0.333 x 0.200 = 0.067 = 0.067

New assignment for (2, 0): 2
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Sampling Token |

Assignments LieFtes

Topic 1 :hamburger
hamburger dog

Topic 2 :pig iron iron

Topic 3 :pig dog iron cat cat

Docy:2z4=8,z3=38,z20=3,zp =3
DOCZ:ZE:1JZF:1yZG:1
Docy:zy=2,2=38,2;=2,zxk =2
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Sampling Token |

Assignments LieFtes

Topic 1 :hamburger
hamburger dog

Topic 2 :pig iron iron

Topic 3 :pig dog iron cat cat

Docy:2z4=8,z3=38,z20=3,zp =3
DOCZ:ZE:1JZF:1yZG:1
Docy:zy=2,2=38,2;=2,zxk =2

= p(z=1)=(355000) * (FE£052) = 0.167 x 0.125 = 0.021 = 0.021
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Sampling Token |

Assignments LieFtes

Topic 1 :hamburger
hamburger dog

Topic 2 :pig iron iron

Topic 3 :pig dog iron cat cat

Docy:2z4=8,z3=38,z20=3,zp =3
DOCZ:ZE:1JZF:1yZG:1
Docy:zy=2,2=38,2;=2,zxk =2

= p(z=1)=(355000) * (FE£052) = 0.167 x 0.125 = 0.021 = 0.021

n p(z=2) = (T30 ) x (5032 ) = 0.667 x 0.375 = 0.250 = 0.250
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Sampling Token |

Assignments LieFtes

Topic 1 :hamburger
hamburger dog

Topic 2 :pig iron iron

Topic 3 :pig dog iron cat cat

Docy:2z4=8,z3=38,z20=3,zp =3
DOCZ:ZE:1JZF:1yZG:1
Docy:zy=2,2=38,2;=2,zxk =2

= p(z=1)=(355000) * (FE£052) = 0.167 x 0.125 = 0.021 = 0.021
" p(z1=2) = (55%0)

= p(z=3) = (35502) x (H£358) = 0.167 x 0.111 =0.019 = 0.019

X

(E£18%2) = 0.667 x 0.375 = 0.250 = 0.250
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Sampling Token |

Assignments LieFtes

Topic 1 :hamburger
hamburger dog

Topic 2 :pig iron iron

Topic 3 :pig dog iron cat cat

Docy:2z4=8,z3=38,z20=3,zp =3
DOCZ:ZE:1JZF:1yZG:1
Docy:zy=2,2=38,2;=2,zxk =2

= p(z=1)=(355000) * (FE£052) = 0.167 x 0.125 = 0.021 = 0.021
" p(z1=2) = (55%0)

= p(z=3) = (35502) x (H£358) = 0.167 x 0.111 =0.019 = 0.019

X

(E£18%2) = 0.667 x 0.375 = 0.250 = 0.250
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Sampling Token |

Assignments
Docy:2z4=8,z3=38,z20=3,zp =3
D0C2'ZE:1 ZF:1 ZG:1
Docy:zy=2,2=38,2;=2,zxk =2

= plzi=1)=(5000) * (5550 ) =
= p(z1=2) =(Si5000) * (55m0) =
= p(z1=3) = (§Fa500) * (F5500) =

New assignment for (2, 1): 2
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Topics

Topic 1 :hamburger
hamburger dog

Topic 2 :pig iron iron

Topic 3 :pig dog iron cat cat

0.167 x0.125=0.021 = 0.021
0.667 x 0.375 = 0.250 = 0.250

0.167x0.111=0.019 =0.019



Sampling Token J

Assignments LieFtes

Topic 1 :hamburger
hamburger dog

Topic 2 :pig iron iron iron
Topic 3 :pig dog cat cat

Docy:2z4=8,z3=38,z20=3,zp =3
DOCZ:ZE:1JZF:1yZG:1
Docy:zy=2,2=2,2;=2,zxk =2
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Sampling Token J

Assignments LieFtes

Topic 1 :hamburger
hamburger dog

Topic 2 :pig iron iron iron
Topic 3 :pig dog cat cat

Docy:2z4=8,z3=38,z20=3,zp =3
DOCZ:ZE:1JZF:1yZG:1
Docy:zy=2,2=2,2;=2,zxk =2

m p(zy=1)=(3E30) x (3£35) = 0.167 x 0.125 = 0.021 = 0.021
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Sampling Token J

Assignments LieFtes

Topic 1 :hamburger
hamburger dog

Topic 2 :pig iron iron iron
Topic 3 :pig dog cat cat

Docy:2z4=8,z3=38,z20=3,zp =3
DOCZ:ZE:1JZF:1yZG:1
Docy:zy=2,2=2,2;=2,zxk =2

u
BN
N

|
=

|

(311000 x (4-1999) = 0.167 x 0.125 = 0.021 = 0.021

n p(zy=2) = (HL30) x (98] = 0.667 x 0.125 = 0.083 = 0.083
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Sampling Token J

Assignments LieFtes

Topic 1 :hamburger
hamburger dog

Topic 2 :pig iron iron iron
Topic 3 :pig dog cat cat

Docy:2z4=8,z3=38,z20=3,zp =3
DOCZ:ZE:1JZF:1yZG:1
Docy:zy=2,2=2,2;=2,zxk =2

m p(zy=1)=(3E30) x (3£35) = 0.167 x 0.125 = 0.021 = 0.021
n p(zy=2) = (HL30) x (98] = 0.667 x 0.125 = 0.083 = 0.083

= p(z;=3) = (T30 x (5Ha3%8) =0.167 x 0.222 = 0.037 = 0.037
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Sampling Token J

Assignments LieFtes

Topic 1 :hamburger
hamburger dog

Topic 2 :pig iron iron iron
Topic 3 :pig dog cat cat

Docy:2z4=8,z3=38,z20=3,zp =3
DOCZ:ZE:1JZF:1yZG:1
Docy:zy=2,2=2,2;=2,zxk =2

m p(zy=1)=(3E30) x (3£35) = 0.167 x 0.125 = 0.021 = 0.021
n p(zy=2) = (HL30) x (98] = 0.667 x 0.125 = 0.083 = 0.083

= p(z;=3) = (T30 x (5Ha3%8) =0.167 x 0.222 = 0.037 = 0.037

Computational Linguistics: Jordan Boyd-Graber | UMD Topic Models | 12/13



Sampling Token J

Assignments LieFtes

Topic 1 :hamburger
hamburger dog

Topic 2 :pig iron iron iron
Topic 3 :pig dog cat cat

Docy:2z4=8,z3=38,z20=3,zp =3
D0C2'ZE:1 ZF:1 ZG:1
Docy:zy=2,2=2,2;=2,zxk =2

T 3%8) =0.167 x 0.125 = 0.021 = 0.021

(
n p(zy=2) = (HL30) x (98] = 0.667 x 0.125 = 0.083 = 0.083
(

H1099) = 0.167 x 0.222 = 0.037 = 0.037

New assignment for (2, 2): 2
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Sampling Token K

Assignments LieFtes

Topic 1 :hamburger
hamburger dog

Topic 2 :pig iron iron iron
Topic 3 :pig dog cat cat

Docy:2z4=8,z3=38,z20=3,zp =3
DOCZ:ZE:1JZF:1yZG:1
Docy:zy=2,2=2,2;=2,zxk =2
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Sampling Token K

Assignments LieFtes

Topic 1 :hamburger
hamburger dog

Topic 2 :pig iron iron iron
Topic 3 :pig dog cat cat

Docy:2z4=8,z3=38,z20=3,zp =3
DOCZ:ZE:1JZF:1yZG:1
Docy:zy=2,2=2,2;=2,zxk =2

m p(ze =1) = (T30 ) x ($E355) = 0.167 x 0.125 = 0.021 = 0.021
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Sampling Token K

Assignments LieFtes

Topic 1 :hamburger
hamburger dog

Topic 2 :pig iron iron iron
Topic 3 :pig dog cat cat

Docy:2z4=8,z3=38,z20=3,zp =3
DOCZ:ZE:1JZF:1yZG:1
Docy:zy=2,2=2,2;=2,zxk =2

m p(ze =1) = (T30 ) x ($E355) = 0.167 x 0.125 = 0.021 = 0.021

= p(zx =2) = (35555 ) x (5E3% ) = 0.667 x 0.375 = 0.250 = 0.250
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Sampling Token K

Assignments e

Topic 1 :hamburger
hamburger dog

Topic 2 :pig iron iron iron
Topic 3 :pig dog cat cat

Docy:2z4=8,z3=38,z20=3,zp =3
DOCZ:ZE:1JZF:1yZG:1
Docy:zy=2,2=2,2;=2,zxk =2

" p(zk=1)
= p(zx =2) = (55%)

(FEaoo) > (§£052) = 0.167 x 0.111 = 0.019 = 0.019

(FE3300) > (3H£8%9) = 0.167 x 0.125 = 0.021 = 0.021

X

(E£L8%2) = 0.667 x 0.375 = 0.250 = 0.250

" p(zx =3)
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Sampling Token K

Assignments e

Topic 1 :hamburger
hamburger dog

Topic 2 :pig iron iron iron
Topic 3 :pig dog cat cat

Docy:2z4=8,z3=38,z20=3,zp =3
DOCZ:ZE:1JZF:1yZG:1
Docy:zy=2,2=2,2;=2,zxk =2

" p(zk=1)
= p(zx =2) = (55%)

(FEaoo) > (§£052) = 0.167 x 0.111 = 0.019 = 0.019

(FE3300) > (3H£8%9) = 0.167 x 0.125 = 0.021 = 0.021

X

(E£L8%2) = 0.667 x 0.375 = 0.250 = 0.250

" p(zx =3)
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Sampling Token K

Assignments LieFtes

Topic 1 :hamburger
hamburger dog

Topic 2 :pig iron iron iron
Topic 3 :pig dog cat cat

Docy:2z4=8,z3=38,z20=3,zp =3
D0C2'ZE:1 ZF:1 ZG:1
Docy:zy=2,2=2,2;=2,zxk =2

m p(ze =1) = (T30 ) x ($E355) = 0.167 x 0.125 = 0.021 = 0.021
= p(zi¢ = 2) = (333%0) x (211988 ) = 0.667 x 0.375 = 0.250 = 0.250
m p(zx=3) = (35350 ) x (FEa3%0) = 0.167 x 0.111 = 0.019 = 0.019

New assignment for (2, 3): 2
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