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Why is it called activation?
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In the shallow end

e This is still logistic regression
e Engineering features x is difficult (and requires expertise)

e Can we learn how to represent inputs into final decision?



Better name: non-linearity

e Logistic / Sigmoid
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Learn the features and the function
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Objective Function

Putting it all together:

m n—1 8 Si41

J(W, b) = %Z%th,b(x("))—y(')ﬂz +%ZZZ("VJ§)Z (6)
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Our goal is to minimize J(W, b) as a function of W and b

Initialize W and b to small random value near zero

Adjust parameters to optimize J

Going forward, we’ll set A = 0, as adding it back in is relatively
simple



Gradient Descent

Goal

Optimize J with respect to variables W and b

Objective |

undiscovered Parameter
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Backpropigation

e For convenience, write the input to sigmoid
n
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e The gradient is a function of a node’s error 51.(0
e For output nodes, the error is obvious:
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Partial Derivatives

e For weights, the partial derivatives are

0

—(/)J( W,b;x,y) = a,(l)5,(/+1)
0 W;

e For the bias terms, the partial derivatives are

2
TJ(W,b;X,y)ZfS,(f“)
o,

e But this is just for a single example ...



Full Gradient Descent Algorithm

1. Initialize U and V() as zero
2. Foreachexamplei=1...m

2.1 Use backpropagation to compute V,J and V,J
2.2 Update weight shifts U() = U) + ¥, J(W, b; x, y)
2.3 Update bias shifts V() = V() + v, J(W,b; x,y)

3. Update the parameters
1
— U(’))] 12
(m (12)

%v(’)] (13)

w) —w() — g

b(/) :b(’) —a

4. Repeat until weights stop changing



But it is not perfect

Compare against baselines: randomized features,
nearest-neighbors, linear models

Optimization is hard (alchemy)

Models are often not interpretable

Requires specialized hardware and tons of data to scale



	Deep Learning from Data

