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Log-linear Language Models

Equation:

exp(>; A filw, c))
Zw/ exp(zl' Al'fi(lfulr C))

Pwl|c)=

where:
e P(w | c)is the probability of word w given context c,

e fi(w,c)is afeature function representing some property of the
word w and context c,

e J; is the (learned) weight of the corresponding feature.
Examples of Features:

e Presence of specific words in the context: fi(w,c)=1Iifa
particular word appears in c.

e Word length: f>o(w, c)=len(w).
e Part of Speech: f3(w,c)=1if w is a noun.
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Bigram Language Model as a Log-Linear Model

Objective: Predict next word w = bageling given previous word ¢ = go.
Log-Linear Model Equation:

exp(zl./l,-fi(w, c))

Plwl|c)=
> exp (324 fiw, )
Example Features: Weights:
e fi(w,c)=1(c =go, w =bageling) o A =25
e fa(c)=1(c =go) o 1, =—10.0
e f3(w,c)=1(c =go, w =to) e A3=0.5

Prediction:
exp(2.5—10)

exp(—7.5)+exp(3.0)+exp(1.5) @

P(bageling| go) =

Normalizing over all possible next words.
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But we’re not talking about transformers today!

e However, general structure of Backpack Models is fairly simple
e Next time, we can reuse this framework to explain the transformer

e Shows the effect of non-linear context



Loglinear Language Models without Features

Equation 1: Given input x; ... x,,, sense vectors for the sequence:
C(x)={ yeee, C(X)i}

Equation 2: Weighted sum of sense vectors:

k
0; ZZn:Z ag,;, i C(x;)e

j=1 (=1

Equation 4: Probability of the next word given the sequence:

p(y | 01.,) = softmax(E(0;.,))

° are sense vectors: e.g., a different vector for “dog” that
barks and “dog” you serve on a bun.
e a! . contextualization weights: which sense is relevant.

ij
® 0., is new representation for tokens

That becomes input to predict next word through loglinear E
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Compare and Contrast

Traditional Feature-based
Loglinear Models

e Dimension of features is
gigantic (but sparse)

e Fitting those weights is hard

e Very interpretable

Backpack Models

e Less interpretable than
features

e More interpretable than RNN
e Comparable to GPT
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Example: Sense and Sentimentabilities

X0
X1
X2
X3



Example: Sense and Sentimentabilities

X Positive Sentiment
x| Negative Sentiment
X Skateboarding Context
X3 Health Context



Backpack Language Model Example: "That trick was
SiCk"

Sentence: "That trick was sick"

that trick was sick

C(that), C(trick)g C(was)g C(sick)g
(0oo0o0 (0010 (0000 (1010

C(that); C(trick); C(was); C(sick);

(0oo0o0 (0oo00o0 (0000 (0101

Explanation:
e Each word has two sense vectors: C(x;); and C(x;),.
e "that" and "was" have zero vectors for both senses.
e "trick" has a non-zero vector for C(trick); at the third position
(evokes scateboarding), while the second vector is zero.
e "sick" has two non-zero vectors: C(sick); and C(sick),: positive for

skateboard, negative for health.
8
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Selecting the sense

Definition of a; ; ;:

if j£i
Qi :{ Cx, s PR 3)
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Selecting the sense

Definition of a; ; ;:

{ if j#i
Ay i j= . s
i Cooncay i1

Which sense does “sick” take?

n_k
03 :ZZaZ,i,jC(xj)Z (4)

j=1¢=1
Given the feature vectors:
0 1 0
0 0 ) 1
C(trick)y = L C(sick)g = 1| C(sick); = 0
0 0 1



Selecting the sense

Definition of a; ; ;:

{o if j#i
Qi j= Cx,) s
2rti TrrCy =0

Which sense does “sick” take?

n k
03 =Zzae,i,jc(xj)e

=1 =1
1
B C((trick)o[2] 0 C(trick)o[3]
3= Cltrick)g[2] + trick)l3] | 1 | Cltrick)ol2] + C(trick)g[3]
0

1
0
1
0



Selecting the sense

Definition of a; ; ;:

0
Ay,i,j = { Cx, )
Zr#i W&izh

Which sense does “sick” take?

n k
03 Zzzal,i,jc(xj)é

FET
1
1 0 0
Og—m 1 +m
0

if j#i
if j=1i

S = O =



Selecting the sense
Definition of a; ; ;:
{o if j#i
®eij = Cx, ) o
2t Ty =1

Which sense does “sick” take?

n k
03 :ZZaZ,i,j C(x;)

j=1 (=1
1

03 =

o = O



Wrap-up, Next time

e Today: How context can shape the internal state of models
> RNNSs: linear evolution
> Backpack models: selecting representations

o Next:

> Attention: Scanning over entire sentence
> Multiple representations: Transformer heads



Wrap-up, Next time

e Today: How context can shape the internal state of models
» RNNs: linear evolution
> Backpack models: selecting representations

e Next:

> Attention: Scanning over entire sentence
> Multiple representations: Transformer heads
> How attention can produce the a patterns we asserted






