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Logistic Regression by Another Name: Map inputs to
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Why is it called activation?
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In the shallow end

• This is still logistic regression

• Engineering features x is difficult (and requires expertise)

• Can we learn how to represent inputs into final decision?
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Better name: non-linearity

• Logistic / Sigmoid

f (x) =
1

1+e−x
(1)

• tanh

f (x) = tanh(x) =
2

1+e−2x
−1

(2)

• ReLU

f (x) =

�

0 for x < 0
x for x ≥ 0

(3)

• SoftPlus: f (x) = ln(1+ex)
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Learn the features and the function
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Learn the features and the function
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Objective Function

• For every example x ,y of our supervised training set, we want the
label y to match the prediction hW ,b(x).

J(W ,b;x ,y)≡
1

2
||hW ,b(x)− y ||2 (4)

• We want this value, summed over all of the examples to be as
small as possible

• We also want the weights not to be too large
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Objective Function

Putting it all together:

J(W ,b) =

�

1

m

m
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• Our goal is to minimize J(W ,b) as a function of W and b

• Initialize W and b to small random value near zero

• Adjust parameters to optimize J

• Going forward, we’ll set λ= 0, as adding it back in is relatively
simple
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Gradient Descent

Goal

Optimize J with respect to variables W and b

Parameter

Objective
start

stop

undiscovered
country
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Backpropigation

• For convenience, write the input to sigmoid

z
(l)
j =

n
∑

i=1

W
(l−1)
ji xi +b

(l−1)
j (7)

• The gradient is a function of a node’s error δ
(l)
j

• For output nodes, the error is obvious:

δ
(L)
j =

∂

∂ z
(L)
j

||y −hw ,b(x)||2 =−
�

yj −a
(L)
j

�

· f ′
�

z
(L)
i

� 2

2
(8)

• Other nodes must “backpropagate” downstream error based on
connection strength

δ
(l)
j =

�st+1
∑

i=1

W
(l+1)
ji δ

(l+1)
i

�

f ′(z
(l)
j ) (9)
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Partial Derivatives

• For weights, the partial derivatives are

∂

∂W
(l)
ji

J(W ,b;x ,y) = a
(l)
j δ

(l+1)
i (10)

• For the bias terms, the partial derivatives are

∂

∂ b
(l)
j

J(W ,b;x ,y) =δ
(l+1)
h (11)

• But this is just for a single example . . .
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Full Gradient Descent Algorithm

1. Initialize U(l) and V (l) as zero

2. For each example i = 1 . . .m
2.1 Use backpropagation to compute ∇W J and ∇bJ
2.2 Update weight shifts U(l) =U(l)+∇W (l)J(W ,b;x ,y)
2.3 Update bias shifts V (l) = V (l)+∇b(l)J(W ,b;x ,y)

3. Update the parameters

W (l) =W (l)−α
��

1

m
U(l)

��

(12)

b(l) =b(l)−α
�

1

m
V (l)

�

(13)

4. Repeat until weights stop changing
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But it is not perfect

• Compare against baselines: randomized features,
nearest-neighbors, linear models

• Optimization is hard (alchemy)

• Models are often not interpretable

• Requires specialized hardware and tons of data to scale
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