Dependency Parsing

Computational Linguistics: Jordan Boyd-Graber
University of Maryland
SHIFT-REDUCE

Adapted from material by Jimmy Lin and Jason Eisner
Shift-Reduce Parsing

- Alternative to arc-factored models
- Cognitively plausible
- Better at short-range dependencies
Example

ROOT Economic news had little effect on financial markets.
Example

ROOT Economic ← news had little effect on financial markets .
Example

ROOT Economic ← news ← had little effect on financial markets .
Example

ROOT Economic ← news ← had little ← effect on financial markets .
Example

ROOT Economic ← news ← had little ← effect on financial ← markets .
Example

ROOT: Economic news had little effect on financial markets.
Example

ROOT Economic ← news ← had little ← effect → on financial ← markets .
Example

ROOT Economic ← news ← had little ← effect → on financial ← markets .
Example

ROOT Economic had little effect on financial markets.
Example

ROOT Economic ← news ← had little ← effect → on financial ← markets .
Components

- Process a sentence word by word from a **buffer**
- You can temporarily place store words on a **stack**
- As you process you can either:
Components

- Process a sentence word by word from a **buffer**
- You can temporarily place store words on a **stack**
- As you process you can either:
 - **Shift**: Move a word from the buffer to the stack
Components

- Process a sentence word by word from a buffer
- You can temporarily place store words on a stack
- As you process you can either:
 - **Shift**: Move a word from the buffer to the stack
 - **Left**: The top of the stack is the child of the buffer’s next word
Components

- Process a sentence word by word from a buffer
- You can temporarily place store words on a stack
- As you process you can either:
 - Shift: Move a word from the buffer to the stack
 - Left: The top of the stack is the child of the buffer’s next word
 - Right: The buffer’s next word is the child of the top of the stack
Initial and Final Conditions

- Initially the stack has root, the buffer has the sentence’s words, and there are no edges
- At the end, the buffer must be empty
Action: Left

- Add an edge \((w_j, w_i)\)
- \(w_i\) is the top of the stack
- \(w_j\) is the first word of the buffer
- Pop the stack
Action: Left

- Add an edge \((w_j, w_i)\)
- \(w_i\) is the top of the stack
- \(w_j\) is the first word of the buffer
- Pop the stack
- Stack and buffer must be non-empty; \(w_i\) cannot be the root
Action: Right

- Add an edge \((w_i, w_j)\)
- \(w_i\) is the top of the stack
- \(w_j\) is the first word in the buffer
- Pop the stack
- Replace \(w_j\) by \(w_i\) at the head of buffer
Action: Right

- Add an edge \((w_i, w_j)\)
- \(w_i\) is the top of the stack
- \(w_j\) is the first word in the buffer
- Pop the stack
- Replace \(w_j\) by \(w_i\) at the head of buffer
- Stack and buffer must be non-empty
Shift

- Removes w_i from the buffer
- Places it on the stack
Shift

- Removes w_i from the buffer
- Places it on the stack
- Buffer must be non-empty
Shift Reduce Example

Stack
[root]

Buffer
[economic, news, had, little, effect, on, financial, markets, .]

ROOT Economic news had little effect on financial markets .

Next transition: 1. Shift
Shift Reduce Example

<table>
<thead>
<tr>
<th>Stack</th>
<th>Buffer</th>
</tr>
</thead>
<tbody>
<tr>
<td>[root, economic]</td>
<td>[news, had, little, effect, on, financial, markets, .]</td>
</tr>
</tbody>
</table>

ROOT Economic news had little effect on financial markets .

Next transition: 2. Left
Shift Reduce Example

Stack
[root]

Buffer
[news, had, little, effect, on, financial, markets, .]

ROOT Economic ← news had little effect on financial markets .

Next transition: 3. Shift
Shift Reduce Example

Stack
[root, news]

Buffer
[had, little, effect, on, financial, markets, .]

ROOT Economic ← news had little effect on financial markets .

Next transition: 4. Left
Shift Reduce Example

Stack

[root]

Buffer

[had, little, effect, on, financial, markets, .]

ROOT Economic ← news ← had little effect on financial markets .

Next transition: 5. Shift
Shift Reduce Example

Stack
[root , had]

Buffer
[little, effect, on, financial, markets, .]

ROOT Economic ← news ← had little effect on financial markets .

Next transition: 6. Shift
Shift Reduce Example

<table>
<thead>
<tr>
<th>Stack</th>
<th>Buffer</th>
</tr>
</thead>
<tbody>
<tr>
<td>[root, had, little]</td>
<td>[effect, on, financial, markets, .]</td>
</tr>
</tbody>
</table>

ROOT Economic ← news ← had little effect on financial markets .

Next transition: 7. Left
Shift Reduce Example

<table>
<thead>
<tr>
<th>Stack</th>
<th>Buffer</th>
</tr>
</thead>
<tbody>
<tr>
<td>[root, had]</td>
<td>[effect, on, financial, markets, .]</td>
</tr>
</tbody>
</table>

ROOT Economic ← news ← had little ← effect on financial markets .

Next transition: 8. Shift
Shift Reduce Example

<table>
<thead>
<tr>
<th>Stack</th>
<th>Buffer</th>
</tr>
</thead>
<tbody>
<tr>
<td>[root, had, effect]</td>
<td>[on, financial, markets, .]</td>
</tr>
</tbody>
</table>

ROOT Economic ← news ← had little ← effect on financial markets .

Next transition: 9. Shift
Shift Reduce Example

Stack
[root, had, effect, on]

Buffer
[financial, markets, .]

ROOT Economic ← news ← had little ← effect on financial markets .

Next transition: 10. Shift
Shift Reduce Example

<table>
<thead>
<tr>
<th>Stack</th>
<th>Buffer</th>
</tr>
</thead>
<tbody>
<tr>
<td>[root, had, effect, on, financial]</td>
<td>[markets, .]</td>
</tr>
</tbody>
</table>

ROOT Economic ← news ← had little ← effect on financial markets .

Next transition: 11. Left
Shift Reduce Example

Stack
[root, had, effect, on]

Buffer
[markets, .]

ROOT Economic ← news ← had little ← effect on financial ← markets .

Next transition: 12. Right
Shift Reduce Example

Stack

```
[root, had, effect]
```

Buffer

```
[on, .]
```

ROOT Economic news had little effect on financial markets .

Next transition: 13. Right
Shift Reduce Example

Stack
[root , had]

Buffer
[effect, .]

ROOT Economic ← news ← had little ← effect → on financial ← markets .

Next transition: 14. Right
Shift Reduce Example

Stack
[root]

Buffer
[had, .]

ROOT Economic ← news ← had little ← effect → on financial ← markets .

Next transition: 15. Shift
Shift Reduce Example

Stack
[root, had]

Buffer
[.]

ROOT Economic ← news ← had little ← effect → on financial ← markets .

Next transition: 16. Right
Shift Reduce Example

<table>
<thead>
<tr>
<th>Stack</th>
<th>Buffer</th>
</tr>
</thead>
<tbody>
<tr>
<td>[root]</td>
<td>[had]</td>
</tr>
</tbody>
</table>

ROOT Economic ← news ← had little ← effect → on financial ← markets .

Next transition: 17. Right
Shift Reduce Example

Stack
[]

Buffer
[root]

ROOT Economic ← news ← had little ← effect → on financial ← markets .

Next transition: 18. Shift
Shift Reduce Example

Stack
[root]

Buffer
[]

ROOT Economic ← news ← had little ← effect → on financial ← markets .

Next transition:
Transition Sequence Algorithm

- Start with root on stack, buffer with whole sentence
- If there’s nothing on the stack, you must **shift**
- If the top of the stack is the child of the top of the buffer, then make a **left** edge
- If the top of the buffer is a child of the top of the stack and the top of the buffer has no children that have yet to be added to the tree, then make a **right**
How to apply to data

- Create oracle for all sentences
- Create three-way classifier for each possible actions
- Features
 - The top of the stack
 - Top two words on buffer
 - The parts of speech of the words
Complexity

- A word can only enter the stack once
- So complexity is $O(2N)$
Comparison

- Shift-reduce parsers are faster
- Shift-reduce parsers do better at local (deeper) connections
- Arc-factored models do better at long-distance dependencies (e.g., verbs)