Sequence Models

NLP: Jordan Boyd-Graber

University of Maryland

RNNs

Slides adapted from Richard Socher and Phillip Koehn
Language models

• **Language models** answer the question: How likely is a string of English words good English?
• Autocomplete on phones and websearch
• Creating English-looking documents
• Very common in machine translation systems
 ▶ Help with reordering / style
 \[p_{\text{lm}}(\text{the house is small}) > p_{\text{lm}}(\text{small the is house}) \]
 ▶ Help with word choice
 \[p_{\text{lm}}(\text{I am going home}) > p_{\text{lm}}(\text{I am going house}) \]
I have a sad story to tell you
It may hurt your feelings a bit
Last night when I walked into my bathroom
I stepped in a big pile of ...
Fill in the blank

I have a sad story to tell you
It may hurt your feelings a bit
Last night when I walked into my bathroom
I stepped in a big pile of ...
\section*{n-gram models}

- Have a big corpus
- Count n-gram sequences
- Estimate

\[
p(w_n \mid w_{n-1} \ldots w_{n-k}) = \frac{\text{Count}(w_{n-k} \ldots w_{n-1} w_n)}{\text{Count}(w_{n-k} \ldots w_{n-1})} \tag{1}\]
Language Modeling: The Good Old Days

\section*{\textit{n}-gram models}

- Have a big corpus
- Count \textit{n}-gram sequences
- Estimate

\[p(w_n | w_{n-1} \ldots w_{n-k}) = \frac{\text{Count}(w_{n-k} \ldots w_{n-1} w_n)}{\text{Count}(w_{n-k} \ldots w_{n-1})} \quad (1) \]

\section*{Log-linear models}

- Define a feature vector \(f \)
 based on word \(w \) and context \(c \)
- (Can include \textit{n}-gram features)
- Learn \(\beta \) from data
- Then

\[p(w | c) = \frac{\exp \{ \beta f(w, c) \}}{\sum_v \exp \{ \beta f(v, c) \}} \quad (2) \]
Recurrent Neural Networks

Use Word2Vec or learn representations from scratch

\[x_{t-1} \quad x_t \quad x_{t+1} \]

The cat sat
Recurrent Neural Networks

Each hidden state has $D = 500$ or so
Recurrent Neural Networks

Transform hidden state to V (vocab) matrix $W^{(s)} \vec{h}_t$

The cat sat
Recurrent Neural Networks

Take softmax to get real distribution
RNN parameters

\[h_t = f\left(W^{(hh)} h_{t-1} + W^{(hx)} x_t \right) \quad (3) \]

\[\hat{y}_t = \text{softmax}(W^{(S)} h_t) \quad (4) \]

\[P(x_{t+1} = v_j \mid x_t, \ldots, x_1) = \hat{y}_{t,j} \quad (5) \]

- Learn parameter \(h_0 \) to initialize hidden layer
- \(x_t \) is representation of input (e.g., word embedding)
- \(\hat{y} \) is probability distribution over vocabulary
Training Woes

Multiplying same matrix over and over
Vanishing / Exploding Gradient

- Work out the math:
 - Define β_W / β_h as upper bound of norms of W, h
 - Bengio et al 1994: Partial derivative is $(\beta_W \beta_h)^{t-k}$
 - This can be very small or very big

- If it’s big, SGD jumps too far
- If it’s small, we don’t learn what we need: “Jane walked into the room with John, who wasn’t paying attention to what was going on. After poking him to get his attention, John said hi to ____”
Gradient Clipping

Algorithm 1 Pseudo-code for norm clipping the gradients whenever they explode

\[
g \leftarrow \frac{\partial \ell}{\partial \theta}
\]

if \(\|g\| \geq \text{threshold} \) then

\[
\hat{g} \leftarrow \text{threshold} \frac{g}{\|g\|}
\]

end if

From Pascanu et al. 2013

- If they get too big, stop at boundary
- Prevents (dashed) values from jumping around (solid)
Fixing Vanishing Gradients

- ReLU activation
- Initialize W to identity matrix
Vizualization from Karpathy et al

Cell sensitive to position in line:

The sole importance of the crossing of the Berezina lies in the fact that it plainly and indubitably proved the fallacy of all the plans for cutting off the enemy's retreat and the soundness of the only possible line of action—the one Kutuzov and the general mass of the army demanded—namely, simply to follow the enemy up. The French crowd fled at a continually increasing speed and all its energy was directed to reaching its goal. It fled like a wounded animal and it was impossible to block its path. This was shown not so much by the arrangements it made for crossing as by what took place at the bridges. When the bridges broke down, unarmed soldiers, people from Moscow and women with children who were with the French transport, all—carried on by vis inertiae—pressed forward into boats and into the ice-covered water and did not, surrender.
Cell that turns on inside quotes:
"You mean to imply that I have nothing to eat out of.... On the contrary, I can supply you with everything even if you want to give dinner parties," warmly replied Chichagov, who tried by every word he spoke to prove his own rectitude and therefore imagined Kutuzov to be animated by the same desire.

Kutuzov, shrugging his shoulders, replied with his subtle penetrating smile: "I meant merely to say what I said."
Cell that robustly activates inside if statements:

```c
static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
    siginfo_t *info)
{
    int sig = next_signal(pending, mask);
    if (sig) {
        if (current->notifier) {
            if (sigismember(current->notifier_mask, sig)) {
                if (!(current->notifier)(current->notifier_data)) {
                    clear_thread_flag(TIF_SIGPENDING);
                    return 0;
                }
            }
        }
        collect_signal(sig, pending, info);
    }
    return sig;
}
```
RNN Recap

• Simple model
• Complicated training (but good toolkits available)
• Do we need to remember everything?