Language Models

Advanced Machine Learning for NLP
Jordan Boyd-Graber
FOUNDATIONS
After this class, you’ll be able to:

• Give examples of where we need language models
• Evaluate language models
• Connection between Bayesian nonparametrics and backoff
Language models

- **Language models** answer the question: *How likely is a string of English words good English?*
- Autocomplete on phones and websearch
- Creating English-looking documents
- Very common in machine translation systems
 - Help with reordering / style
 \[p_{\text{lm}}(\text{the house is small}) > p_{\text{lm}}(\text{small the is house}) \]
 - Help with word choice
 \[p_{\text{lm}}(\text{I am going home}) > p_{\text{lm}}(\text{I am going house}) \]
Why language models?

• Like sorting for computer science
• Language models essential for many NLP applications
• Optimized for performance and runtime
N-Gram Language Models

- Given: a string of English words $W = w_1, w_2, w_3, ..., w_n$
- Question: what is $p(W)$?
- Sparse data: Many good English sentences will not have been seen before

→ Decomposing $p(W)$ using the chain rule:

$$p(w_1, w_2, w_3, ..., w_n) = \prod_{i=1}^{n} p(w_i | w_{1:i-1})$$

(not much gained yet, $p(w_n | w_1, w_2, ... w_{n-1})$ is equally sparse)
Markov Chain

- **Markov independence assumption:**
 - only previous history matters
 - limited memory: only last k words are included in history
 (older words less relevant)
 \rightarrow *kth order Markov model*

- For instance 2-gram language model:

 $$p(w_1, w_2, w_3, ..., w_n) \approx p(w_1) p(w_2|w_1) p(w_3|w_2) ... p(w_n|w_{n-1})$$

- What is conditioned on, here w_{i-1} is called the **history**
How good is the LM?

- A good model assigns a text of real English W a high probability.
- This can be also measured with **perplexity**

$$\text{perplexity}(W) = P(w_1, \ldots, w_N)^{-\frac{1}{N}}$$

$$= \sqrt[N]{\prod_{i=1}^{N} \frac{1}{P(w_i|w_1 \ldots w_{i-1})}}$$
Comparison 1–4-Gram

<table>
<thead>
<tr>
<th>word</th>
<th>unigram</th>
<th>bigram</th>
<th>trigram</th>
<th>4-gram</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>6.684</td>
<td>3.197</td>
<td>3.197</td>
<td>3.197</td>
</tr>
<tr>
<td>would</td>
<td>8.342</td>
<td>2.884</td>
<td>2.791</td>
<td>2.791</td>
</tr>
<tr>
<td>like</td>
<td>9.129</td>
<td>2.026</td>
<td>1.031</td>
<td>1.290</td>
</tr>
<tr>
<td>to</td>
<td>5.081</td>
<td>0.402</td>
<td>0.144</td>
<td>0.113</td>
</tr>
<tr>
<td>commend</td>
<td>15.487</td>
<td>12.335</td>
<td>8.794</td>
<td>8.633</td>
</tr>
<tr>
<td>the</td>
<td>3.885</td>
<td>1.402</td>
<td>1.084</td>
<td>0.880</td>
</tr>
<tr>
<td>reporter</td>
<td>10.840</td>
<td>7.319</td>
<td>2.763</td>
<td>2.350</td>
</tr>
<tr>
<td>.</td>
<td>4.896</td>
<td>3.020</td>
<td>1.785</td>
<td>1.510</td>
</tr>
<tr>
<td></s></td>
<td>4.828</td>
<td>0.005</td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>

| average | | | | |
| perplexity | 265.136 | 16.817 | 6.206 | 4.758 |
Example: 3-Gram

- Counts for trigrams and estimated word probabilities

<table>
<thead>
<tr>
<th>the red (total: 225)</th>
</tr>
</thead>
<tbody>
<tr>
<td>word</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>cross</td>
</tr>
<tr>
<td>tape</td>
</tr>
<tr>
<td>army</td>
</tr>
<tr>
<td>card</td>
</tr>
<tr>
<td>,</td>
</tr>
</tbody>
</table>

- 225 trigrams in the Europarl corpus start with the red
- 123 of them end with cross

→ maximum likelihood probability is $\frac{123}{225} = 0.547$.
Example: 3-Gram

- Counts for trigrams and estimated word probabilities

 the red (total: 225)

<table>
<thead>
<tr>
<th>word</th>
<th>c.</th>
<th>prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>cross</td>
<td>123</td>
<td>0.547</td>
</tr>
<tr>
<td>tape</td>
<td>31</td>
<td>0.138</td>
</tr>
<tr>
<td>army</td>
<td>9</td>
<td>0.040</td>
</tr>
<tr>
<td>card</td>
<td>7</td>
<td>0.031</td>
</tr>
<tr>
<td>,</td>
<td>5</td>
<td>0.022</td>
</tr>
</tbody>
</table>

- 225 trigrams in the Europarl corpus start with the red
- 123 of them end with cross
 \[\frac{123}{225} = 0.547 \]

- Can’t use ML estimate
How do we estimate a probability?

- Assuming a **sparse Dirichlet** prior, $\alpha < 1$ to each count

$$\theta_i = \frac{n_i + \alpha_i}{\sum_k n_k + \alpha_k}$$ \hspace{1cm} (1)

- α_i is called a smoothing factor, a pseudocount, etc.
How do we estimate a probability?

• Assuming a **sparse Dirichlet** prior, $\alpha < 1$ to each count

$$\theta_i = \frac{n_i + \alpha_i}{\sum_k n_k + \alpha_k} \quad (1)$$

• α_i is called a smoothing factor, a pseudocount, etc.

• When $\alpha_i = 1$ for all i, it’s called “Laplace smoothing”
How do we estimate a probability?

- Assuming a **sparse Dirichlet** prior, $\alpha < 1$ to each count

 \[
 \theta_i = \frac{n_i + \alpha_i}{\sum_k n_k + \alpha_k}
 \]

 (1)

- α_i is called a smoothing factor, a pseudocount, etc.

- When $\alpha_i = 1$ for all i, it’s called “Laplace smoothing”

- What is a good value for α?

- Could be optimized on held-out set to find the “best” language model
Example: 2-Grams in Europarl

<table>
<thead>
<tr>
<th>Count</th>
<th>Adjusted count</th>
<th>Test count</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$(c + 1)$</td>
<td>$(c + \alpha)$</td>
</tr>
<tr>
<td>0</td>
<td>0.000378</td>
<td>0.00016</td>
</tr>
<tr>
<td>1</td>
<td>0.00755</td>
<td>0.95725</td>
</tr>
<tr>
<td>2</td>
<td>0.01133</td>
<td>1.91433</td>
</tr>
<tr>
<td>3</td>
<td>0.01511</td>
<td>2.87141</td>
</tr>
<tr>
<td>4</td>
<td>0.01888</td>
<td>3.82850</td>
</tr>
<tr>
<td>5</td>
<td>0.02266</td>
<td>4.78558</td>
</tr>
<tr>
<td>6</td>
<td>0.02644</td>
<td>5.74266</td>
</tr>
<tr>
<td>8</td>
<td>0.03399</td>
<td>7.65683</td>
</tr>
<tr>
<td>10</td>
<td>0.04155</td>
<td>9.57100</td>
</tr>
<tr>
<td>20</td>
<td>0.07931</td>
<td>19.14183</td>
</tr>
</tbody>
</table>

- Add-\(\alpha\) smoothing with \(\alpha = 0.00017\)

Can we do better? In higher-order models, we can learn from similar contexts!
Example: 2-Grams in Europarl

Can we do better?
In higher-order models, we can learn from similar contexts!

<table>
<thead>
<tr>
<th>Count</th>
<th>Adjusted count c</th>
<th>Adjusted count $(c + \alpha)$</th>
<th>Test count t_c</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.00378</td>
<td>0.00016</td>
<td>0.00016</td>
</tr>
<tr>
<td>1</td>
<td>0.00755</td>
<td>0.95725</td>
<td>0.46235</td>
</tr>
<tr>
<td>2</td>
<td>0.01133</td>
<td>1.91433</td>
<td>1.39946</td>
</tr>
<tr>
<td>3</td>
<td>0.01511</td>
<td>2.87141</td>
<td>2.34307</td>
</tr>
<tr>
<td>4</td>
<td>0.01888</td>
<td>3.82850</td>
<td>3.35202</td>
</tr>
<tr>
<td>8</td>
<td>0.03399</td>
<td>7.65683</td>
<td>7.15074</td>
</tr>
<tr>
<td>10</td>
<td>0.04155</td>
<td>9.57100</td>
<td>9.11927</td>
</tr>
<tr>
<td>20</td>
<td>0.07931</td>
<td>19.14183</td>
<td>18.95948</td>
</tr>
</tbody>
</table>
Back-Off

- In given corpus, we may never observe
 - Scottish beer drinkers
 - Scottish beer eaters
- Both have count 0
 \[\rightarrow\] our smoothing methods will assign them same probability
- Better: backoff to bigrams:
 - beer drinkers
 - beer eaters
Interpolation

- Higher and lower order n-gram models have different strengths and weaknesses
 - high-order n-grams are sensitive to more context, but have sparse counts
 - low-order n-grams consider only very limited context, but have robust counts
- Combine them

\[
p_I(w_3|w_1, w_2) = \lambda_1 p_1(w_3) + \lambda_2 p_2(w_3|w_2) + \lambda_3 p_3(w_3|w_1, w_2)
\]
Back-Off

- Trust the highest order language model that contains n-gram

\[p_{n}^{BO}(w_i|w_{i-n+1},...,w_{i-1}) = \begin{cases}
\alpha_{n}(w_i|w_{i-n+1},...,w_{i-1}) \\
\text{if count}_{n}(w_{i-n+1},...,w_{i}) > 0 \\
d_{n}(w_{i-n+1},...,w_{i-1}) p_{n-1}^{BO}(w_i|w_{i-n+2},...,w_{i-1}) \\
\text{else}
\end{cases} \]

- Requires
 - adjusted prediction model \(\alpha_{n}(w_i|w_{i-n+1},...,w_{i-1}) \)
 - discounting function \(d_{n}(w_1,...,w_{n-1}) \)
What’s a word?

• There are an infinite number of words
 ○ Possible to develop generative story of how new words are created
 ○ Bayesian non-parametrics
What's a word?

- There are an infinite number of words
 - Possible to develop generative story of how new words are created
 - Bayesian non-parametrics
- Defining a vocabulary (the event space)
- But how do you handle words outside of your vocabulary?
What’s a word?

- There are an infinite number of words
 - Possible to develop generative story of how new words are created
 - Bayesian non-parametrics
- Defining a vocabulary (the event space)
- But how do you handle words outside of your vocabulary?
 - Ignore? You could win just by ignoring everything
 - Standard: replace with \(<\text{UNK}\)> token
- Next week: word representations!
Reducing Vocabulary Size

- For instance: each number is treated as a separate token
- Replace them with a number token `num`
 - but: we want our language model to prefer

\[p_{lm}(\text{I pay 950.00 in May 2007}) > p_{lm}(\text{I pay 2007 in May 950.00}) \]

- not possible with number token

\[p_{lm}(\text{I pay num in May num}) = p_{lm}(\text{I pay num in May num}) \]

- Replace each digit (with unique symbol, e.g., `@` or `5`), retain some distinctions

\[p_{lm}(\text{I pay 555.55 in May 5555}) > p_{lm}(\text{I pay 5555 in May 555.55}) \]