Multilayer Networks

Jordan Boyd-Graber

University of Maryland

Slides adapted from Andrew Ng

Logistic Regression by Another Name: Map inputs to
output

Bup(X)

Logistic Regression by Another Name: Map inputs to
output

Xy
x?

— h,(x)
X3

+1

Input

Vector xq ... Xy

inputs encoded as
real numbers

Logistic Regression by Another Name: Map inputs to
output

Xy

Xy

hw,b{x}
X3

+1
Output

I
nput f(z Wix; + b)

Vector xq ... Xy

multiply inputs by
weights

Logistic Regression by Another Name: Map inputs to
output

)(1

%

— hw,b{x}

X

+1
Output

Input

Vector x; ... Xy f(z Wix; + b)
!

add bias
2

Logistic Regression by Another Name: Map inputs to
output
%

hw,b{x}
X3

+1

Activation
Output

Input f(z)=

Vector xq ... Xy f(z W,-X,-—i-b)
i

pass through
nonlinear sigmoid

Why is it called activation?

output
. A

0.5 4

0 activation

In the shallow end

e This is still logistic regression
e Engineering features x is difficult (and requires expertise)

e Can we learn how to represent inputs into final decision?

Better name: non-linearity

e Logistic / Sigmoid
)=——
X)=
s 1+ex
= sigmoid

. * tanh
3 —=softplus 2
, f(x) =tanh(x) = T
i (2)
0 / e RelU

5 0 5 0 for x<0O
f(x){x for x>0 3)

SoftPlus: f(x) =In(1+ &)

Learn the features and the function

—
by (%)

Layer Ly

+1

Layer L, Layer L,

352) = f(W1(11)X1 + W1(21)X2 + W1(;)X3 +b1(1))

Learn the features and the function

—
by (%)

Layer Ly

+1

Layer L, Layer L,

agz) = f(W2(11)X1 + Wz(;)xz + Wz(;)XS + b§1))

Learn the features and the function

—
by (%)

Layer Ly

+1

Layer L, Layer L,

agz) = f(Ws(:)X1 -+ W‘fg)Xg + W?S;)X3 + b:(;))

Learn the features and the function

by (%)

Layer Ly

+1

Layer L, Layer L,

) = o9 = (WP < W)+ WD 1)

Objective Function

e For every example x, y of our supervised training set, we want the
label y to match the prediction hy ,(x).

1
J(W,b;X,J/)E§||hw,b(X)—Y||2 (4)

Objective Function

e For every example x, y of our supervised training set, we want the
label y to match the prediction hy ,(x).

1
J(W,b;X,}/)E§||hw,b(x)—)/||2 (4)

e We want this value, summed over all of the examples to be as
small as possible

Objective Function

e For every example x, y of our supervised training set, we want the
label y to match the prediction hy ,(x).

1
J(W,b;X,}/)E§||hw,b(x)—)/||2 (4)

e We want this value, summed over all of the examples to be as
small as possible

e We also want the weights not to be too large

Anl_1 S; Si+1

Objective Function

e For every example x, y of our supervised training set, we want the
label y to match the prediction hy ,(x).

1
J(W,b;X,}/)E§||hw,b(x)—)/||2 (4)

e We want this value, summed over all of the examples to be as
small as possible

e We also want the weights not to be too large

Anl_1 S; Si+1

Objective Function

e For every example x, y of our supervised training set, we want the
label y to match the prediction hyy ().

1
J(W,b;X,Y)E§||hw,b(x)—Y||2 (4)

e We want this value, summed over all of the examples to be as
small as possible

e We also want the weights not to be too large

S Si+1

Sum over all layers

Objective Function

e For every example x, y of our supervised training set, we want the
label y to match the prediction hyy ().

1
J(W,b;X,J’)E§||hw,b(x)—Y||2 (4)

o We want this value, summed over all of the examples to be as
small as possible

e We also want the weights not to be too large

Sum over all sources

Objective Function

e For every example x, y of our supervised training set, we want the
label y to match the prediction hyy ().

1
J(W,b;X,J’)E§||hw,b(x)—Y||2 (4)

o We want this value, summed over all of the examples to be as
small as possible

e We also want the weights not to be too large

Sum over all destinations

Objective Function

Putting it all together:

n— 1 S; Si+1

J(W,b) = Z [l p(xD) y<>n2+22 > ()
/ 1j=1

i=

Objective Function

Putting it all together:

m n—1 8 Si41

J(W,b) = %Z%th,b(x() —yI? +ZZ ”Z()

i=1 i=

e Our goal is to minimize J(W, b) as a function of W and b

Objective Function

Putting it all together:

m n—1 8 Si41

J(W, b) = %Z%th,b(x("))—y(')ﬂz +%ZZZ("VJ§)Z ©)

=1 =1 =1

e Our goal is to minimize J(W, b) as a function of W and b

e |nitialize W and b to small random value near zero

Objective Function

Putting it all together:

m n—1 8 Si41

J(W, b) = %Z%th,b(x("))—y(')ﬂz +%ZZZ("VJ§)Z (6)

=1 =1 =1

e Our goal is to minimize J(W, b) as a function of W and b
e [nitialize W and b to small random value near zero

o Adjust parameters to optimize J

Objective Function

Putting it all together:

m n—1 8 Si41

J(W, b) = %Z%th,b(x("))—y(')ﬂz +%ZZZ("VJ§)Z (6)

=1 =1 =1

Our goal is to minimize J(W, b) as a function of W and b

Initialize W and b to small random value near zero

Adjust parameters to optimize J

Going forward, we’ll set A = 0, as adding it back in is relatively
simple

Gradient Descent

Goal

Optimize J with respect to variables W and b

Objective |

undiscovered Parameter
country

Backpropigation

e For convenience, write the input to sigmoid

BUN

]
i=1

Backpropigation

e For convenience, write the input to sigmoid

SUN S

]
i=1

e The gradient is a function of a node’s error 5/(/)

Backpropigation

e For convenience, write the input to sigmoid

SUN S

]
i=1

e The gradient is a function of a node’s error 5/(/)
e For output nodes, the error is obvious:

5 = 2l =1 == (=) 1 ()

17 zj(L)

2
2

Backpropigation

e For convenience, write the input to sigmoid

2= w4 p 7)

]
i=1

e The gradient is a function of a node’s error 5/(/)
e For output nodes, the error is obvious:

L 0 L L 2
57 = =5y =hus(IF=—(y—a")-#(2)5 @
3zj
e Other nodes must “backpropagate” based on

connection strength

St+1
5 = (Z w,) /(") ©)
i=1

Backpropigation

e For convenience, write the input to sigmoid

2= w4 p 7)

i=1

e The gradient is a function of a node’s error 5/(/)
e For output nodes, the error is obvious:

o=y tmatl ===} ()}

I

e Other nodes must “backpropagate” downstream error based on
connection strength

5(/ (Z (1) (/+1)) (j(/)) 9)

Backpropigation

e For convenience, write the input to sigmoid
n
(n _ (1) (—1)
"= W Vx+b
i=1
e The gradient is a function of a node’s error 51.(0
e For output nodes, the error is obvious:

° ||y—hw,b(x)||2 :_(yj_a](L)) f (Z/'(L)) 2

17 zj(L)

(L _
6, =

e Other nodes must “backpropagate” downstream error based on

connection strength

St+1
(! _ (H1) (1)
o)

(chain rule)

10

Partial Derivatives

e For weights, the partial derivatives are

0

—(/)J(W,b;x,y) = a,(l)5,(/+1)
0 W;

e For the bias terms, the partial derivatives are

2
TJ(W,b;X,y)ZfS,(f“)
o,

e But this is just for a single example ...

Full Gradient Descent Algorithm

1. Initialize U and V() as zero
2. Foreachexamplei=1...m

2.1 Use backpropagation to compute V,J and V,J
2.2 Update weight shifts U() = U) + ¥, J(W, b; x, y)
2.3 Update bias shifts V() = V() + v, J(W,b; x,y)

3. Update the parameters
1
— U(’))] 12
(m (12)

%v(’)] (13)

w) —w() — g

b(/) :b(’) —a

4. Repeat until weights stop changing

But it is not perfect

Compare against baselines: randomized features,
nearest-neighbors, linear models

Optimization is hard (alchemy)

Models are often not interpretable

Requires specialized hardware and tons of data to scale

	Deep Learning from Data

