
Frameworks

Jordan Boyd-Graber

University of Maryland

Introduction

Slides adapted from Chris Dyer, Yoav Goldberg, Graham Neubig

1



Neural Nets and Language

Language

Discrete, structured (graphs, trees)

Neural-Nets

Continuous: poor native support for
structure

Big challenge: writing code that translates between the
{discrete-structured, continuous} regimes

2



Why not do it yourself?

• Hard to compare with exting models

• Obscures difference between model and optimization

• Debugging has to be custom-built

• Hard to tweak model

3



Outline

• Computation graphs (general)

• Neural Nets in PyTorch

• Full example

4



Computation Graphs

Expression

~x

5



Computation Graphs

Expression

~x>

• Edge: function argument / data dependency

• A node with an incoming edge is a function F ≡ f (u ) edge’s tail
node

• A node computes its value and the value of its derivative w.r.t each
argument (edge) times a derivative ∂ f

∂ u

5



Computation Graphs

Expression

~x>A

Functions can be nullary, unary, binary, . . . n-ary. Often they are unary
or binary.

5



Computation Graphs

Expression

~x>Ax

Computation graphs are (usually) directed and acyclic

5



Computation Graphs

Expression

~x>Ax

5



Computation Graphs

Expression

~x>Ax + b · ~x + c

5



Computation Graphs

Expression

y = ~x>Ax + b · ~x + c

Variable names label nodes

5



Algorithms

• Graph construction

• Forward propagation
É Loop over nodes in topological order
É Compute the value of the node given its inputs
É Given my inputs, make a prediction (i.e. “error” vs. “target output”)

• Backward propagation
É Loop over the nodes in reverse topological order, starting with goal

node
É Compute derivatives of final goal node value wrt each edge’s tail

node
É How does the output change with small change to inputs?

6



Forward Propagation

7



Forward Propagation

7



Forward Propagation

7



Forward Propagation

7



Forward Propagation

7



Forward Propagation

7



Forward Propagation

7



Forward Propagation

7



Constructing Graphs

Static declaration

• Define architecture, run data
through

• PROS: Optimization, hardware
support

• CONS: Structured data ugly,
graph language

Theano, Tensorflow

Dynamic declaration

• Graph implicit with data

• PROS: Native language,
interleave
construction/evaluation

• CONS: Slower, computation
can be wasted

Chainer, Dynet, PyTorch

8



Constructing Graphs

Static declaration

• Define architecture, run data
through

• PROS: Optimization, hardware
support

• CONS: Structured data ugly,
graph language

Theano, Tensorflow

Dynamic declaration

• Graph implicit with data

• PROS: Native language,
interleave
construction/evaluation

• CONS: Slower, computation
can be wasted

Chainer, Dynet, PyTorch

8



Advantage of Dynamic Declaration

Only get computation graph at runtime

9



Advantage of Dynamic Declaration

Can find things like zero vectors, unused variables

9



Advantage of Dynamic Declaration

Parallelize on different physical computations

9



Language is Hierarchical



Dynamic Hierarchy in Language

• Language is hierarchical
É Graph should reflect this reality
É Traditional flow-control best for processing

• Combinatorial algorithms (e.g., dynamic programming)

• Exploit independencies to compute over a large space of
operations tractably

11



PyTorch

• Torch: Facebook’s deep learning framework

• Nice, but written in Lua (C backend)

• Optimized to run computations on GPU

• Mature, industry-supported framework

12



Why GPU?

13



Why GPU?

CPU

GPU
HDD

13


