Midterm Review

Computational Linguistics: Jordan Boyd-Graber
University of Maryland
PCFG, LOGISTIC REGRESSION, TRANSDUCERS
Roadmap

- Answer your questions
- Go through examples of free response questions
Your Questions
Logistic Regression / Feature Engineering

Take V to be the set of possible words (e.g. “the”, “cat”, “dog”, . . .). Take V' to be the set of all words in V plus their reverses (e.g. “the”, “eht”, “cat”, “tac”, “dog”, “god”). You can assume that there are no palindromes in v (e.g. “eye”). You want a logistic regression that models $(x, y) : x \in V, y \in V'$ pairs as follows:

- With probability $\frac{1}{2}$ he chooses y to be identical to x
- With probability $\frac{1}{3}$ he chooses y to be the reverse of x
- With probability $\frac{1}{6}$ he chooses y to be some string that is neither x nor the reverse of x

Create a logistic regression (i.e. supply features f and weights θ) of the form:

$$p(y|x, \theta) = \frac{\exp \sum_i \theta_i f_i(x, y)}{\sum_{y'} \exp \sum_i \theta_i f_i(x, y')}$$

(1)

that models Nathan’s process perfectly.
Logistic Regression

Features

1. 1 iff $x = y$ (id)
2. 1 iff $\text{rev}(x) = y$ (rev)
3. 1 always one (bias)
Logistic Regression

Features

1. 1 iff $x === y$ (id)
2. 1 iff $\text{rev}(x) === y$ (rev)
3. 1 always one (bias)

\[
\exp\{\theta_{id} + \theta_{bias}\} = \frac{1}{2} \quad (2)
\]
\[
\exp\{\theta_{rev} + \theta_{bias}\} = \frac{1}{3} \quad (3)
\]
\[
(V' - 2)\exp\{\theta_{bias}\} = \frac{1}{2} \quad (4)
\]
Solving for parameters

\[\theta_{id} + \theta_{bias} = -\log 2 \quad (6) \]
\[\theta_{rev} + \theta_{bias} = -\log 3 \quad (7) \]
\[\theta_{bias} + \log (V' - 2) = -\log 6 \quad (8) \]
Solving for parameters

\[
\begin{align*}
\theta_{id} + \theta_{bias} &= -\log 2 \\
\theta_{rev} + \theta_{bias} &= -\log 3 \\
\theta_{bias} + \log(V' - 2) &= -\log 6
\end{align*}
\]

\[
\begin{align*}
\theta_{id} &= \log 3 + \log(V' - 2) \\
\theta_{rev} &= \log 2 + \log(V' - 2) \\
\theta_{bias} &= -\log 6 - \log(V' - 2)
\end{align*}
\]
PCFG + LM

Suppose we have the following language model over the alphabet \{a, b\}.

<table>
<thead>
<tr>
<th>Bigram</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p(a</td>
<td><s>))</td>
</tr>
<tr>
<td>(p(b</td>
<td><s>))</td>
</tr>
<tr>
<td>(p(<s></td>
<td><s>))</td>
</tr>
<tr>
<td>(p(a</td>
<td>a))</td>
</tr>
<tr>
<td>(p(b</td>
<td>a))</td>
</tr>
<tr>
<td>(p(<s></td>
<td>a))</td>
</tr>
<tr>
<td>(p(a</td>
<td>b))</td>
</tr>
<tr>
<td>(p(b</td>
<td>b))</td>
</tr>
<tr>
<td>(p(<s></td>
<td>b))</td>
</tr>
</tbody>
</table>

1. Write a pcfg with non-terminals and weights such that it is equivalent to this language model. You should not need more than three non-terminals.

2. Compute the probability of the string \(<s> a a b <s>\) using the original language model and the corresponding pcfg derivation to show that they’re equivalent.
PCFG + LM
For any binary string x, let $w(x)$ denote the number of 1’s in x.

For any binary string x and any integer i, $0 \leq i < w(x)$, let $f(x, i)$ denote the number of 0’s between the i^{th} 1 and the $(i + 1)^{st}$ 1 in the binary string $1x$, where we index the $w(x) + 1$ 1’s in $1x$ from left to right starting at zero. Example: If $x = 11000100$, then $w(x) = 3$, $f(x, 0) = 0$, $f(x, 1) = 0$, $f(x, 2) = 3$, and $f(x, i)$ is undefined for $i \geq 3$.

For any binary string x, let $g(x)$ denote the binary string of length $w(x)$ with i^{th} bit (indexing the bits from left to right starting at zero) equal to the parity of $f(x, i)$ (that is, 0 if even, 1 if odd). Example: If $x = 11000100$, then $g(x) = 001$.

Design a finite state transducer that maps any given input binary string x to the output binary string $g(x)$.
FST