Classification: Logistic Regression

Computational Linguistics: Jordan Boyd-Graber
University of Maryland
LECTURE 1A

Slides adapted from Hinrich Schütze and Lauren Hannah
What are we talking about?

- Statistical classification: $p(y|x)$
- Classification uses: ad placement, spam detection
- Building block of other machine learning methods
Logistic Regression: Definition

- Weight vector β_i
- Observations X_i
- “Bias” β_0 (like intercept in linear regression)

$$P(Y = 0 | X) = \frac{1}{1 + \exp[\beta_0 + \sum_i \beta_i X_i]}$$ (1)

$$P(Y = 1 | X) = \frac{\exp[\beta_0 + \sum_i \beta_i X_i]}{1 + \exp[\beta_0 + \sum_i \beta_i X_i]}$$ (2)

- For shorthand, we’ll say that

$$P(Y = 0 | X) = \sigma(-\beta_0 - \sum_i \beta_i X_i))$$ (3)

$$P(Y = 1 | X) = 1 - \sigma(-\beta_0 - \sum_i \beta_i X_i))$$ (4)

- Where $\sigma(z) = \frac{1}{1 + \exp[-z]}$
What’s this “exp” doing?

Exponential

- \(\exp[x] \) is shorthand for \(e^x \)
- \(e \) is a special number, about 2.71828
 - \(e^x \) is the limit of compound interest formula as compounds become infinitely small
 - It’s the function whose derivative is itself

Logistic

- The “logistic” function is \(\sigma(z) = \frac{1}{1+e^{-z}} \)
- Looks like an “S”
- Always between 0 and 1.
What’s this “exp” doing?

Exponential

- \(\exp[x] \) is shorthand for \(e^x \)
- \(e \) is a special number, about 2.71828
 - \(e^x \) is the limit of compound interest formula as compounds become infinitely small
 - It’s the function whose derivative is itself
- The “logistic” function is \(\sigma(z) = \frac{1}{1+e^{-z}} \)
- Looks like an “S”
- Always between 0 and 1.
 - Allows us to model probabilities
 - Different from **linear** regression

Logistic
Logistic Regression Example

<table>
<thead>
<tr>
<th>feature</th>
<th>coefficient</th>
<th>weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>bias</td>
<td>β_0</td>
<td>0.1</td>
</tr>
<tr>
<td>“viagra”</td>
<td>β_1</td>
<td>2.0</td>
</tr>
<tr>
<td>“mother”</td>
<td>β_2</td>
<td>-1.0</td>
</tr>
<tr>
<td>“work”</td>
<td>β_3</td>
<td>-0.5</td>
</tr>
<tr>
<td>“nigeria”</td>
<td>β_4</td>
<td>3.0</td>
</tr>
</tbody>
</table>

Example 1: Empty Document?

For an empty document, $X = \{\}$:

- What does $Y = 1$ mean?

- $P(Y = 0) = \frac{1}{1 + \exp(-0.1)}$
- $P(Y = 1) = \frac{\exp(-0.1)}{1 + \exp(-0.1)}$
Logistic Regression Example

<table>
<thead>
<tr>
<th>feature</th>
<th>coefficient</th>
<th>weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>bias</td>
<td>β_0</td>
<td>0.1</td>
</tr>
<tr>
<td>“viagra”</td>
<td>β_1</td>
<td>2.0</td>
</tr>
<tr>
<td>“mother”</td>
<td>β_2</td>
<td>−1.0</td>
</tr>
<tr>
<td>“work”</td>
<td>β_3</td>
<td>−0.5</td>
</tr>
<tr>
<td>“nigeria”</td>
<td>β_4</td>
<td>3.0</td>
</tr>
</tbody>
</table>

Example 1: Empty Document?

$X = \{\}$

- $P(Y = 0) = \frac{1}{1 + \exp[0.1]}$
- $P(Y = 1) = \frac{\exp[0.1]}{1 + \exp[0.1]}$

What does $Y = 1$ mean?
Logistic Regression Example

feature	**coefficient**	**weight**
bias | β_0 | 0.1
“viagra” | β_1 | 2.0
“mother” | β_2 | −1.0
“work” | β_3 | −0.5
“nigeria” | β_4 | 3.0

What does $Y = 1$ mean?

Example 1: Empty Document?

$X = \{\}$

- $P(Y = 0) = \frac{1}{1 + \exp[0.1]} = 0.48$
- $P(Y = 1) = \frac{\exp[0.1]}{1 + \exp[0.1]} = 0.52$

- Bias β_0 encodes the prior probability of a class
Logistic Regression Example

<table>
<thead>
<tr>
<th>feature</th>
<th>coefficient</th>
<th>weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>bias</td>
<td>β_0</td>
<td>0.1</td>
</tr>
<tr>
<td>"viagra"</td>
<td>β_1</td>
<td>2.0</td>
</tr>
<tr>
<td>"mother"</td>
<td>β_2</td>
<td>-1.0</td>
</tr>
<tr>
<td>"work"</td>
<td>β_3</td>
<td>-0.5</td>
</tr>
<tr>
<td>"nigeria"</td>
<td>β_4</td>
<td>3.0</td>
</tr>
</tbody>
</table>

- What does $Y = 1$ mean?

Example 2

$X = \{\text{Mother, Nigeria}\}$
Logistic Regression Example

<table>
<thead>
<tr>
<th>feature</th>
<th>coefficient</th>
<th>weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>bias</td>
<td>β_0</td>
<td>0.1</td>
</tr>
<tr>
<td>“viagra”</td>
<td>β_1</td>
<td>2.0</td>
</tr>
<tr>
<td>“mother”</td>
<td>β_2</td>
<td>-1.0</td>
</tr>
<tr>
<td>“work”</td>
<td>β_3</td>
<td>-0.5</td>
</tr>
<tr>
<td>“nigeria”</td>
<td>β_4</td>
<td>3.0</td>
</tr>
</tbody>
</table>

What does $Y = 1$ mean?

Example 2

$X = \{\text{Mother, Nigeria}\}$

- $P(Y = 0) = \frac{1}{1 + \exp[0.1 - 1.0 + 3.0]} = \ldots$
- $P(Y = 1) = \frac{\exp[0.1 - 1.0 + 3.0]}{1 + \exp[0.1 - 1.0 + 3.0]} = \ldots$

Include bias, and sum the other weights
Logistic Regression Example

Example 2

\[X = \{ \text{Mother, Nigeria} \} \]

<table>
<thead>
<tr>
<th>feature</th>
<th>coefficient</th>
<th>weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>bias</td>
<td>(\beta_0)</td>
<td>0.1</td>
</tr>
<tr>
<td>“viagra”</td>
<td>(\beta_1)</td>
<td>2.0</td>
</tr>
<tr>
<td>“mother”</td>
<td>(\beta_2)</td>
<td>-1.0</td>
</tr>
<tr>
<td>“work”</td>
<td>(\beta_3)</td>
<td>-0.5</td>
</tr>
<tr>
<td>“nigeria”</td>
<td>(\beta_4)</td>
<td>3.0</td>
</tr>
</tbody>
</table>

- What does \(Y = 1 \) mean?
- Include bias, and sum the other weights

\[
\begin{align*}
P(Y = 0) &= \frac{1}{1 + \exp[0.1 - 1.0 + 3.0]} = 0.11 \\
P(Y = 1) &= \frac{\exp[0.1 - 1.0 + 3.0]}{1 + \exp[0.1 - 1.0 + 3.0]} = 0.88
\end{align*}
\]
Logistic Regression Example

<table>
<thead>
<tr>
<th>feature</th>
<th>coefficient</th>
<th>weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>bias</td>
<td>β_0</td>
<td>0.1</td>
</tr>
<tr>
<td>“viagra”</td>
<td>β_1</td>
<td>2.0</td>
</tr>
<tr>
<td>“mother”</td>
<td>β_2</td>
<td>-1.0</td>
</tr>
<tr>
<td>“work”</td>
<td>β_3</td>
<td>-0.5</td>
</tr>
<tr>
<td>“nigeria”</td>
<td>β_4</td>
<td>3.0</td>
</tr>
</tbody>
</table>

Example 3

$X = \{\text{Mother, Work, Viagra, Mother}\}$

- What does $Y = 1$ mean?
Logistic Regression Example

<table>
<thead>
<tr>
<th>feature</th>
<th>coefficient</th>
<th>weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>bias</td>
<td>β_0</td>
<td>0.1</td>
</tr>
<tr>
<td>“viagra”</td>
<td>β_1</td>
<td>2.0</td>
</tr>
<tr>
<td>“mother”</td>
<td>β_2</td>
<td>-1.0</td>
</tr>
<tr>
<td>“work”</td>
<td>β_3</td>
<td>-0.5</td>
</tr>
<tr>
<td>“nigeria”</td>
<td>β_4</td>
<td>3.0</td>
</tr>
</tbody>
</table>

- What does $Y = 1$ mean?

Example 3

$X = \{\text{Mother, Work, Viagra, Mother}\}$

- $P(Y = 0) = \frac{1}{1 + \exp[0.1 - 1.0 - 0.5 + 2.0 - 1.0]}$
- $P(Y = 1) = \frac{\exp[0.1 - 1.0 - 0.5 + 2.0 - 1.0]}{1 + \exp[0.1 - 1.0 - 0.5 + 2.0 - 1.0]}$

- Multiply feature presence by weight
Logistic Regression Example

<table>
<thead>
<tr>
<th>feature</th>
<th>coefficient</th>
<th>weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>bias</td>
<td>β_0</td>
<td>0.1</td>
</tr>
<tr>
<td>“viagra”</td>
<td>β_1</td>
<td>2.0</td>
</tr>
<tr>
<td>“mother”</td>
<td>β_2</td>
<td>-1.0</td>
</tr>
<tr>
<td>“work”</td>
<td>β_3</td>
<td>-0.5</td>
</tr>
<tr>
<td>“nigeria”</td>
<td>β_4</td>
<td>3.0</td>
</tr>
</tbody>
</table>

- What does $Y = 1$ mean?

Example 3

$X = \{\text{Mother, Work, Viagra, Mother}\}$

- $P(Y = 0) = \frac{1}{1 + \exp[0.1 - 1.0 - 0.5 + 2.0 - 1.0]} = 0.60$
- $P(Y = 1) = \frac{\exp[0.1 - 1.0 - 0.5 + 2.0 - 1.0]}{1 + \exp[0.1 - 1.0 - 0.5 + 2.0 - 1.0]} = 0.30$
- Multiply feature presence by weight
How is Logistic Regression Used?

- Given a set of weights $\mathbf{\beta}$, we know how to compute the conditional likelihood $P(y|\beta, x)$
- Find the set of weights $\mathbf{\beta}$ that maximize the conditional likelihood on training data (next week)
- **Intuition**: higher weights mean that this feature implies that this feature is a good this is the class you want for this observation
How is Logistic Regression Used?

- Given a set of weights $\vec{\beta}$, we know how to compute the conditional likelihood $P(y|\beta, x)$
- Find the set of weights $\vec{\beta}$ that maximize the conditional likelihood on training data (next week)
- **Intuition**: higher weights mean that this feature implies that this feature is a good this is the class you want for this observation
- Naïve Bayes is a special case of logistic regression that uses Bayes rule and conditional probabilities to set these weights

$$\arg\max_{c_j \in \mathbb{C}} \left[\ln \hat{P}(c_j) + \sum_{1 \leq i \leq n_d} \ln \hat{P}(w_i|c_j) \right]$$
How is Logistic Regression Used?

- Given a set of weights \(\vec{\beta} \), we know how to compute the conditional likelihood \(P(y|\beta, x) \)
- Find the set of weights \(\vec{\beta} \) that maximize the conditional likelihood on training data (next week)
- **Intuition**: higher weights mean that this feature implies that this feature is a good this is the class you want for this observation
- Naïve Bayes is a special case of logistic regression that uses Bayes rule and conditional probabilities to set these weights

\[
\arg\max_{c_j \in \mathcal{C}} \left[\ln \hat{P}(c_j) + \sum_{1 \leq i \leq n_d} \ln \hat{P}(w_i|c_j) \right]
\]
How is Logistic Regression Used?

- Given a set of weights $\hat{\beta}$, we know how to compute the conditional likelihood $P(y|\beta, x)$
- Find the set of weights $\hat{\beta}$ that maximize the conditional likelihood on training data (next week)
- **Intuition**: higher weights mean that this feature implies that this feature is a good this is the class you want for this observation
- Naïve Bayes is a special case of logistic regression that uses Bayes rule and conditional probabilities to set these weights

$$\arg\max_{c_j \in \mathcal{C}} \left[\ln \hat{P}(c_j) + \sum_{1 \leq i \leq n_d} \ln \hat{P}(w_i|c_j) \right]$$
Contrasting Naïve Bayes and Logistic Regression

- Naïve Bayes easier
- Naïve Bayes better on smaller datasets
- Logistic regression better on medium-sized datasets
- On huge datasets, it doesn’t really matter (data always win)
 - Optional reading by Ng and Jordan has proofs and experiments
- Logistic regression allows arbitrary features (biggest difference!)
Contrasting Naïve Bayes and Logistic Regression

- Naïve Bayes easier
- Naïve Bayes better on smaller datasets
- Logistic regression better on medium-sized datasets
- On huge datasets, it doesn’t really matter (data always win)
 - Optional reading by Ng and Jordan has proofs and experiments
- Logistic regression allows arbitrary features (biggest difference!)
- Don’t need to memorize (or work through) previous slide—just understand that naïve Bayes is a special case of logistic regression
Next time . . .

- How to learn the best setting of weights
- Regularizing logistic regression to encourage sparse vectors
- Extracting features