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Can SVMs Work Here?

Introduction to Data Science Alg

raber and Paul



Can SVMs Work Here?

- .
. =
. -
-
® .
o o o
\ ]
.
. o @
L ] L ]
-
.
[«]
. -
o
°© )
o
o
° o
o o

(1)

SVM | 20of8

yi(w-x;+b)>1

Boyd-Graber and Paul

Introduction to Data Science Algorithms |



Trick: Allow for a few bad apples
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New obijective function

min | w] +c;5, @)

w,b,&

subjectto y;(w-x; +b)>1—E,AE;>0,ie[1,m]
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subject to y;(w-x;+b) =1—&;AE;>0,i€[1,m]|
e Standard margin

* How wrong a point is (slack variables)

¢ Tradeoff between margin and slack variables
e How bad wrongness scales
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Aside: Loss Functions

* |osses measure how bad a mistake is

¢ Important for slack as well
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Aside: Loss Functions

* Losses measure how bad a mistake is
¢ Important for slack as well
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We’ll focus on linear hinge loss
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Wrapup

e Adding slack variables don’t break the SVM problem
e Very popular algorithm

[e]

SVMLight (many options)

Libsvm / Liblinear (very fast)

Weka (friendly)

pyml (Python focused, from Colorado)
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