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> RL is a general-purpose framework for decision-making
RL is for an agent with the capacity to act
Each action influences the agent’s future state
Success is measured by a scalar reward signal
Goal: select actions to maximise future reward

>
>
>
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Foundation of Policy Gradient
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Connecting to Generation

e T are internal states of decoder and the tokens they produce.
e Reward is how good the output is (more on that later).
e 0 are the encoder/decoder parameters
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Taking the gradient wrt 6:

P(7;0)

P(T,H)VeP(T;H) (4)

VgU(9)=ZR(T)
(5)

Move differentiation inside sum (ignore R(7) and then add in term that
cancels out



Likelihood Ratio Policy Gradient

> P 0)R(x)

T

Taking the gradient wrt 6:

VoU(0)=3 Rz g V(50
P(t
—ZP( HV;( 0) R

Move derivative over probability



Likelihood Ratio Policy Gradient

D p(r;0)R(7)

T
Taking the gradient wrt 6:
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=> P(%;0)Vy [log P(7; 0)] R(7)

T

Assume softmax form (Vylogz = 1V, z2)
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For generation

e (Gradient of) probability of outputting sequence
e How good that sequence is
e Averaged over samples
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Likelihood Ratio Policy Gradient
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For generation

e (Gradient of) probability of outputting sequence
e How good that sequence is



Policy Gradient Intuition

e Increase probability of paths with positive R
e Decrease probability of paths with negative R



Extensions

e Consider baseline b (e.g., path averaging)
1 & . .
VeU(9)~—ZVQIOgP(r‘;9)(R(T’)—b(f)) (6)
ma

e Combine with value estimation (critic)

» Actor: What actions to take

» Critic: How good those actions are

> Advantage Actor Critic with temporal difference (remember TD
Gammon?) term

A, = r(s;,a;)+ Vrcg(st+1)_ Vna(st) (7)

e Proximal policy optimization: policies should not change too much



Recap

Reinforcement learning is active subfield of ML

Deep learning option for learning policy / value functions

Representation learning helps cope with large state spaces

Still requires careful engineering and feature engineering



