Frameworks

Jordan Boyd-Graber
University of Maryland

Introduction

Slides adapted from Chris Dyer, Yoav Goldberg, Graham Neubig

Neural Nets and Language

Language Neural-Nets

Continuous: poor native support for

structure
Big challenge: writing code that translates between the

{discrete-structured, continuous} regimes

Discrete, structured (graphs, trees)

Why not do it yourself?

Hard to compare with exting models

Obscures difference between model and optimization

Debugging has to be custom-built

Hard to tweak model

Outline

e Computation graphs (general)
e Neural Nets in PyTorch

e Full example

Computation Graphs

graph:

Computation Graphs

Expression
J_C)T
' bftu) 8F _ (OF '
flu) = du of(u) (Bf(u))

e Edge: function argument / data dependency
e A node with an incoming edge is a function F = f(u) edge’s talil
node

e A node computes its value and the value of its derivative w.r.t each
argument (edge) times a derivative g—{t

Computation Graphs

Expression

TA

graph:

Functions can be nullary, unary, binary, ... n-ary. Often they are unary
or binary.

Computation Graphs

Expression

XTAx

graph:

Computation graphs are (usually) directed and acyclic

Computation Graphs

Expression

TAx

graph:

Computation Graphs

Expression

XTAx+b-%+c

graph:

flenanzs) = S

Computation Graphs

Expression

XTAx+b-%+c

graph: @1, 22,25) = @

Variable names label nodes

Algorithms

e Graph construction
e Forward propagation

> Loop over nodes in topological order

> Compute the value of the node given its inputs

> Given my inputs, make a prediction (i.e. “error” vs. “target output”)
e Backward propagation

> Loop over the nodes in reverse topological order, starting with goal

node
» Compute derivatives of final goal node value wrt each edge’s tail

node
» How does the output change with small change to inputs?

Forward Propagation

f(xlistxS) - Zxﬁ

Forward Propagation

f(xlistxS) - Zxﬁ

Forward Propagation

f(xlistxS) - Zxﬁ

Forward Propagation

f(xlistxS) - Zxﬁ

Forward Propagation

f(xlistxS) - Zxﬁ

fM,v) = Mv
f(U,V)=UvVX
f(u) =u’

®

Forward Propagation

f(xlistxS) - Zxﬁ

Forward Propagation

f(xlistxS) - Zxﬁ

Forward Propagation

f(xlistxS) = Zxﬁ
Ap)

Constructing Graphs

Static declaration

e Define architecture, run data
through

e PROS: Optimization, hardware
support

o CONS: Structured data ugly,
graph language

Theano, Tensorflow

Dynamic declaration

e Graph implicit with data

e PROS: Native language,
interleave
construction/evaluation

e CONS: Slower, computation
can be wasted

Chainer, Dynet, PyTorch

Constructing Graphs

Static declaration

e Define architecture, run data
through

e PROS: Optimization, hardware
support

o CONS: Structured data ugly,
graph language

Theano, Tensorflow

Dynamic declaration

e Graph implicit with data

e PROS: Native language,
interleave
construction/evaluation

e CONS: Slower, computation
can be wasted

Chainer, Dynet,

Advantage of Dynamic Declaration

/

Only get computation graph at runtime

9

AN

Advantage of Dynamic Declaration

e
N\

Y

N

Can find things like zero vectors, unused variables

9

Advantage of Dynamic Declaration

O

Parallelize on different physical computations

9

Words Sentences

Word _ <
embedding D '“—-_,_fﬁrlf?l '
= b
.) — .
LSTM over root _— :
+ morphemes ; VP
/\ :

Stuoer a3+

characters

Alice gave a message to Bob

Phrases Documents

.
O 0 Ol« This film was completely unbelievable.

|© 0 Ol The characters were wooden and the plot was absurd.
0 fe] [dfimsclie] 0] [

That being said, I liked it.

Language is Hierarchical

Dynamic Hierarchy in Language

e Language is hierarchical

> Graph should reflect this reality
> Traditional flow-control best for processing

e Combinatorial algorithms (e.g., dynamic programming)

e Exploit independencies to compute over a large space of
operations tractably

PyTorch

Torch: Facebook’s deep learning framework

Nice, but written in Lua (C backend)

Optimized to run computations on GPU

Mature, industry-supported framework

Why GPU?

ccOQ-OOO

-
37

B ﬁfjﬁjﬁﬁ

Why GPU?

13

