Machine Learning

NLP: Jordan Boyd-Graber

University of Maryland

Policy Methods

Adapted from slides by David Silver, Pieter Abbeel, and John Schulman
Reinforcement Learning is Everywhere!

• RL used to be niche subfield . . .
• Now it’s all over the place
• Part of much of ML hype
• But what is reinforcement learning?
Reinforcement Learning is Everywhere!

- RL used to be niche subfield . . .
- Now it’s all over the place
- Part of much of ML hype
- But what is reinforcement learning?
 - RL is a general-purpose framework for decision-making
 - RL is for an agent with the capacity to act
 - Each action influences the agent’s future state
 - Success is measured by a scalar reward signal
 - Goal: select actions to maximise future reward
Simple Statistical Gradient-Following Algorithms for Connectionist Reinforcement Learning

Ronald J. Williams
College of Computer Science
Northeastern University
Boston, MA 02115

Foundation of Policy Gradient
Likelihood Ratio Policy Gradient

Let τ be state-action $s_0, u_0, \ldots, s_H, u_H$. Utility of policy π parametrized by θ is

$$U(\theta) = \mathbb{E}_{\pi_{\theta}, U} \left[\sum_{t}^{H} R(s_t, u_t); \pi_{\theta} \right] = \sum_{\tau} P(\tau; \theta)R(\tau).$$

(1)

Our goal is to find θ:

$$\max_{\theta} U(\theta) = \max_{\theta} \sum_{\tau} p(\tau; \theta)R(\tau)$$

(2)
Likelihood Ratio Policy Gradient

\[\sum_{\tau} p(\tau; \theta)R(\tau) \] \hspace{1cm} (3)

Taking the gradient wrt \(\theta \):

\[\text{(4)} \]
Likelihood Ratio Policy Gradient

\[\sum_{\tau} p(\tau; \theta) R(\tau) \] \hfill (3)

Taking the gradient wrt θ:

\[\nabla_{\theta} U(\theta) = \sum_{\tau} \left(R(\tau) \frac{P(\tau; \theta)}{P(\tau; \theta)} \right) \nabla_{\theta} P(\tau; \theta) \] \hfill (4)

\[\nabla_{\theta} U(\theta) = \sum_{\tau} \nabla_{\theta} P(\tau; \theta) \] \hfill (5)

Move differentiation inside sum (ignore $R(\tau)$ and then add in term that cancels out
Likelihood Ratio Policy Gradient

\[\sum_{\tau} p(\tau; \theta)R(\tau) \quad (3) \]

Taking the gradient wrt \(\theta \):

\[\nabla_{\theta} U(\theta) = \sum_{\tau} R(\tau) \frac{P(\tau; \theta)}{P(\tau; \theta)} \nabla_{\theta} P(\tau; \theta) \quad (4) \]

\[= \sum_{\tau} P(\tau; \theta) \frac{\nabla_{\theta} P(\tau; \theta)}{P(\tau; \theta)} R(\tau) \quad (5) \]

Move derivative over probability
Likelihood Ratio Policy Gradient

\[
\sum_{\tau} p(\tau; \theta) R(\tau)
\] \hspace{1cm} (3)

Taking the gradient wrt \(\theta \):

\[
\nabla_{\theta} U(\theta) = \sum_{\tau} R(\tau) \frac{P(\tau; \theta)}{P(\tau; \theta)} \nabla_{\theta} P(\tau; \theta)
\] \hspace{1cm} (4)

\[
= \sum_{\tau} P(\tau; \theta) \frac{\nabla_{\theta} P(\tau; \theta)}{P(\tau; \theta)} R(\tau)
\] \hspace{1cm} (5)

\[
= \sum_{\tau} P(\tau; \theta) \nabla_{\theta} \left[\log P(\tau; \theta) \right] R(\tau)
\] \hspace{1cm} (6)

Assume softmax form \((\nabla_{\theta} \log z = \frac{1}{z} \nabla_{\theta} z)\)
Likelihood Ratio Policy Gradient

\[\sum_{\tau} p(\tau; \theta)R(\tau) \quad (3) \]

Taking the gradient wrt \(\theta \):

\[= \sum_{\tau} P(\tau; \theta) \nabla_{\theta} \left[\log P(\tau; \theta) \right] R(\tau) \quad (4) \]

Approximate with empirical estimate for \(m \) sample paths from \(\pi \)

\[\nabla_{\theta} U(\theta) \approx \frac{1}{m} \sum_{i}^{m} \nabla_{\theta} \log P(r^{i}; \theta) R(\tau^{i}) \quad (5) \]
Policy Gradient Intuition

- Increase probability of paths with positive R
- Decrease probability of paths with negative R
Extensions

- Consider baseline b (e.g., path averaging)

$$\nabla_\theta U(\theta) \approx \frac{1}{m} \sum_{1}^{m} \nabla_\theta \log P(r^i; \theta)(R(\tau^i) - b(\tau))$$ (6)

- Combine with value estimation (critic)
 - Critic: Updates action-value function parameters
 - Actor: Updates policy parameters in direction suggested by critic

- Proximal policy optimization: policies should not change too much
Recap

- Reinforcement learning is an active subfield of ML
- Deep learning option for learning policy / value functions
- Representation learning helps cope with large state spaces
- Still requires careful engineering and feature engineering