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Function Notation

e Take a number a double it
e Mathematical notation

e Python notation

def double

(x) :
return 2 «

X

f(x)=2x



f(x) = exp(x)
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f(x) = exp(—x)
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Combining functions

from math import exp

def neg_exp (x):
return exp (—x)

def composition (x):
return 1.0 / neg_exp (x)



Properties of the Exponential (and log) Function

exp(a-+ b) =exp(a)exp(b)

exp—a= expab = (expb)?

]
exp(a)

log(a-+ b) =log(a)log(b)

log(a) by
0g(b) log(a’) = b-log(a)

log(a—b) =



Composition didn’t do as much as we thought!

I(x) =g(f(x))

~exp(—x)

“exp(x)

exp(x)

=expx



Logistic Function

Putting them together:

(18)



Logistic Function
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Logistic Function

Putting them together:



Logistic Function

Putting them together:

I(x) =h(g((x)))
=h(g(exp(—x)))
=h(1+exp(—x))

1
B + exp(—x)
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Engineering rationale behind probabilities

e Encoding uncertainty
» Data are variables
> We don’t always know the values of variables
> Probabilities let us reason about variables even when we are
uncertain



Engineering rationale behind probabilities

e Encoding uncertainty
» Data are variables
> We don’t always know the values of variables
> Probabilities let us reason about variables even when we are
uncertain

e Encoding confidence
> The flip side of uncertainty

» Useful for decision making: should we trust our conclusion?
> We can construct probabilistic models to boost our confidence

»> E.g., combining polls



Random variable

Random variables take on values in a sample space.
They can be discrete or continuous:
» Coin flip: {H, T}
> Height: positive real values (0, c0)
> Temperature: real values (—o0, 00)
> Number of words in a document: Positive integers {1,2,...}

We call the outcomes events.

Denote the random variable with a capital letter; denote a
realization of the random variable with a lower case letter.

> E.g., X is a coin flip, x is the value (H or T) of that coin flip.



Discrete distribution

A discrete distribution assigns a probability
to every event in the sample space

For example, if X is a coin, then

P(X=H) = 05
P(X=T) = 05

And probabilities have to be greater than or equal to 0

The probabilities over the entire space must sum to one
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Discrete distribution

A discrete distribution assigns a probability
to every event in the sample space

For example, if X is a coin, then

P(X=H) = 05
P(X=T) = 05

And probabilities have to be greater than or equal to 0

The probabilities over the entire space must sum to one

P(X=x)=1



Discrete distribution

A discrete distribution assigns a probability
to every event in the sample space

For example, if X is a coin, then

P(X=H) = 05
P(X=T) = 05

And probabilities have to be greater than or equal to 0

The probabilities over the entire space must sum to one

ZP(X:x):1
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[0, 1
return 1.0 / 6.0
else:
return 0.0

def die_prob (x):
if x in



The normal distribution

e The most common continuous
distribution is the normal distribution,
also called the Gaussian distribution.

e The density is defined by two
parameters:

» u: the mean of the distribution
> o2: the variance of the distribution
(o is the standard deviation)

e The normal density has a “bell curve”
shape and naturally occurs in many
problems. Carl Friedrich Gauss

1777 — 1855
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The normal distribution
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0.0
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The normal distribution

The probability density of the normal distribution is:

f(X) = ——— exp (—M)

V2no? 202
W—/

Does not | argest when x = u;
depend on X gprinks as x moves
away from u

Notation: exp(x) = e*
If X follows a normal distribution, then E[X] = u.

The normal distribution is symmetric around .
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The normal distribution

The probability density of the normal distribution is:

() = — exp(—w)

V2no? 202
W—/

Does not | argest when x = u;
depend on X gprinks as x moves
away from u

Notation: exp(x) = e*
If X follows a normal distribution, then E[X] = u.

The normal distribution is symmetric around .
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The normal distribution

The probability density of the normal distribution is:

f(x) = —— exp (—M)

V2mo?2 202
W—/

Does not | argest when x = u;
depend on X gprinks as x moves
away from u

Notation: exp(x) = e*
If X follows a normal distribution, then E[X] = u.

The normal distribution is symmetric around .
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From Svein Linge and Hans Petter Langtangen



The normal distribution

e What is the probability that a value sampled from a normal
distribution will be within n standard deviations from the mean?

o P(u—no <X<u+no)=7

24



The normal distribution

e What is the probability that a value sampled from a normal
distribution will be within n standard deviations from the mean?

o P(u— na<X<,u+ncr):?
fﬂ"'”g ( (X—M)z)
X=p—no 1/2710 exp 202

[ ()
~ Vono? X:‘u—ng'exp 202

24



The normal distribution

e What is the probability that a value sampled from a normal
distribution will be within n standard deviations from the mean?

o P(u— na<X<,u+ncr):?

_ [t (_(x—u)?)

x=p—no 1/2710 exp 202

_ 1 (utno (_(x—u)?)

" V2no? Jx=pu—no exp 202

>>> from scipy.stats import norm
>>> norm.cdf (1.0) — norm.cdf(-1.0)
0.6826894921370859

24



The normal distribution

"Bell Curve"
Standard Normal
Distribution

Z-Score -4 -3.5 -3 -25 -2 -1.5 5 1 15 2 25 3 35
Standard 45 -30 -20 -10 0 +1o +20 +30 +4o

Deviation
0.1% 23 15.9% 50% 84.1% 97.7% 99.9%
Cumulative | |
Percent

25
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Vectors

Column Vector

Row Vector [5]

v=[5 8] (22)
Indexing elements

vi=5;,=28
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Vector Addition

3
7

5+3
2+7

30
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Scalar Multiplication

31



Dot Product Example

32



Dot Product Example

]

]:4~5+3-2:26
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Dot Product Definition

A B A
1] Il 1@,3
i 1
6=0° ;

N *B=1 { A*B =05
X-y= Zx,-y, 27) S
7 A A

X-y=1x||y|cos 6 (28) 1 Pl
90° i |1s0°
1 B i -
! ™
AB=0 | 3-B=-05

From Scott Hill
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Dot Product Example



Dot Product Example



Dot Product Example
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Dot Product Example

[4-54+2-3]= 26
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Transpose

e Turns n by m matrix into m by n matrix

e Swaps element in a; with element in g;

2 3 4
5 7 8
9 10 12
A
13 14 15

From Michael Doob
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Transpose

e Turns n by m matrix into m by n matrix

e Swaps element in a; with element in g;

From Michael Doob
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Transpose

e Turns n by m matrix into m by n matrix

e Swaps element in a; with element in g;

5 9 13
2 10 14
3 7 15
AT
4 8 12

From Michael Doob

37



Matrix Multiplication Rules

must equal
height of B

L

N o Wo

[. 14] width of A

.

From Denis Auroux

38
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Matrix Multiplication with Identity

39



Matrix Multiplication with Identity

General Formula

a1 = hryq1 +hary =3+0=3

39



Matrix Multiplication with Identity

TRV I
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Matrix Multiplication with Identity

General Formula

aj = Z i1y (32)
k

IR e

a1 = b1ri1+ oy =0+4=4
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Matrix Multiplication with Identity

39



Selecting a Row

(34)



Selecting a Row
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Selecting a Row
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Selecting a Row
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Selecting Rows

(35)
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Selecting Rows

(35)
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Selecting Rows
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Selecting Rows
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Selecting Rows

—_ 00O = 4
o 01 o O ©

=[9 7+8+9]
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Selecting Rows

—_ OO = 4
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Expectation

An expectation of a random variable is a weighted average:

E[f(X)]=>_(x)p(x) (discrete)

X

= f f(x) p(x) dx (continuous)

—0Q

43



Expectation

Expectations of constants or known values:
e E[g|=a

44



Expectation Intuition

e E[x] is most common expectation
e Average outcome (might not be an event: 2.4 children)
e Center of mass

45



Expectation of die / dice

What is the expectation of the roll of die?

46



Expectation of die / dice

What is the expectation of the roll of die?

One die
1.342.143.1+4. 1451461 =

46



Expectation of die / dice

What is the expectation of the roll of die?

One die
1.042.143.1+4.145.116-1=35

46



Expectation of die / dice

What is the expectation of the roll of die?

One die
1.042.143.1+4.145.116-1=35

What is the expectation of the sum of two dice?

46



Expectation of die / dice

What is the expectation of the roll of die?

One die
1.4+2.443-4+4.-t+5.1+6.-1=35
What is the expectation of the sum of two dice?

Two die
2. 443.244.215. 416247 £ 48 249-£+10- 2 4+11.
2 2.1 =

46



Expectation of die / dice

What is the expectation of the roll of die?

One die
1.4+2.443-4+4.-t+5.1+6.-1=35
What is the expectation of the sum of two dice?

Two die

2. 443.244.215. 416247 £ 48 249-£+10- 2 4+11.
2 1 _
2 412. =7

46



Entropy

Measure of disorder in a system

In the real world, entroy in a system
tends to increase
Can also be applied to probabilities:

> s one (or a few) outcomes certain
(low entropy)

» Are things equiprobable (high
entropy)

In data science

> We look for features that allow us to
reduce entropy (decision trees)

> All else being equal, we seek
models that have maximum entropy
(Occam’s razor)

47




Aside: Logarithms

e lg(x)=be2b=x
o Makes big numbers small

e Way to think about them:
cutting a carrot

48

Ig(1)=0

Ig(2)=1

Ig(4)=2

19(8)=3
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Aside: Logarithms

o lg(x)=b&2b=x
e Makes big numbers small

e Way to think about them:
cutting a carrot

e Negative numbers?

48
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Aside: Logarithms

e lg(x)=be=2b=x
o Makes big numbers small

e Way to think about them:
cutting a carrot

e Negative numbers?

e Non-integers?

48
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Ig(2)=1
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19(8)=3
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Entropy

Entropy is a measure of uncertainty that is associated with the
distribution of a random variable:

H(X) =—Ellg(p(X))]
= —Z p(x) lg(p(x)) (discrete)

= —J p(x) lg(p(x)) dx (continuous)

—0Q
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Entropy

Entropy is a measure of uncertainty that is associated with the
distribution of a random variable:

H(X) =—E[lg(p(X))]

= —Z p(x) lg(p(x)) (discrete)
= —J p(x) lg(p(x)) dx (continuous)

Does not account for the values of the random variable, only the spread
of the distribution.
e H(X)>0
e uniform distribution = highest entropy, point mass = lowest
e suppose P(X=1)=p, P(X=0)=1—pand
P(Y=100)=p, P(Y=0)=1—p: X and Y have the same
entropy
49



Wrap up

Probabilities are the language of data science

You'll need to manipulate probabilities and understand
marginalization and independence

In Class: Working through probability examples

Next: Conditional probabilities

50



Math Review

Slides adapted from Dave Blei and Lauren Hannah
University of Maryland

Conditional Probability

51



Context

e Data science is often worried about “if-then” questions
> If my e-mail looks like this, is it spam?
> |f | buy this stock, will my portfolio improve?

e Since data science uses the language of probabilities, we need
conditional probabilities (continuing probability intro)

e Also need to combine distributions

52



Conditional Probabilities

The conditional probability of event A given event B is the probability of
A when B is known to occur,
P(ANB)

P(AIB) =5

53



Conditional Probabilities

The conditional probability of event A given event B is the probability of
A when B is known to occur,
P(ANB)

P(A|B) = P(B)
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Conditional Probabilities

The conditional probability of event A given event B is the probability of
A when B is known to occur,
P(ANB)

P(AIB) = 55
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Conditional Probabilities

The conditional probability of event A given event B is the probability of
A when B is known to occur,
P(ANB)

P(AIB) ==/
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Conditional Probabilities

The conditional probability of event A given event B is the probability of
A when B is known to occur,

P(ANB)

P(A|B) = P(5)

53



Conditional Probabilities

The conditional probability of event A given event B is the probability of
A when B is known to occur,

P(ANB
P(A|B) = Plans)
P(B)
Q New outcome
space! .

B A\
) //A \\\ |::> \\\
\\ /\ |
N P / /

S i

53



Independence (Reminder)

Random variables X and Y are independent if and only if
P(X=x,Y=y)=P(X=x)P(Y =y). How does this interact with
conditional probabilities?

Conditional probabilities equal unconditional probabilities with
independence:

e P(X=x|Y)=P(X=x)

e Knowing Y tells us nothing about X

54



Conditional Probabilities

Example

What is the probability that the sum of two dice is six given that the first
is greater than three?

55



Conditional Probabilities

Example

What is the probability that the sum of two dice is six given that the first
is greater than three?

e A= First die
e B= Second die
B=1 B=2 B=3 B=4 B=5 B=6

A=1 2 3 4 5 6 7
A=2 3 4 5 6 7 8
A=3 4 5 6 7 8 9
A=4 | 5 6 7 8 9 10
A=5 6 7 8 9 10 11
A=6 7 8 9 10 11 12

55



Conditional Probabilities

Example

What is the probability that the sum of two dice is six given that the first
is greater than three?

e A= First die
e B= Second die

B=1 B=2 B=3 B=4 B=5 B=6
A=1 2 3 4 5 7
A=2 3 4 5 7 8
A=3 4 5 7 8 9
A=4 5 7 8 9 10
A=5 7 8 © 10 11
A=6 7 8 ) 10 11 12
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Conditional Probabilities

Example

What is the probability that the sum of two dice is six given that the first
is greater than three?

e A= First die
e B= Second die

B=1 B=2 B=3 B4 B=5 B=s F(A>3NB+A=6)=
A=1 | 2 3 4 5 7 P(A>3) =
A=2 | 3 4 5 7 8 P(A>3|B+A=6)=
A=3 | 4 5 7 8 9
A<4 | 5 7 8 9 10
A=5 7 8 9 10 11
A=6 | 7 8 9 10 11 12

55



Conditional Probabilities

Example

What is the probability that the sum of two dice is six given that the first
is greater than three?

e A= First die

e B= Second die 5
P(A>3ﬂB+A:6):%

Bt B2 B=3 B=4 B=5 B<6
Al 2 3 4 5 7 P(A>3) =
A2 3 4 5 7 8 p(a>3|B+A=6)=
A3 | 4 5 7 8 9
A4 | 5 7 8 9 10
A=5 7 8 9 10 11
A6 | 7 8 9 10 11 12

55



Conditional Probabilities

Example

What is the probability that the sum of two dice is six given that the first
is greater than three?

e A= First die

e B= Second die P(A>3NB+A=6)=

2

B=1 B=2 B=3 B=4 B=5 B-6 36
A=1 2 3 4 5 7 P(A>3)= 3
A=2 | 3 4 5 7 8 6
A=3 | 4 5 7 8 9 P(A>3|B+A=6)=
A=4 | 5 7 8 9 10
A=5 7 8 9 10 11
A6 | 7 8 9 10 11 12

55



Conditional Probabilities

Example

What is the probability that the sum of two dice is six given that the first
is greater than three?

e A= First die
2

e B= Second die P(A>3NB+A=6)=

B=1 B=2 B=3 B=4 B=5 B=6 p(asg) S
A=1 2 3 4 5 7 (A> )—g
A=2 | 3 4 5 7 8 2
A=3 | 4 5 7 8 9 P(A>3|B+A:6):?:?65
A=4 | 5 7 8 9 10 6
= 7 8 9 10 1
A=6 | 7 8 9 10 11 12
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Conditional Probabilities

Example

What is the probability that the sum of two dice is six given that the first
is greater than three?

e A= First die

2
e B= Second die P(A>3NB+A=6)= o
B-1 B=2 B-3 B-4 B=5 B=6 P(A>3) = >
A=1 | 2 3 4 5 7 62
A2 s 48 T SpassiBra=e)=5=""
A3 | 4 5 7 8 9 $ 363
A=4 | 5 7 8 9 10 1
A=5 7 8 9 10 1 =5
A6 | 7 8 9 10 11 12
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Combining Distributions

e Somtimes distributions you have aren’t what you need
» Conditional — joint (chain)
> Reverse conditional direction (Bayes’)

56



The chain rule

e The definition of conditional probability lets us derive the chain
rule, which let’s us define the joint distribution as a product of
conditionals:

P(Y)
P(X,Y) = P(X,Y)—=
(X,Y) (X,Y) A

~—
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The chain rule

e The definition of conditional probability lets us derive the chain
rule, which let’s us define the joint distribution as a product of
conditionals:

P(Y)
P(X,Y) = P(X,Y)—=
(V) = PXYIES
= P(XIY)P(Y)

~—
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The chain rule

e The definition of conditional probability lets us derive the chain
rule, which let’s us define the joint distribution as a product of
conditionals:

P(Y)
P(X,Y) = P(X,Y)—=
(V) = PXYIES
= P(XIY)P(Y)

~—

e For example, let Y be a disease and X be a symptom. We may
know P(X|Y) and P(Y) from data. Use the chain rule to obtain the
probability of having the disease and the symptom.

e In general, for any set of N variables

N
P(X1,...,XN):l_[P(X,,|X1,...,X,,_1)

n=1

57



Bayes’ Rule

What is the relationship between P(A|B) and P(B|A)?

P(A|B)P(B)

P(BIA) = =50

1. Start with P(A|B)
2. Change outcome space from B to ()
3. Change outcome space again from (2 to A

58



Bayes’ Rule

What is the relationship between P(A|B) and P(B|A)?
plelA) = T4

1. Start with

2. Change outcome space from B to {2

3. Change outcome space again from 2 to A

P(AIB)

58



Bayes’ Rule

What is the relationship between P(A|B) and P(B|A)?

P(BIA) = —P(AL‘?;’;(B)

1. Start with P(A|B)
2. Change outcome space from Bto Q: P(A|B)P(B)

3. Change outcome space again from 2 to A

Q
P(AIB)

P(A[B) P(B) = P(A,B)

‘ N
4 - //

58



Bayes’ Rule

What is the relationship between P(A|B) and P(B|A)?

1. Start with P(A|B)

P(BIA) =

P(A|B)P(B)
P(A)

2. Change outcome space from B'to 2: P(A|B)P(B)

3. Change outcome space again from (2 to A:

P(A]B)

Q

P(A|B) P(B) = P(A,B)

58

P(A]B) P(B)/P(A) = P(A,B)/P(A) = P(B| A)

N
AN



