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From Distributional to Distributed Semantics

The new kid on the block

• Deep learning / neural networks

• “Distributed” word representations
▶ Feed text into neural-net. Get back “word embeddings”.
▶ Each word is represented as a low-dimensional vector.
▶ Vectors capture “semantics”

• word2vec (Mikolov et al)
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From Distributional to Distributed Semantics

This part of the talk

• word2vec as a black box

• a peek inside the black box

• relation between word-embeddings and the distributional
representation

• tailoring word embeddings to your needs using word2vec
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word2vec
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word2vec

5



word2vec

• dog
▶ cat, dogs, dachshund, rabbit, puppy, poodle, rottweiler,

mixed-breed, doberman, pig

• sheep
▶ cattle, goats, cows, chickens, sheeps, hogs, donkeys, herds,

shorthorn, livestock

• november
▶ october, december, april, june, february, july, september, january,

august, march

• jerusalem
▶ tiberias, jaffa, haifa, israel, palestine, nablus, damascus katamon,

ramla, safed

• teva
▶ pfizer, schering-plough, novartis, astrazeneca, glaxosmithkline,

sanofi-aventis, mylan, sanofi, genzyme, pharmacia
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Working with Dense Vectors

Word Similarity

• Similarity is calculated using cosine similarity :

sim( ⃗dog, ⃗cat) =
⃗dog · ⃗cat

|| ⃗dog|| || ⃗cat ||

• For normalized vectors (||x ||= 1), this is equivalent to a dot
product:

sim( ⃗dog, ⃗cat) = ⃗dog · ⃗cat

• Normalize the vectors when loading them.
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Working with Dense Vectors

Finding the most similar words to ⃗dog

• Compute the similarity from word v⃗ to all other words.

• This is a single matrix-vector product: W · v⃗⊤

• Result is a |V | sized vector of similarities.

• Take the indices of the k -highest values.

• FAST! for 180k words, d=300: ∼30ms
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Working with Dense Vectors

Most Similar Words, in python+numpy code

W,words = load_and_norm_vectors("vecs.txt")
# W and words are numpy arrays.
w2i = {w:i for i,w in enumerate(words)}

dog = W[w2i['dog']] # get the dog vector

sims = W.dot(dog) # compute similarities

most_similar_ids = sims.argsort()[-1:-10:-1]
sim_words = words[most_similar_ids]
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Working with Dense Vectors

Similarity to a group of words

• “Find me words most similar to cat, dog and cow”.

• Calculate the pairwise similarities and sum them:

W · ⃗cat +W · ⃗dog +W · ⃗cow

• Now find the indices of the highest values as before.

• Matrix-vector products are wasteful. Better option:

W · ( ⃗cat + ⃗dog + ⃗cow)

10



Working with Dense Vectors

Similarity to a group of words

• “Find me words most similar to cat, dog and cow”.

• Calculate the pairwise similarities and sum them:

W · ⃗cat +W · ⃗dog +W · ⃗cow

• Now find the indices of the highest values as before.

• Matrix-vector products are wasteful. Better option:

W · ( ⃗cat + ⃗dog + ⃗cow)

10



Working with dense word vectors can be very efficient.

But where do these vectors come from?
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Flavors of word2vec
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Flavors of word2vec

Two context representations

• Continuous Bag of Words (CBOW)

• Skip-grams
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Flavors of word2vec

Two context representations

• Continuous Bag of Words (CBOW)

• Skip-grams

Two training methods

• Negative Sampling

• Hierarchical Softmax

But once you understand one, others follow.
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How does word2vec work?

• Represent each word as a d dimensional vector.

• Represent each context as a d dimensional vector.

• Initalize all vectors to random weights.

• Arrange vectors in two matrices, W and C.
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The Prediction Problem

p(c |w ;θ ) =
expvc · vw
∑

c′∈C expvc′ · vw
(1)

• Predict context word(s)

• from focus word

• Looks a lot like logistic regression!

Total objective function (in log space):

argmax
θ

∑

(w ,c)∈D

logp(c |w) =
∑

(w ,c)∈D

�

logexpvc · vw − log
∑

c′
expvc′ · vw

�

(2)
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How does word2vec work?
While more text:
• Extract a word window:
A springer is [ a cow or heifer close to calving ] .

c1 c2 c3 w c4 c5 c6

• w is the focus word vector (row in W ).
• ci are the context word vectors (rows in C).

• Try setting the vector values such that:

σ(w · c1)+σ(w · c2)+σ(w · c3)+σ(w · c4)+σ(w · c5)+σ(w · c6)

is high

• Create a corrupt example by choosing a random word w ′
[ a cow or comet close to calving ]

c1 c2 c3 w ′ c4 c5 c6

• Try setting the vector values such that:

σ(w ′· c1)+σ(w
′· c2)+σ(w

′· c3)+σ(w
′· c4)+σ(w

′· c5)+σ(w
′· c6)

is low
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Negative Sampling Distribution
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How does word2vec work?

The training procedure results in:

• w · c for good word-context pairs is high

• w · c for bad word-context pairs is low

• w · c for ok-ish word-context pairs is neither high nor low

As a result:

• Words that share many contexts get close to each other.

• Contexts that share many words get close to each other.

At the end, word2vec throws away C and returns W .
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Reinterpretation

Imagine we didn’t throw away C. Consider the product WC⊤

The result is a matrix M in which:

• Each row corresponds to a word.

• Each column corresponds to a context.

• Each cell: w · c, association between word and context.
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Reinterpretation

Does this remind you of something?

Very similar to SVD over distributional representation:
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Relation between SVD and word2vec

SVD

• Begin with a word-context matrix.

• Approximate it with a product of low rank (thin) matrices.

• Use thin matrix as word representation.

word2vec (skip-grams, negative sampling)

• Learn thin word and context matrices.

• These matrices can be thought of as approximating an implicit
word-context matrix.
▶ Levy and Goldberg (NIPS 2014) show that this implicit matrix is

related to the well-known PPMI matrix.
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Relation between SVD and word2vec

word2vec is a dimensionality reduction technique over an (implicit)
word-context matrix.

Just like SVD.

With few tricks (Levy, Goldberg and Dagan, TACL 2015) we can get SVD to
perform just as well as word2vec.

However, word2vec. . .

• . . . works without building / storing the actual matrix in
memory.

• . . . is very fast to train, can use multiple threads.

• . . . can easily scale to huge data and very large word and
context vocabularies.
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