Language Models

Jordan Boyd-Graber

University of Maryland

Introduction

Slides adapted from Philip Koehn

Roadmap

After this class, you'll be able to:

- Give examples of where we need language models
- Explain the independence assumptions of language models
- Estimate probability distributions using Laplace and Dirichlet smoothing
- Evaluate language models

Language models

- Language models answer the question: How likely is a string of English words good English?
- Autocomplete on phones and websearch
- Creating English-looking documents
- Very common in machine translation systems
 - Help with reordering / style

 p_{Im} (the house is small) > p_{Im} (small the is house)

Help with word choice

 $p_{\rm lm}({\rm I} \text{ am going home}) > p_{\rm lm}({\rm I} \text{ am going house})$

 This is not the LLM / <u>Muppet Model</u> use cases: they came out of LMs, but require more (e.g., RLHF)

N-Gram Language Models

- Given: a string of English words $W = w_1, w_2, w_3, ..., w_n$
- Question: what is p(W)?
- Sparse data: Many good English sentences will not have been seen before
- \rightarrow Decomposing p(W) using the chain rule:

 $p(w_1, w_2, w_3, ..., w_n) =$ $p(w_1) p(w_2|w_1) p(w_3|w_1, w_2) ... p(w_n|w_1, w_2, ..., w_{n-1})$

(not much gained yet, $p(w_n|w_1, w_2, ..., w_{n-1})$ is equally sparse)

Markov Chain

• Markov independence assumption:

- only previous history matters
- limited memory: only last k words are included in history (older words less relevant)
- $\rightarrow k$ th order Markov model
- For instance 2-gram language model:

 $p(w_1, w_2, w_3, ..., w_n) \simeq p(w_1) p(w_2|w_1) p(w_3|w_2) ... p(w_n|w_{n-1})$

• What is conditioned on, here w_{i-1} is called the **history**

How good is the LM?

- A good model assigns a text of real English W a high probability
- This can be also measured with **perplexity** (derivation of this soon!)

perplexity(W) =
$$P(w_1, \dots, w_N)^{-\frac{1}{N}}$$

= $\sqrt[N]{\prod_i^N \frac{1}{P(w_i|w_1\dots, w_{i-1})}}$

Comparison 1-4-Gram

word	unigram	bigram	trigram	4-gram
i	6.684	3.197	3.197	3.197
would	8.342	2.884	2.791	2.791
like	9.129	2.026	1.031	1.290
to	5.081	0.402	0.144	0.113
commend	15.487	12.335	8.794	8.633
the	3.885	1.402	1.084	0.880
reporter	10.840	7.319	2.763	2.350
	4.896	3.020	1.785	1.510
	4.828	0.005	0.000	0.000
average				
perplexity	265.136	16.817	6.206	4.758

• Suppose we want to estimate $P(w_n = home | h = go)$.

• Suppose we want to estimate $P(w_n = home|h = go)$.

home	home	big	with	to
big	with	to	and	money
and	home	big	and	home
money	home	and	big	to

• Suppose we want to estimate $P(w_n = home|h = go)$.

home	home	big	with	to
big	with	to	and	money
and	home	big	and	home
money	home	and	big	to

• Maximum likelihood (ML) estimate of the probability is:

$$\hat{\theta}_i = \frac{n_i}{\sum_k n_k} \tag{1}$$

Example: 3-Gram

· Counts for trigrams and estimated word probabilities

word	C.	prob.	
cross	123	0.547	
tape	31	0.138	
army	9	0.040	
card	7	0.031	
,	5	0.022	

the red (total: 225)

- 225 trigrams in the Europarl corpus start with the red
- 123 of them end with cross
- \rightarrow maximum likelihood probability is $\frac{123}{225} = 0.547$.

Example: 3-Gram

· Counts for trigrams and estimated word probabilities

word	C.	prob.	
cross	123	0.547	
tape	31	0.138	
army	9	0.040	
card	7	0.031	
,	5	0.022	

the red (total: 225)

- 225 trigrams in the Europarl corpus start with the red
- 123 of them end with cross
- \rightarrow maximum likelihood probability is $\frac{123}{225} = 0.547$.
- Is this reasonable?

The problem with maximum likelihood estimates: Zeros

 If there were no occurrences of *bageling* in a history go, we'd get a zero estimate:

$$\hat{P}(\text{ bageling} | \text{go}) = \frac{T_{\text{go}, \text{ bageling}}}{\sum_{w' \in V} T_{\text{go}, w'}} = 0$$

- → We will get P(go|d) = 0 for any sentence that contains go bageling!
- Zero probabilities cannot be conditioned away.

- In computational linguistics, we often have a prior notion of what our probability distributions are going to look like (for example, non-zero, sparse, uniform, etc.).
- This estimate of a probability distribution is called the maximum a posteriori (MAP) estimate:

$$\theta_{\mathsf{MAP}} = \operatorname{argmax}_{\theta} f(x|\theta)g(\theta)$$
 (2)

Add-One Smoothing

- Equivalent to assuming a uniform prior over all possible distributions over the next word (you'll learn why in CL2)
- But there are many more unseen n-grams than seen n-grams
- Example: Europarl 2-bigrams:
 - 86,700 distinct words
 - ▶ $86,700^2 = 7,516,890,000$ possible bigrams
 - but only about 30,000,000 words (and bigrams) in corpus

• Assuming a **sparse Dirichlet** prior, $\alpha < 1$ to each count

$$\theta_i = \frac{n_i + \alpha_i}{\sum_k n_k + \alpha_k} \tag{3}$$

α_i is called a smoothing factor, a pseudocount, etc.

• Assuming a sparse Dirichlet prior, $\alpha < 1$ to each count

$$\theta_i = \frac{n_i + \alpha_i}{\sum_k n_k + \alpha_k} \tag{3}$$

- *α_i* is called a smoothing factor, a pseudocount, etc.
- When $\alpha_i = 1$ for all *i*, it's called "Laplace smoothing"

Assuming a sparse Dirichlet prior, α < 1 to each count

$$\theta_i = \frac{n_i + \alpha_i}{\sum_k n_k + \alpha_k} \tag{3}$$

- α_i is called a smoothing factor, a pseudocount, etc.
- When $\alpha_i = 1$ for all *i*, it's called "Laplace smoothing"
- What is a good value for α?
- Could be optimized on held-out set to find the "best" language model

Example: 2-Grams in Europarl

Count	Adjusted count		Test count
С	(<i>c</i> +1)	$(c + \alpha)$	t _c
0	0.00378	0.00016	0.00016
1	0.00755	0.95725	0.46235
2	0.01133	1.91433	1.39946
3	0.01511	2.87141	2.34307
4	0.01888	3.82850	3.35202
5	0.02266	4.78558	4.35234
6	0.02644	5.74266	5.33762
8	0.03399	7.65683	7.15074
10	0.04155	9.57100	9.11927
20	0.07931	19.14183	18.95948

• Add- α smoothing with $\alpha = 0.00017$

Example: 2-Grams in Europarl

Count	Adjusted count		Test count
С	(c+1)	$(c + \alpha)$	t _c
0	0.00378	0.00016	0.00016
1	0.00755	0.95725	0.46235
2	0.01133	1.91433	1.39946
3	0.01511	2.87141	2.34307
4	0.01888	3.82850	3.35202

Can we do better?

In higher-order models, we can learn from similar contexts!

U	0.000000	1.00000	1.130/4
10	0.04155	9.57100	9.11927
20	0.07931	19.14183	18.95948

• Add- α smoothing with $\alpha = 0.00017$

What's a word?

- There are an infinite number of words
 - Possible to develop generative story of how new words are created
 - Bayesian non-parametrics

What's a word?

- There are an infinite number of words
 - Possible to develop generative story of how new words are created
 - Bayesian non-parametrics
- Defining a vocabulary (the event space)
- But how do you handle words outside of your vocabulary?

What's a word?

- There are an infinite number of words
 - Possible to develop generative story of how new words are created
 - Bayesian non-parametrics
- Defining a vocabulary (the event space)
- But how do you handle words outside of your vocabulary?
 - Ignore? You could win just by ignoring everything
 - Standard: replace with <UNK> token

Reducing Vocabulary Size

- For instance: each number is treated as a separate token
- Replace them with a number token num
 - but: we want our language model to prefer

 $p_{\rm lm}({\rm I \ pay\ 950.00\ in\ May\ 2007}) > p_{\rm lm}({\rm I \ pay\ 2007\ in\ May\ 950.00})$

not possible with number token

 $p_{lm}(I \text{ pay num in May num}) = p_{lm}(I \text{ pay num in May num})$

 Replace each digit (with unique symbol, e.g., @ or 5), retain some distinctions

 $p_{\rm lm}({\rm I \ pay\ 555.55}$ in May 5555) > $p_{\rm lm}({\rm I \ pay\ 5555}$ in May 555.55)

Back-Off

- In given corpus, we may never observe
 - Scottish beer drinkers
 - Scottish beer eaters
- Both have count 0
 - \rightarrow our smoothing methods will assign them same probability
- Better: backoff to bigrams:
 - beer drinkers
 - beer eaters

Back-Off

- In given corpus, we may never observe
 - Scottish beer drinkers
 - Scottish beer eaters
- Both have count 0
 - \rightarrow our smoothing methods will assign them same probability
- Better: backoff to bigrams:
 - beer drinkers
 - beer eaters
- How do we deal with this?
 - Soon: continuous representations of context
 - Today: Sharing statistical strength across similar contexts