Logistic Regression by Another Name: Map inputs to output

\[h_{w,b}(x) = \frac{1}{1 + e^{-\sum_{i} W_i x_i + b}} \]

\[f(z) = \frac{1}{1 + e^{-z}} \]
Logistic Regression by Another Name: Map inputs to output

Input Vector $x_1 \ldots x_d$

inputs encoded as real numbers

$$f(z) \equiv \frac{1}{1 + \exp(-z)}$$
Logistic Regression by Another Name: Map inputs to output

Input
Vector $x_1 \ldots x_d$

Multiply inputs by

Output

$$f \left(\sum_i W_i x_i + b \right)$$
Logistic Regression by Another Name: Map inputs to output

Input Vector $x_1 \ldots x_d$

Output

$$f \left(\sum_i W_i x_i + b \right)$$

add bias
Logistic Regression by Another Name: Map inputs to output

Input
Vector $x_1 \ldots x_d$

Output

$$f \left(\sum_i W_i x_i + b \right)$$

Activation

$$f(z) \equiv \frac{1}{1 + \exp(-z)}$$

pass through nonlinear sigmoid
Why is it called activation?
In the shallow end

- This is still logistic regression
- Engineering features x is difficult (and requires expertise)
- Can we learn how to represent inputs into final decision?
Better name: non-linearity

- **Logistic / Sigmoid**
 \[f(x) = \frac{1}{1 + e^{-x}} \]
 (1)

- **tanh**
 \[f(x) = \tanh(x) = \frac{2}{1 + e^{-2x}} - 1 \]
 (2)

- **ReLU**
 \[f(x) = \begin{cases}
 0 & \text{for } x < 0 \\
 x & \text{for } x \geq 0
 \end{cases} \]
 (3)

- **SoftPlus**: \[f(x) = \ln(1 + e^x) \]
Learn the features and the function

\[
a^{(2)}_1 = f \left(W^{(1)}_{11} x_1 + W^{(1)}_{12} x_2 + W^{(1)}_{13} x_3 + b^{(1)}_1 \right)
\]
Learn the features and the function

\[a_2^{(2)} = f\left(W_{21}^{(1)} x_1 + W_{22}^{(1)} x_2 + W_{23}^{(1)} x_3 + b_2^{(1)} \right) \]
Learn the features and the function

\[a_3^{(2)} = f \left(W_{31}^{(1)} x_1 + W_{32}^{(1)} x_2 + W_{33}^{(1)} x_3 + b_3^{(1)} \right) \]
Learn the features and the function

\[h_{W,b}(x) = a_1^{(3)} = f \left(W_{11}^{(2)} a_1^{(2)} + W_{12}^{(2)} a_2^{(2)} + W_{13}^{(2)} a_3^{(2)} + b_1^{(2)} \right) \]
Objective Function

- For every example x, y of our supervised training set, we want the label y to match the prediction $h_{W,b}(x)$.

\[J(W, b; x, y) \equiv \frac{1}{2} \| h_{W,b}(x) - y \|^2 \quad (4) \]
Objective Function

- For every example \(x, y \) of our supervised training set, we want the label \(y \) to match the prediction \(h_{W,b}(x) \).

\[
J(W, b; x, y) \equiv \frac{1}{2} \| h_{W,b}(x) - y \|^2
\]

(4)

- We want this value, summed over all of the examples to be as small as possible
Objective Function

- For every example \(x, y \) of our supervised training set, we want the label \(y \) to match the prediction \(h_{W,b}(x) \).

\[
J(W, b; x, y) \equiv \frac{1}{2} \| h_{W,b}(x) - y \|^2
\]

(4)

- We want this value, summed over all of the examples to be as small as possible.

- We also want the weights not to be too large

\[
\frac{\lambda}{2} \sum_{l=1}^{n_{l-1}} \sum_{i=1}^{s_l} \sum_{j=1}^{s_{l+1}} (W_{ji})^2
\]

(5)
Objective Function

- For every example x, y of our supervised training set, we want the label y to match the prediction $h_{W,b}(x)$.

$$J(W, b; x, y) \equiv \frac{1}{2} \| h_{W,b}(x) - y \|^2$$ \hspace{1cm} (4)

- We want this value, summed over all of the examples to be as small as possible.

- We also want the weights not to be too large.

$$\frac{\lambda}{2} \sum_{l} \sum_{i=1}^{s_l-1} \sum_{j=1}^{s_{l+1}} (W'_{ji})^2$$ \hspace{1cm} (5)
Objective Function

- For every example \(x, y \) of our supervised training set, we want the label \(y \) to match the prediction \(h_{W,b}(x) \).

\[
J(W, b; x, y) = \frac{1}{2} \| h_{W,b}(x) - y \|^2
\] (4)

- We want this value, summed over all of the examples to be as small as possible.
- We also want the weights not to be too large

\[
\frac{\lambda}{2} \sum_l \sum_{i=1}^{s_l} \sum_{j=1}^{s_{l+1}} (W_{ji})^2
\] (5)

Sum over all layers
Objective Function

- For every example \(x, y \) of our supervised training set, we want the label \(y \) to match the prediction \(h_{W,b}(x) \).

\[
J(W, b; x, y) \equiv \frac{1}{2} \| h_{W,b}(x) - y \|^2
\]

(4)

- We want this value, summed over all of the examples to be as small as possible.

- We also want the weights not to be too large.

\[
\sum_{l=1}^{s_{l+1}} \sum_{j=1}^{s_{l}} \sum_{i=1}^{n_{l-1}} \left(W_{ji} \right)^2
\]

(5)

Sum over all sources
Objective Function

- For every example x, y of our supervised training set, we want the label y to match the prediction $h_{W,b}(x)$.

\[
J(W, b; x, y) \equiv \frac{1}{2} ||h_{W,b}(x) - y||^2
\]

(4)

- We want this value, summed over all of the examples to be as small as possible

- We also want the weights not to be too large

\[
\frac{\lambda}{2} \sum_l \sum_{i=1}^{s_l} \sum_{j=1}^{s_{l+1}} (W_{ji})^2
\]

(5)

Sum over all destinations
Objective Function

Putting it all together:

\[J(W, b) = \left[\frac{1}{m} \sum_{i=1}^{m} \frac{1}{2} \| h_{W,b}(x^{(i)}) - y^{(i)} \|^2 \right] + \frac{\lambda}{2} \sum_{l=1}^{n_{l-1}} \sum_{i=1}^{s_l} \sum_{j=1}^{s_{l+1}} (W_{ji})^2 \]

(6)
Objective Function

Putting it all together:

\[
J(W, b) = \left[\frac{1}{m} \sum_{i=1}^{m} \frac{1}{2} \| h_{W,b}(x^{(i)}) - y^{(i)} \|^2 \right] + \frac{\lambda}{2} \sum_{i=1}^{n_{l-1}} \sum_{j=1}^{s_i} \sum_{i=1}^{s_{i+1}} \left(W_{ji}^l \right)^2
\]

(6)

- Our goal is to minimize \(J(W, b) \) as a function of \(W \) and \(b \)
Objective Function

Putting it all together:

\[J(W, b) = \left[\frac{1}{m} \sum_{i=1}^{m} \frac{1}{2} \| h_{W,b}(x^{(i)}) - y^{(i)} \|^2 \right] + \frac{\lambda}{2} \sum_{l} \sum_{i=1}^{s_l} \sum_{j=1}^{s_{l+1}} (W^l_{ji})^2 \] (6)

- Our goal is to minimize \(J(W, b) \) as a function of \(W \) and \(b \)
- Initialize \(W \) and \(b \) to small random value near zero
Objective Function

Putting it all together:

\[J(W, b) = \left[\frac{1}{m} \sum_{i=1}^{m} \frac{1}{2} \| h_{W,b}(x^{(i)}) - y^{(i)} \|^2 \right] + \frac{\lambda}{2} \sum_{l=1}^{n_{l-1}} \sum_{i=1}^{s_l} \sum_{j=1}^{s_{l+1}} (W_{ji}^l)^2 \]

- Our goal is to minimize \(J(W, b) \) as a function of \(W \) and \(b \)
- Initialize \(W \) and \(b \) to small random value near zero
- Adjust parameters to optimize \(J \)
Gradient Descent

Goal

Optimize J with respect to variables W and b
Backpropagation

- For convenience, write the input to sigmoid

\[
z_i^{(l)} = \sum_{j=1}^{n} W_{ij}^{(l-1)} x_j + b_i^{(l-1)}
\]

(7)
Backpropagation

- For convenience, write the input to sigmoid

\[z_i^{(l)} = \sum_{j=1}^{n} W_{ij}^{(l-1)} x_j + b_i^{(l-1)} \]

(7)

- The gradient is a function of a node’s error \(\delta_i^{(l)} \)
Backpropagation

- For convenience, write the input to sigmoid

\[z_i^{(l)} = \sum_{j=1}^{n} W_{ij}^{(l-1)} x_j + b_i^{(l-1)} \]

(7)

- The gradient is a function of a node’s error \(\delta_i^{(l)} \)

- For output nodes, the error is obvious:

\[
\delta_i^{(n_l)} = \frac{\partial}{\partial z_i^{(n_l)}} \| y - h_{w,b}(x) \|^2 = -\left(y_i - a_i^{(n_l)} \right) \cdot f'(z_i^{(n_l)}) \frac{2}{2}
\]

(8)
Backpropagation

- For convenience, write the input to sigmoid:

$$ z_i^{(l)} = \sum_{j=1}^{n} W_{ij}^{(l-1)} x_j + b_i^{(l-1)} $$

(7)

- The gradient is a function of a node’s error $\delta_i^{(l)}$

- For output nodes, the error is obvious:

$$ \delta_i^{(n)} = \frac{\partial}{\partial z_i^{(n)}} ||y - h_{w,b}(x)||^2 = -(y_i - a_i^{(n)}) \cdot f'(z_i^{(n)})^2 $$

(8)

- Other nodes must “backpropagate” downstream error based on connection strength:

$$ \delta_i^{(l)} = \left(\sum_{j=1}^{s_{l+1}} W_{ji}^{(l+1)} \delta_j^{(l+1)} \right) f'(z_i^{(l)}) $$

(9)
Backpropigation

- For convenience, write the input to sigmoid

\[z_i^{(l)} = \sum_{j=1}^{n} W_{ij}^{(l-1)} x_j + b_i^{(l-1)} \]

(7)

- The gradient is a function of a node’s error \(\delta_i^{(l)} \)

- For output nodes, the error is obvious:

\[\delta_i^{(n_l)} = \frac{\partial}{\partial z_i^{(n_l)}} \| y - h_{w,b}(x) \|^2 = -\left(y_i - a_i^{(n_l)} \right) \cdot f'(z_i^{(n_l)}) \frac{2}{2} \]

(8)

- Other nodes must “backpropagate” downstream error based on connection strength

\[\delta_i^{(l)} = \left(\sum_{j=1}^{s_{t+1}} W_{ji}^{(l+1)} \delta_j^{(l+1)} \right) f'(z_i^{(l)}) \]

(9)
Backpropigation

- For convenience, write the input to sigmoid

\[z_i^{(l)} = \sum_{j=1}^{n} W_{ij}^{(l-1)} x_j + b_i^{(l-1)} \]

(7)

- The gradient is a function of a node’s error \(\delta_i^{(l)} \)

- For output nodes, the error is obvious:

\[\delta_i^{(n_l)} = \frac{\partial}{\partial z_i^{(n_l)}} \| y - h_{w,b}(x) \|^2 = -(y_i - a_i^{(n_l)}) \cdot f'(z_i^{(n_l)}) \frac{2}{2} \]

(8)

- Other nodes must “backpropagate” downstream error based on connection strength

\[\delta_i^{(l)} = \left(\sum_{j=1}^{s_{l+1}} W_{ji}^{(l+1)} \delta_j^{(l+1)} \right) f'(z_i^{(l)}) \]

(9)

(chain rule)
Partial Derivatives

- For weights, the partial derivatives are

\[
\frac{\partial}{\partial W^{(l)}_{ij}} J(W, b; x, y) = a^{(l)}_j \delta^{(l+1)}_i
\]
(10)

- For the bias terms, the partial derivatives are

\[
\frac{\partial}{\partial b^{(l)}_i} J(W, b; x, y) = \delta^{(l+1)}_i
\]
(11)

- But this is just for a single example . . .
Full Gradient Descent Algorithm

1. Initialize $U^{(l)}$ and $V^{(l)}$ as zero
2. For each example $i = 1 \ldots m$
 2.1 Use backpropagation to compute $\nabla_W J$ and $\nabla_b J$
 2.2 Update weight shifts $U^{(l)} = U^{(l)} + \nabla_W J(W, b; x, y)$
 2.3 Update bias shifts $V^{(l)} = V^{(l)} + \nabla_b J(W, b; x, y)$
3. Update the parameters

 \[
 W^{(l)} = W^{(l)} - \alpha \left[\frac{1}{m} U^{(l)} \right] \quad (12)
 \]

 \[
 b^{(l)} = b^{(l)} - \alpha \left[\frac{1}{m} V^{(l)} \right] \quad (13)
 \]
4. Repeat until weights stop changing
But it is not perfect

- Compare against baselines: randomized features, nearest-neighbors, linear models
- Optimization is hard (alchemy)
- Models are often not interpretable
- Requires specialized hardware and tons of data to scale