Distributional Semantics

Jordan Boyd-Graber

University of Maryland

Slides Adapted from Yoav Goldberg and Omer Levy

From Distributional to Distributed Semantics

The new kid on the block

- Deep learning / neural networks
- "Distributed" word representations
	- ▶ Feed text into neural-net. Get back "word embeddings".
	- ▶ Each word is represented as a low-dimensional vector.
	- ▶ Vectors capture "semantics"
- word2vec (Mikolov et al)

From Distributional to Distributed Semantics

This part of the talk

- word2vec as a black box
- a peek inside the black box
- relation between word-embeddings and the distributional representation
- tailoring word embeddings to your needs using $word2vec$

word2vec

word2vec

word2vec

- dog
	- ▶ cat, dogs, dachshund, rabbit, puppy, poodle, rottweiler, mixed-breed, doberman, pig
- sheep
	- ▶ cattle, goats, cows, chickens, sheeps, hogs, donkeys, herds, shorthorn, livestock
- november
	- ▶ october, december, april, june, february, july, september, january, august, march
- jerusalem
	- ▶ tiberias, jaffa, haifa, israel, palestine, nablus, damascus katamon, ramla, safed
- teva
	- ▶ pfizer, schering-plough, novartis, astrazeneca, glaxosmithkline, sanofi-aventis, mylan, sanofi, genzyme, pharmacia

Word Similarity

- Similarity is calculated using *cosine similarity*: $\sin(\vec{dog}, \vec{cat}) = \frac{\vec{dog} \cdot \vec{cal}}{\sqrt{3}}$ ||*dog⃗* || ||*cat ⃗* ||
- For normalized vectors $(||x|| = 1)$, this is equivalent to a dot product:

$$
sim(d\vec{og}, \vec{cat}) = d\vec{og} \cdot \vec{cat}
$$

• **Normalize the vectors when loading them.**

Finding the most similar words to \vec{dog}

• Compute the similarity from word \vec{v} to all other words.

Finding the most similar words to \vec{dog}

- Compute the similarity from word \vec{v} to all other words.
- This is a **single matrix-vector product**: *W* · *v⃗* ⊤

Finding the most similar words to \vec{dog}

- Compute the similarity from word \vec{v} to all other words.
- This is a **single matrix-vector product**: *W* · *v⃗* ⊤

- Result is a $|V|$ sized vector of similarities.
- Take the indices of the *k*-highest values.

Finding the most similar words to \vec{dog}

- Compute the similarity from word \vec{v} to all other words.
- This is a **single matrix-vector product**: *W* · *v⃗* ⊤

- Result is a $|V|$ sized vector of similarities.
- Take the indices of the *k*-highest values.
- **FAST! for 180k words, d=300:** ∼**30ms**

Most Similar Words, in python+numpy code

 W , words = load and norm vectors("vecs.txt") # W and words are numpy arrays. $w2i = \{w:i \text{ for } i,w \text{ in }$ enumerate(words) }

 $dog = W[w2i['dog']] # get the dog vector$

 $sims = W.dot(dog)$ # compute similarities

 $most_similar_ids = sums.argsort()[-1:-10:-1]$ sim words = words[most similar ids]

Similarity to a group of words

- "Find me words most similar to cat, dog and cow".
- Calculate the pairwise similarities and sum them:

$$
W\cdot \vec{cat} + W\cdot \vec{dog} + W\cdot \vec{cow}
$$

• Now find the indices of the highest values as before.

Similarity to a group of words

- "Find me words most similar to cat, dog and cow".
- Calculate the pairwise similarities and sum them:

$$
W\cdot \vec{cat} + W\cdot \vec{dog} + W\cdot \vec{cow}
$$

- Now find the indices of the highest values as before.
- Matrix-vector products are wasteful. **Better option:**

$$
W \cdot (\vec{cat} + \vec{dog} + \vec{cow})
$$

Working with dense word vectors can be very efficient.

Working with dense word vectors can be very efficient.

But where do these vectors come from?

Two context representations

- Continuous Bag of Words (CBOW)
- Skip-grams

Two context representations

- Continuous Bag of Words (CBOW)
- Skip-grams

Two context representations

- Continuous Bag of Words (CBOW)
- Skip-grams

Two context representations

- Continuous Bag of Words (CBOW)
- Skip-grams

Two training methods

- Negative Sampling
- Hierarchical Softmax

Two context representations

- Continuous Bag of Words (CBOW)
- Skip-grams

Two training methods

- **Negative Sampling**
- Hierarchical Softmax

Two context representations

- Continuous Bag of Words (CBOW)
- Skip-grams

Two training methods

- Negative Sampling
- Hierarchical Softmax

But once you understand one, others follow.

- Represent each word as a *d* dimensional vector.
- Represent each context as a *d* dimensional vector.
- Initalize all vectors to random weights.
- Arrange vectors in two matrices, *W* and *C*.

$$
p(c|w;\theta) = \frac{\exp v_c \cdot v_w}{\sum_{c' \in C} \exp v_{c'} \cdot v_w}
$$
 (1)

- Predict context word(s)
- from focus word
- Looks a lot like logistic regression!

$$
\arg \max_{\theta} \sum_{(w,c) \in D} \log p(c|w) = \sum_{(w,c) \in D} \left[\log \exp v_c \cdot v_w - \log \sum_{c'} \exp v_{c'} \cdot v_w \right]
$$
\n(2)

$$
p(c|w;\theta) = \frac{\exp v_c \cdot v_w}{\sum_{c' \in C} \exp v_{c'} \cdot v_w}
$$
 (1)

- Predict context word(s)
- from focus word
- Looks a lot like logistic regression!

$$
\arg \max_{\theta} \sum_{(w,c) \in D} \log p(c|w) = \sum_{(w,c) \in D} \left[\log \exp v_c \cdot v_w - \log \sum_{c'} \exp v_{c'} \cdot v_w \right]
$$
\n(2)

$$
p(c|w;\theta) = \frac{\exp v_c \cdot v_w}{\sum_{c' \in C} \exp v_{c'} \cdot v_w}
$$
 (1)

- Predict context word(s)
- from focus word
- Looks a lot like logistic regression!

$$
\arg \max_{\theta} \sum_{(w,c) \in D} \log p(c|w) = \sum_{(w,c) \in D} \left[\log \exp v_c \cdot v_w - \log \sum_{c'} \exp v_{c'} \cdot v_w \right]
$$
\n(2)

$$
p(c|w;\theta) = \frac{\exp v_c \cdot v_w}{\sum_{c' \in C} \exp v_{c'} \cdot v_w}
$$
 (1)

- Predict context word(s)
- from focus word
- Looks a lot like logistic regression!

$$
\arg \max_{\theta} \sum_{(w,c) \in D} \log p(c|w) = \sum_{(w,c) \in D} \left[\log \exp v_c \cdot v_w - \log \sum_{c'} \exp v_{c'} \cdot v_w \right]
$$
\n(2)

While more text:

• Extract a word window:

A springer is [a cow or **heifer** close to calving]. *c*¹ *c*² *c*³ *w c*⁴ *c*⁵ *c*⁶

- *w* is the focus word vector (row in *W*).
- *^cⁱ* are the context word vectors (rows in *^C*).

While more text:

- Extract a word window: A springer is [a cow or **heifer** close to calving]. c_1 c_2 c_3 *w* c_4 c_5 c_6
	- Try setting the vector values such that:

 $\sigma(w \cdot c_1) + \sigma(w \cdot c_2) + \sigma(w \cdot c_3) + \sigma(w \cdot c_4) + \sigma(w \cdot c_5) + \sigma(w \cdot c_6)$

is **high**

While more text:

- Extract a word window:
- A springer is [a cow or **heifer** close to calving]. *c*₁ *c*₂ *c*₃ *w c*₄ *c*₆ *c*₆ *c*₆
	- Try setting the vector values such that:

$$
\sigma(w \cdot c_1) + \sigma(w \cdot c_2) + \sigma(w \cdot c_3) + \sigma(w \cdot c_4) + \sigma(w \cdot c_5) + \sigma(w \cdot c_6)
$$

is **high**

- Create a corrupt example by choosing a random word *w* ′ (negative sample) $\begin{bmatrix} a & cow & or & \text{comet} & close & to & calving \\ c_1 & c_2 & c_3 & w' & c_4 & c_5 & c_6 \end{bmatrix}$ c_1 c_2 c_3 w' $c_{\scriptscriptstyle{A}}$ **c**₆
- Try setting the vector values such that:

$$
\sigma(w'\cdot c_{1})+\sigma(w'\cdot c_{2})+\sigma(w'\cdot c_{3})+\sigma(w'\cdot c_{4})+\sigma(w'\cdot c_{5})+\sigma(w'\cdot c_{6})
$$

is **low**

Negative Sampling Distribution

$$
v^{\text{NS}}(w) = \frac{f(w)^{\frac{3}{4}}}{\sum_{w'} f(w)^{\frac{3}{4}}}
$$
(3)

p

Brings down frequent terms, brings up infrequent terms

The training procedure results in:

- *w* · *c* for **good** word-context pairs is **high**
- *w* · *c* for **bad** word-context pairs is **low**
- *w* · *c* for **ok-ish** word-context pairs is **neither high nor low**

As a result:

- Words that share many contexts get close to each other.
- Contexts that share many words get close to each other.

At the end, word2vec throws away *C* and returns *W*.

Imagine we didn't throw away *C*. Consider the product *WC*[⊤]

Imagine we didn't throw away *C*. Consider the product *WC*[⊤]

The result is a matrix *M* in which:

- Each row corresponds to a word.
- Each column corresponds to a context.
- Each cell: *w* · *c*, association between word and context.

Does this remind you of something?

Does this remind you of something?

Very similar to SVD over distributional representation:

Relation between SVD and word2vec

SVD

- Begin with a word-context matrix.
- Approximate it with a product of low rank (thin) matrices.
- Use thin matrix as word representation.

word2vec (skip-grams, negative sampling)

- Learn thin word and context matrices
- These matrices can be thought of as approximating an implicit word-context matrix.
	- \blacktriangleright Levy and Goldberg (NIPS 2014) show that this implicit matrix is related to the well-known PPMI matrix.

Relation between SVD and word2vec

word2vec is a dimensionality reduction technique over an (implicit) word-context matrix.

Just like SVD.

With few tricks (Levy, Goldberg and Dagan, TACL 2015) we can get SVD to perform just as well as word2vec.

Relation between SVD and word2vec

word2vec is a dimensionality reduction technique over an (implicit) word-context matrix.

Just like SVD.

With few tricks (Levy, Goldberg and Dagan, TACL 2015) we can get SVD to perform just as well as word2vec.

However, word2vec...

- **. . . works without building / storing the actual matrix in memory.**
- **. . . is very fast to train, can use multiple threads.**
- **. . . can easily scale to huge data and very large word and context vocabularies.**