
Distributional Semantics

Jordan Boyd-Graber

University of Maryland

Slides Adapted from Yoav Goldberg and Omer Levy

1

From Distributional to Distributed Semantics

The new kid on the block

• Deep learning / neural networks

• “Distributed” word representations
▶ Feed text into neural-net. Get back “word embeddings”.
▶ Each word is represented as a low-dimensional vector.
▶ Vectors capture “semantics”

• word2vec (Mikolov et al)

2

From Distributional to Distributed Semantics

This part of the talk

• word2vec as a black box

• a peek inside the black box

• relation between word-embeddings and the distributional
representation

• tailoring word embeddings to your needs using word2vec

3

word2vec

4

word2vec

5

word2vec

• dog
▶ cat, dogs, dachshund, rabbit, puppy, poodle, rottweiler,

mixed-breed, doberman, pig

• sheep
▶ cattle, goats, cows, chickens, sheeps, hogs, donkeys, herds,

shorthorn, livestock

• november
▶ october, december, april, june, february, july, september, january,

august, march

• jerusalem
▶ tiberias, jaffa, haifa, israel, palestine, nablus, damascus katamon,

ramla, safed

• teva
▶ pfizer, schering-plough, novartis, astrazeneca, glaxosmithkline,

sanofi-aventis, mylan, sanofi, genzyme, pharmacia

6

Working with Dense Vectors

Word Similarity

• Similarity is calculated using cosine similarity :

sim(⃗dog, ⃗cat) =
⃗dog · ⃗cat

|| ⃗dog|| || ⃗cat ||

• For normalized vectors (||x ||= 1), this is equivalent to a dot
product:

sim(⃗dog, ⃗cat) = ⃗dog · ⃗cat

• Normalize the vectors when loading them.

7

Working with Dense Vectors

Finding the most similar words to ⃗dog

• Compute the similarity from word v⃗ to all other words.

• This is a single matrix-vector product: W · v⃗⊤

• Result is a |V | sized vector of similarities.

• Take the indices of the k -highest values.

• FAST! for 180k words, d=300: ∼30ms

8

Working with Dense Vectors

Finding the most similar words to ⃗dog

• Compute the similarity from word v⃗ to all other words.

• This is a single matrix-vector product: W · v⃗⊤

• Result is a |V | sized vector of similarities.

• Take the indices of the k -highest values.

• FAST! for 180k words, d=300: ∼30ms

8

Working with Dense Vectors

Finding the most similar words to ⃗dog

• Compute the similarity from word v⃗ to all other words.

• This is a single matrix-vector product: W · v⃗⊤

• Result is a |V | sized vector of similarities.

• Take the indices of the k -highest values.

• FAST! for 180k words, d=300: ∼30ms

8

Working with Dense Vectors

Finding the most similar words to ⃗dog

• Compute the similarity from word v⃗ to all other words.

• This is a single matrix-vector product: W · v⃗⊤

• Result is a |V | sized vector of similarities.

• Take the indices of the k -highest values.

• FAST! for 180k words, d=300: ∼30ms

8

Working with Dense Vectors

Most Similar Words, in python+numpy code

W,words = load_and_norm_vectors("vecs.txt")
W and words are numpy arrays.
w2i = {w:i for i,w in enumerate(words)}

dog = W[w2i['dog']] # get the dog vector

sims = W.dot(dog) # compute similarities

most_similar_ids = sims.argsort()[-1:-10:-1]
sim_words = words[most_similar_ids]

9

Working with Dense Vectors

Similarity to a group of words

• “Find me words most similar to cat, dog and cow”.

• Calculate the pairwise similarities and sum them:

W · ⃗cat +W · ⃗dog +W · ⃗cow

• Now find the indices of the highest values as before.

• Matrix-vector products are wasteful. Better option:

W · (⃗cat + ⃗dog + ⃗cow)

10

Working with Dense Vectors

Similarity to a group of words

• “Find me words most similar to cat, dog and cow”.

• Calculate the pairwise similarities and sum them:

W · ⃗cat +W · ⃗dog +W · ⃗cow

• Now find the indices of the highest values as before.

• Matrix-vector products are wasteful. Better option:

W · (⃗cat + ⃗dog + ⃗cow)

10

Working with dense word vectors can be very efficient.

But where do these vectors come from?

11

Working with dense word vectors can be very efficient.

But where do these vectors come from?

11

Flavors of word2vec

12

Flavors of word2vec

Two context representations

• Continuous Bag of Words (CBOW)

• Skip-grams

12

Flavors of word2vec

Two context representations

• Continuous Bag of Words (CBOW)

• Skip-grams

12

Flavors of word2vec

Two context representations

• Continuous Bag of Words (CBOW)

• Skip-grams

12

Flavors of word2vec

Two context representations

• Continuous Bag of Words (CBOW)

• Skip-grams

Two training methods

• Negative Sampling

• Hierarchical Softmax

12

Flavors of word2vec

Two context representations

• Continuous Bag of Words (CBOW)

• Skip-grams

Two training methods

• Negative Sampling

• Hierarchical Softmax

12

Flavors of word2vec

Two context representations

• Continuous Bag of Words (CBOW)

• Skip-grams

Two training methods

• Negative Sampling

• Hierarchical Softmax

But once you understand one, others follow.

12

How does word2vec work?

• Represent each word as a d dimensional vector.

• Represent each context as a d dimensional vector.

• Initalize all vectors to random weights.

• Arrange vectors in two matrices, W and C.

13

The Prediction Problem

p(c |w ;θ) =
expvc · vw
∑

c′∈C expvc′ · vw
(1)

• Predict context word(s)

• from focus word

• Looks a lot like logistic regression!

Total objective function (in log space):

argmax
θ

∑

(w ,c)∈D

logp(c |w) =
∑

(w ,c)∈D

�

logexpvc · vw − log
∑

c′
expvc′ · vw

�

(2)

14

The Prediction Problem

p(c |w ;θ) =
expvc · vw
∑

c′∈C expvc′ · vw
(1)

• Predict context word(s)

• from focus word

• Looks a lot like logistic regression!

Total objective function (in log space):

argmax
θ

∑

(w ,c)∈D

logp(c |w) =
∑

(w ,c)∈D

�

logexpvc · vw − log
∑

c′
expvc′ · vw

�

(2)

14

The Prediction Problem

p(c |w ;θ) =
expvc · vw
∑

c′∈C expvc′ · vw
(1)

• Predict context word(s)

• from focus word

• Looks a lot like logistic regression!

Total objective function (in log space):

argmax
θ

∑

(w ,c)∈D

logp(c |w) =
∑

(w ,c)∈D

�

logexpvc · vw − log
∑

c′
expvc′ · vw

�

(2)

14

The Prediction Problem

p(c |w ;θ) =
expvc · vw
∑

c′∈C expvc′ · vw
(1)

• Predict context word(s)

• from focus word

• Looks a lot like logistic regression!

Total objective function (in log space):

argmax
θ

∑

(w ,c)∈D

logp(c |w) =
∑

(w ,c)∈D

�

logexpvc · vw − log
∑

c′
expvc′ · vw

�

(2)

14

How does word2vec work?
While more text:
• Extract a word window:
A springer is [a cow or heifer close to calving] .

c1 c2 c3 w c4 c5 c6

• w is the focus word vector (row in W).
• ci are the context word vectors (rows in C).

• Try setting the vector values such that:

σ(w · c1)+σ(w · c2)+σ(w · c3)+σ(w · c4)+σ(w · c5)+σ(w · c6)

is high

• Create a corrupt example by choosing a random word w ′
[a cow or comet close to calving]

c1 c2 c3 w ′ c4 c5 c6

• Try setting the vector values such that:

σ(w ′· c1)+σ(w
′· c2)+σ(w

′· c3)+σ(w
′· c4)+σ(w

′· c5)+σ(w
′· c6)

is low

15

How does word2vec work?
While more text:

• Extract a word window:
A springer is [a cow or heifer close to calving] .

c1 c2 c3 w c4 c5 c6

• Try setting the vector values such that:

σ(w · c1)+σ(w · c2)+σ(w · c3)+σ(w · c4)+σ(w · c5)+σ(w · c6)

is high

• Create a corrupt example by choosing a random word w ′ (negative

sample) [a cow or comet close to calving]
c1 c2 c3 w ′ c4 c5 c6

• Try setting the vector values such that:

σ(w ′· c1)+σ(w
′· c2)+σ(w

′· c3)+σ(w
′· c4)+σ(w

′· c5)+σ(w
′· c6)

is low

15

How does word2vec work?
While more text:

• Extract a word window:
A springer is [a cow or heifer close to calving] .

c1 c2 c3 w c4 c5 c6

• Try setting the vector values such that:

σ(w · c1)+σ(w · c2)+σ(w · c3)+σ(w · c4)+σ(w · c5)+σ(w · c6)

is high

• Create a corrupt example by choosing a random word w ′ (negative

sample) [a cow or comet close to calving]
c1 c2 c3 w ′ c4 c5 c6

• Try setting the vector values such that:

σ(w ′· c1)+σ(w
′· c2)+σ(w

′· c3)+σ(w
′· c4)+σ(w

′· c5)+σ(w
′· c6)

is low
15

Negative Sampling Distribution

O
riginal

N
egative S

am
ple

0 5 10 15

0.0

0.1

0.2

0.0

0.1

0.2

Word

P
ro

ba
bi

lit
y

pNS(w) =
f (w)

3
4

∑

w ′ f (w)
3
4

(3)
Brings down frequent
terms, brings up
infrequent terms

16

How does word2vec work?

The training procedure results in:

• w · c for good word-context pairs is high

• w · c for bad word-context pairs is low

• w · c for ok-ish word-context pairs is neither high nor low

As a result:

• Words that share many contexts get close to each other.

• Contexts that share many words get close to each other.

At the end, word2vec throws away C and returns W .

17

Reinterpretation

Imagine we didn’t throw away C. Consider the product WC⊤

The result is a matrix M in which:

• Each row corresponds to a word.

• Each column corresponds to a context.

• Each cell: w · c, association between word and context.

18

Reinterpretation

Imagine we didn’t throw away C. Consider the product WC⊤

The result is a matrix M in which:

• Each row corresponds to a word.

• Each column corresponds to a context.

• Each cell: w · c, association between word and context.

18

Reinterpretation

Does this remind you of something?

Very similar to SVD over distributional representation:

19

Reinterpretation

Does this remind you of something?

Very similar to SVD over distributional representation:

19

Relation between SVD and word2vec

SVD

• Begin with a word-context matrix.

• Approximate it with a product of low rank (thin) matrices.

• Use thin matrix as word representation.

word2vec (skip-grams, negative sampling)

• Learn thin word and context matrices.

• These matrices can be thought of as approximating an implicit
word-context matrix.
▶ Levy and Goldberg (NIPS 2014) show that this implicit matrix is

related to the well-known PPMI matrix.

20

Relation between SVD and word2vec

word2vec is a dimensionality reduction technique over an (implicit)
word-context matrix.

Just like SVD.

With few tricks (Levy, Goldberg and Dagan, TACL 2015) we can get SVD to
perform just as well as word2vec.

However, word2vec. . .

• . . . works without building / storing the actual matrix in
memory.

• . . . is very fast to train, can use multiple threads.

• . . . can easily scale to huge data and very large word and
context vocabularies.

21

Relation between SVD and word2vec

word2vec is a dimensionality reduction technique over an (implicit)
word-context matrix.

Just like SVD.

With few tricks (Levy, Goldberg and Dagan, TACL 2015) we can get SVD to
perform just as well as word2vec.

However, word2vec. . .

• . . . works without building / storing the actual matrix in
memory.

• . . . is very fast to train, can use multiple threads.

• . . . can easily scale to huge data and very large word and
context vocabularies.

21

